Author Archives: Jonathan Kelly

Pixels to pixels – RA-L and IROS 2020 paper on learning latent dynamics for control from pixels!

New RA-L and IROS 2020 work with the RLAI Lab at the University of Alberta on learning robust latent dynamics from images only. We demonstrate how latent dynamics can be made more robust for real-world robotic applications by composing a Kalman filter with a learned, heteroskedastic uncertainty model. Watch the YouTube video to find out more!

Got calibration? New MFI 2020 paper on certifiable hand-eye calibration out now!

Have you always wondered whether your extrinsic sensor transformation globally minimizes its calibration cost function? With our latest work on certifiable monocular hand-eye calibration, wonder no more! Check out the IEEE MFI 2020 paper – we prove that trajectories satisfying observability requirements lead to convex relaxations that are inherently stable to measurement error. The open source implementation of our method is fast, requires no calibration targets, and works for a wide variety of sensors, including monocular cameras!

Rotation learning paper wins Robotics: Science & Systems 2020 Best Student Paper Award!

Congratulations to lab members Valentin Peretroukhin and Matthew Giamou and to our collaborators, David M. Rosen, W. Nicholas Green, and Nicholas Roy at MIT for winning this year’s RSS Best Student Paper Award! Full details and code for the paper, “A Smooth Representation of SO(3) for Deep Rotation Learning with Uncertainty,” are available here. Great work all!

Counting down to RSS 2020 Virtual Workshop on Power-On-and-Go Robots on July 13!

Just a couple of days until the RSS 2020 Workshop on Power-On-and-Go Robots: ‘Out of the Box’ Systems for Real-World Applications! We are extremely excited about the event, which will be streamed live via Zoom. Full details are available at https://www.power-on-and-go.net/.

The workshop will bring together researchers from diverse backgrounds to address topics related to power-on- and-go robots: robotic systems that are able to successfully deal with new situations fluidly and to adapt immediately to new environments or to changes in their own operating parameters. We have a fantastic lineup of speakers and panelists, including Hadas Kress-Gazit (Cornell), Stefan Leutenegger (Imperial College), Nathan Michael (CMU), Arne Sieverling (Realtime Robotics), Luca Carlone (MIT), Ali Agha (JPL), Dorsa Sadigh (Stanford), and Gaurav Sukhatme (USC)!

As a follow-on to the workshop, our Call for Papers for a special issue of the journal Autonomous Robots is out now as well, with more details and deadlines available here. We hope you will be able to join us for an insightful virtual event!

Three papers to appear at ICRA 2020 – Check em’ out!

We’re excited to have three lab papers that will be presented at this year’s (virtual) ICRA 2020 conference! Highlights and video links are below.

Check out our new extension to DPC-Net (from ICRA 2018): we show that DPC networks can be trained in a fully self-supervised manner, which improves accuracy and allows for retraining online in new environments!

Got features? Our recent RA-L and ICRA 2020 work demonstrates how to learn maximally-matchable image mappings to dramatically reduce the data needed for experience-based navigation.

Check out our work on a QCQP approach to inverse kinematics for redundant manipulators. We show that this difficult, nonconvex problem often admits a provably tight convex relaxation that can be efficiently solved! Coming soon to MoveIt!

Robotics: Science and Systems 2020 Workshop on Power-On-and-Go Robots

We’re delighted to be co-organizing the RSS 2020 Workshop on Power-On-and-Go Robots: ‘Out of the Box’ Systems for Real-World Applications! More details at https://www.power-on-and-go.net/

Substantial advances have been made over the past two decades in the area of mobile robot autonomy, in part due to the development of sophisticated methods to fuse data from multiple information sources. However, these gains come with the caveat that proper system initialization and calibration are essential. Starting with or quickly discovering the “right” initial conditions for the selected estimation, planning, and control algorithms is a crucial but largely overlooked problem that has not yet been fully tackled by the community—instead it is often regarded as a post-hoc ‘engineering’ issue rather than a key safety concern, for example. In a future where robots actively operate alongside people in human environments, businesses and consumers will demand that the machines work correctly the first time, every time, anywhere, with minimal external (human) intervention.

The workshop will bring together researchers from diverse backgrounds to address topics related to power-on- and-go robots: robotic systems that are able to successfully deal with new situations fluidly and to adapt immediately to new environments or to changes in their own operating parameters.

Please consider submitting an extended abstract for presentation at the virtual workshop! The deadline has been extended and is now June 21st, 2020.

Canadian Planetary Emulation Terrain Energy-Aware Rover Navigation Dataset released!

We’re excited to announce the release of our University of Toronto Canadian Planetary Emulation Terrain Energy-Aware Rover Navigation Dataset. The dataset was gathered by a small, four-wheeled rover at a planetary analog test facility in Canada. The rover was equipped with a suite of sensors designed to enable the study of energy-aware navigation and path planning algorithms. Our International Journal of Robotics Research data paper is available here.

The dataset includes more than 14,000 colour omnidirectional stereo panoramas captured from a synchronized 10-camera cluster and 16,000 high-resolution monocular terrain images. IMU, pyranometer (solar irradiance), drive power consumption, wheel encoder, and GPS measurements are also included. All data are presented in human-readable text files and as standard-format images; additional Robot Operating System (ROS) parsing tools and several georeferenced aerial maps of the test environment are also included. The full dataset is accessible from:

https://starslab.ca/enav-planetary-dataset/.

Happy roving!

Second Debates on the Future of Robotics Research workshop scheduled for ICRA 2020 in Paris!

We’re organizing the second ‘Debates on the Future of Robotics Research’ workshop at ICRA 2020 in Paris! The event will take place on May 31 – we have an outstanding group of speakers and organizers this year and are looking forward to a memorable day of discussions! Submissions for the Lightning Talks session are now open – full details are available at http://roboticsdebates.org/. Hope to see you there!

Congratulations to Dr. Lee Clement on a successful PhD defense!

Congratulations to Dr. Lee Clement for successfully defending his PhD on November 29! His dissertation, “On Learning Models of Appearance for Robust Long-Term Visual Navigation” focussed on enabling successful long-term autonomy (localization, navigation, and mapping) under substantial appearance change (due to lighting variation and other effects). We wish him success in the future!