
Addressing Distribution Shift in Robotic Imitation Learning

by

Trevor Louis Ablett

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy

Graduate Department of Institute for Aerospace Studies
University of Toronto

© Copyright 2025 by Trevor Louis Ablett

Abstract

Addressing Distribution Shift in Robotic Imitation Learning

Trevor Louis Ablett
Doctor of Philosophy

Graduate Department of Institute for Aerospace Studies
University of Toronto

2025

The widespread use of robotic systems remains out of reach for a variety of reasons. Even assum-

ing perfect sensing and modelling, determining the optimal actions to perform to complete tasks is

challenging, particularly as task complexity rises. An appealing alternative to explicit modelling is

imitation learning (IL), where control policies are learned directly from expert data containing raw

observations and actions. Unfortunately, IL is subject to distribution shift: when a robot encounters

data not adequately covered by its training dataset, it can fail, sometimes catastrophically. This thesis

presents approaches to resolve distribution shift in robotic IL. The first two methods presented di-

rectly modify the training dataset as it is collected: one allows better coverage of the full distribution

encountered in a mobile manipulation setting, and the next modifies individual trajectories to address

an inevitable shift resulting from the use of kinesthetic teaching, a common approach to generating

demonstrations. Our third approach directly detects distribution shift and allows the expert to inter-

vene and provide corrective data in response. Finally, we investigate inverse reinforcement learning

(IRL), which ostensibly resolves distribution shift, but in practice can suffer from deceptive learned re-

wards causing locally maximal but globally poor behaviour. In our fourth approach, we learn policies

from demonstrations of auxiliary tasks, in addition to the main task, to break out of these local maxima

in IRL. Our fifth approach extends this exploration improvement to the more difficult case of merely

having examples of completed tasks and auxiliary tasks, improving performance while simultaneously

significantly reducing the collection burden on the expert. These approaches are demonstrated on both

simulated and real robotic manipulators, and we provide open source code to reproduce and build upon

our results.

ii

Epigraph

We all admire great accomplishments in the
sciences, arts, and humanities — but we
rarely acknowledge how much we achieve
in the course of our everyday lives.

Marvin Minsky, The Emotion Machine

A failure is not always a mistake; it may
simply be the best one can do under the
circumstances. The real mistake is to stop
trying.

B. F. Skinner, Beyond Freedom and Dignity

There will be mountains you won’t move.

Frank Ocean, Godspeed

iii

To Christina, whose encouragement, grace, and above all patience, made this possible.

iv

Acknowledgements

Completing this thesis has been, as I am sure most other graduate students can relate to, extraordinarily
difficult. I am exceptionally lucky to have family, friends, and colleagues who have supported me
throughout the best and worst of the experience, and who provided me the mental fortitude to push
through. What follows is a non-exhaustive list of people who have helped shape me into the researcher
and human being that I am today.

First and foremost, I must thank my advisor, Jonathan Kelly. Your support and patience has been
immeasurable over these years, and your willingness to allow me to pursue just about anything I could
come up with gave me the strength to follow my own judgment, as well as the maturity to overcome
limitations and failures. Next, my committee members, Gabriele D’Eleuterio and Angela Schoellig. You
have both provided continued patience and guidance as my research took many unexpected twists
and turns, and I cannot have asked for a better committee. I also must thank Florian Shkurti, who
generously met with me multiple times early in my studies, providing many fruitful discussions and
research directions that informed much of this work in its early days. Finally, I’d like to thank Douglas
Down, whose superb teaching and kind demeanor helped convince me to pursue further studies, and
who was also kind enough to provide innumerable reference letters.

Of course, I must thank my colleagues at the STARS lab (and adjacent robotics labs), whose will-
ingness to engage in thoughtful and provocative discussion, both in and out of the lab, has always
made this the group a particularly welcoming bunch. In particular, I’d like to thank Oliver, Filip, Bran-
don, Jordan, Matt, Emmett, Olivier, Justin, Adam Hall, Adam Heins, Siqi, and Melissa: starting with
you all, having countless deep and hilarious discussions, and watching you all grow into brilliant and
accomplished researchers has been inspiring. I’d also like to thank Valentin, Lee, Karime, Adam S.,
and Chris M. for your guidance, advice, and friendship as the resident senior students. Mia, I’d like
to thank you for making co-supervision easy as you pursue your Master’s, and also for being a great
friend and sounding board for all of our common struggles throughout this journey. I must also men-
tion Chris G., Erin, Andrej, Abhinav, Philippe, Katie, Selina, Miguel, and Karyna: all of you have been
a pleasure to work with, talk with, and watch grow. Finally, I must mention Carmela and Joan, whose
friendship and guidance at UTIAS over the years has always made coming into the facility, despite its
inconvenient location, a treat.

I’ve been lucky enough to have many coauthors over the years who helped make research projects
far more fun and satisfying. In particular, Bryan, your technical chops and perseverance made you an
absolute delight to work with, and I’m so excited to see where your current studies take you in the
future. I must also thank Daniel, Jayce, Cathy, Luke, Jayanti, and Yuchen: your aptitude as undergrad-
uate researchers made completing research with you an easy experience, and I’m also very excited to
see where your future studies take you.

I was also lucky enough to spend a year as a researcher at the Samsung AI Center in Montreal,
where I met and interacted with phenomenal researchers. I have particular gratitude towards Francois
Hogan, Gregory Dudek, and Kaleem Sidiqi, whose guidance was kind and valuable and made my inte-
gration into the center smooth and simple. I’d also like to thank Dmitriy, Adam S., Affan, Abhisek, Rui

v

Heng, Jean-Francois, Wei-Di, Charlotte, Bobak, and Laurena for their friendship and help throughout.
Early in my studies, I also spent two months at the LAMOR lab at FER in Zagreb, Croatia, where

I was welcomed with open arms and learned much about robotics and the Croatian way of life. I’d
like to thank Filip (again) for encouraging me to pursue the opportunity, as well as Ivan Petrović, Ivan
Marković, and Ivan Hrvoić for making me feel at home, with particular thanks to Ivan P. for providing
multiple reference letters. In the lab, I must mention Juraj, Tomislav, Antea, and Luka for their help
and friendship.

My friends outside of the world of academia have been particularly important for maintaining my
sanity, and reminding me that there is, in fact, more to life than a publishing record. Adam, Sara F.,
Sara G., Sasha, Danielle, Matt, Jay, Kyle, Jen, Victoria, Kendall, Will H., Dawn, Michael, Liz, Karina,
Tom, Zoe, Louise, Ahan, Ryan, Tristan, Shauna, Julia, Anna, Nell, Will J., Paige, Josh, Aidan, and Nick
(and I probably forgot more than a few), whether it be soccer (Cuties and Bobcats, unite!), karaoke,
group vacations, dungeons and dragons, or some other goofy activity, your friendship has meant the
world to me. Heidi C., your insightful and patient guidance was particularly instrumental during some
of the darkest moments of this process, and I’ll always be grateful for it.

Of course, I wouldn’t be anywhere that I am now without the early and ongoing guidance and
support of my loving family. My mother and father introduced me to math, science, and engineering,
and their cultivation of my interest in it is likely the main reason I’m on the path I am now. My
sister Devon has always been an inspiration and source of constant encouragement. Pam, Nonna,
Nonno, Matthew and Kyla, you have all consistently shown interest, curiosity, and excitement about
my studies, and I couldn’t have asked for more.

Above all, I must devote the majority of my thanks to my partner, Christina. Before and throughout
this process, I have been consistently humbled by your wisdom, kindness, and support. Our family has
doubled in size since we (and it certainly is we, not I) began this journey, and you, Bowie, and Wesley
keep me grounded in reality and, again, remind me that there is much, much more to life than academic
pursuits. Through the best and worst of this process, your confidence in me has never wavered, and
I simply cannot believe my good fortune in having found you and having the privilege to grow and
learn with you.

vi

Contents

1 Introduction 1
1.1 Structure and Contributions . 3
1.2 Applications Beyond Manipulation . 5
1.3 Associated Publications . 5

2 Background 7
2.1 Supervised Learning . 7
2.2 Sequential Decision Making and Markov Decision Processes 10
2.3 Reinforcement Learning . 13
2.4 Imitation Learning . 20

3 Multiview Manipulation from Demonstrations 25
3.1 Motivation . 25
3.2 Related Work . 27
3.3 Problem Formulation . 29
3.4 Multiview Training and Shared Information . 29
3.5 Methodology . 31
3.6 Experimental Setup . 33
3.7 Experiments . 37
3.8 Limitations . 40
3.9 Summary . 40

4 Force-Matched Demonstrations 42
4.1 Motivation . 43
4.2 Related Work . 45
4.3 Methodology . 47
4.4 Experiments . 53
4.5 Limitations . 66
4.6 Summary . 67

vii

5 Failure Identification for Interventions 68
5.1 Motivation . 68
5.2 Related Work . 71
5.3 Failure Identification to Reduce Expert Burden (FIRE) 72
5.4 Fixed-Base Experiments . 76
5.5 Multiview Experiments with GDA-FIRE . 82
5.6 Limitations . 85
5.7 Summary . 86

6 Learning from Guided Play 87
6.1 Motivation . 87
6.2 Related Work . 90
6.3 Problem Formulation . 91
6.4 Local Maximum with Off-Policy AIL . 91
6.5 Learning from Guided Play (LfGP) . 92
6.6 Experiments . 96
6.7 Performance Results for Auxiliary Tasks . 104
6.8 Learned Model Analysis . 104
6.9 Limitations . 105
6.10 Summary . 105

7 Auxiliary Control from Examples 107
7.1 Motivation . 108
7.2 Related Work . 109
7.3 Example-Based Control with Value-Penalization and Auxiliary Tasks 110
7.4 Experiments . 113
7.5 Limitations . 120
7.6 Summary . 120

8 Conclusion 122
8.1 Summary of Contributions . 123
8.2 On Task Selection, Data-Driven Robotics, and Inductive Biases 126
8.3 Future Research Directions . 126
8.4 On the Value of Imitation Learning to Robotics . 127

Appendices 128

A Learning from Guided Play – Additional Details 129
A.1 Simulated Panda Play Environment Details . 129
A.2 Reinforcement Learning Implementation Details . 130
A.3 Procedure for Obtaining Experts . 131

viii

A.4 Evaluation . 131
A.5 Return Plots . 135
A.6 Model Architectures and Hyperparameters . 135
A.7 Open-Action and Close-Action Distribution Matching 137
A.8 Attempted and Failed Experiments . 137

B Auxiliary Control from Examples – Additional Details 140
B.1 Reward Model Formulations . 140
B.2 Additional Environment, Algorithm, and Implementation Details 142
B.3 Additional Performance Results . 151
B.4 Why Does SQIL Outperform RCE? . 154
B.5 Expanded Limitations . 158

Bibliography 160

ix

Notation

General

x : A real scalar.
x : A real column vector.
X : A real matrix.
D : A dataset of input-output pairs for supervised learning.

Geometry

F−→a : A reference frame in three dimensions.

Probability

N (µ,R) : Normally distributed with mean µ and covariance matrix R.
U([l, u]) : Uniformly distributed between lower limit l and upper limit u.

E [·] : The expectation operator.
X : Random variable corresponding to x.

p(x) : Probability that random variable X takes the value x. For continuous distribu-
tions, density of distribution for X at X = x.

p (y | x) : Probability that random variable Y takes the value y given that random variable
X takes the value x. For continuous distributions, density values for Y = y and
X = x.

Markov Decision Processes

M : A Markov decision process (MDP).
S : A state space.

U(A) : A discrete uniform distribution over the action space.

x

A : An action space.
R : A reward function.
P : A transition distribution.
ρ0 : An initial state distribution.
γ : A discount factor.
s : A system state.
o : An observation in a partially observable MDP.
a : An action.
r : A reward.
t : A discrete timestep.
T : The final timestep in a finite-horizon MDP.

(·)t : A variable with an associated time t.
π : A policy distribution or function.
τ : A trajectory of successive (s, a) pairs.
s′ : The state after s in a trajectory.
a′ : The action after a in trajectory.

V (s) : A value function for state s.
Q(s, a) : An action-value Q-function for state s and action a.

B : A buffer of many (s, a, r, s′) or (s, a, s′) tuples.
T : A predefined auxiliary task in an an MDP.

Imitation Learning

DE : A dataset of expert state-action or observation-action pairs (used for supervised
learning in an MDP).

Dπ : A dataset of policy state-action or observation-action pairs.
D : A discriminator function for classifying expert-generated and policy-generated

data.
BE : A buffer of expert (s, a, r, s′) or (s, a, s′) tuples (used for expert data in reinforce-

ment learning or inverse reinforcement learning).

xi

Chapter 1

Introduction

We are all prodigious olympians in
perceptual and motor areas, so good that we
make the difficult look easy.

Hans Moravec, Mind Children

Autonomous robots are still not able to complete many tasks that we, as humans, find easy. Robots
excel at tasks where no environment feedback is required (e.g., point-to-point welding tasks). If feed-
back is required, they can excel with accurate state estimation, a correct dynamics model, and an
effective strategy for choosing optimal actions. In most tasks we care about, our robots must be highly
responsive to sensor feedback, state estimation has errors, the world model is inaccurate if available at
all, and the task complexity makes it very difficult to know what an optimal action should be. Better,
more human-like hardware and sensing is certainly an important part of improving the capability of
our robots, but it is obvious that our current platforms greatly underperform their mechanical capa-
bility. Consider that a self-driving car has identical mechanical capability, and generally far greater
sensing capability, than a human, and yet, for complicated driving scenarios, humans still outperform
self-driving cars. Similarly, humans are capable of teleoperating our existing robotic manipulators
to complete tasks far beyond the capability of our state-of-the-art algorithms. This human-algorithm
performance gap shows that our machines are capable of completing far more complex tasks than
they currently do, but continue to be limited by our own inability to program our decision-making
knowledge into them.

This human-algorithm gap has helped motivate both reinforcement learning (RL) and imitation

learning (IL) as data-driven alternatives to hand-crafted modelling of solutions to sequential decision
making. In both RL and IL, the goal is to learn a control policy (or, simply, policy) that directly maps en-
vironment states (or observations) as input to actions as output. In RL, a practitioner designs a reward
function and an agent, including a policy, autonomously interacts with an environment. The agent is
progressively updated to maximize cumulative reward. In IL, a practitioner instead provides a set of
expert demonstrations of a task being completed. A policy is then trained directly on the raw expert
observations and actions via supervised learning, or the expert demonstrations are used as part of RL,

1

2 Chapter 1. Introduction

(a) Demonstrations.

?

(b) Distribution shift. (c) Suboptimal policy.

Figure 1.1: A manipulator robot trained with IL is subject to distribution shift. Cascading errors can lead the
policy to encounter states that are further and further from the distribution of expert demonstrations, ultimately
leading to failure. Inverse reinforcement learning can potentially resolve the problem, but can also result in a
suboptimal policy that partially matches the distribution but does not solve the task. Diagram inspired by Ross
(2013).

either to model a reward (in a process known as inverse RL), or as initial data for the agent to bootstrap
from. RL and IL not only allow us to circumvent the design of control policies, but being data-driven
techniques, they also allow us to relax the requirements of accurate state estimation and dynamics
modelling, both of which can be quite difficult. Compared with RL, IL is particularly promising for
robotics, for two major reasons: (i) reward design continues to be difficult, and potentially requires
task knowledge that makes designing effective policies by hand difficult in the first place, and (ii) RL
can be notoriously inefficient.

Unfortunately, IL can be susceptible to distribution shift (sometimes referred to as dataset shift)
(Quionero-Candela et al., 2009), where a trained model encounters data that is different from the train-
ing distribution (sometimes referred to as out-of-distribution or OOD data). This is problematic in all
cases, but for robots, which continuously affect their environment to generate their next observation,
it can be particularly catastrophic (Bagnell, 2005; Ross et al., 2011). A single datapoint that is only
slightly out-of-distribution can result in a mild error in the policy output, generating data that is even
more out-of-distribution, ultimately resulting in cascading errors leading to failure. This was perhaps
first identified in the application of IL to robotics by Pomerleau (1989), where expert data for a self-
driving car was only collected with the car driving safely forward. If the car started to veer left or
right, generating OOD data, the policy would fail.

The distribution shift represented by the simple example from Pomerleau (1989) continues to have
dramatic consequences wherever a supervised approach to IL is applied. Inverse RL ostensibly resolves
this distribution shift, but in practice, an agent that encounters novel data during the RL process can
learn deceptive rewards (Ecoffet et al., 2021) that stagnate learning. This thesis presents a range of
methods for mitigating distribution shift in IL for robotics, sequenced with progressively lower data

1.1. Structure and Contributions 3

(a) Multiview data.

Expert Agent

(b) Force-matched data.

!
!

(c) Interventions.

Figure 1.2: Visual summaries of approaches to resolving distribution shift investigated in Chapters 3 to 5, in-
cluding multiview demonstrations (Chapter 3), force-matched demonstrations (Chapter 4), and failure prediction
with interventions (Chapter 5).

collection costs to the expert from Chapters 3 to 7. In Chapters 3 and 4, we directly modify the training
distribution given an expected shift. In Chapter 5, we detect out-of-distribution data during policy
execution and allow the expert to provide additional, corrective data. Finally, in Chapter 6, we allow
an agent to learn how to return to the expert distribution, autonomously, while avoiding suboptimal
but locally maximal policies, and in Chapter 7 expand the method to use only examples of completed
tasks rather than full expert trajectories.

1.1 Structure and Contributions

We begin in Chapter 2 by building the knowledge and intuition of supervised learning (Section 2.1),
sequential decision making (Section 2.2) and reinforcement learning (Section 2.3). We then describe
the general approaches to using expert data in imitation learning: via supervised learning with be-
havioural cloning (Section 2.4.1), and via self-improving execution with inverse reinforcement learn-
ing (Section 2.4.4). We also provide details on relationship of both of these methods to distribution
shift in Sections 2.4.2 and 2.4.5, respectively. The remainder of this section provides a summary of the
original contributions presented in Chapters 3 to 7.

1. Multiview Manipulation from Demonstrations
Chapter 3 presents a method for mitigating distribution shift by considering expected changes
in the distribution that may occur when a policy is executed, and generating a more diverse
training distribution that leverages mutual information between viewpoints to compensate. De-
liberately widening the training distribution is a general technique for addressing distribution
shift, and we apply it to mobile manipulation. Specifically, leveraging the knowledge that a mo-
bile manipulator will never attempt the same task from the exact same angle, we modify the
initial state distribution of manipulation tasks to collect demonstrations from multiple view-
points. We show that a multiview dataset, with the same quantity of expert data as a baseline

4 Chapter 1. Introduction

(a) Full-trajectory auxiliary task data. (b) Example-based auxiliary task data.

Figure 1.3: Visual summaries of expert data types investigated in Chapters 6 and 7 to address learned deceptive
rewards in inverse reinforcement learning. We use full-trajectory demonstrations of auxiliary tasks in addition
to the main task in Chapter 6, and example-based auxiliary task data in Chapter 7.

fixed-base dataset, generates far more robust policies that can even generalize to some degree
of out-of-distribution data.

2. Force-Matched Demonstrations
In Chapter 4, we modify the training distribution to address distribution shift, but in this case, the
distribution shift is caused by an embodiment change between the expert and the agent (Osa et al.,
2018; Billard et al., 2016). Demonstrations are modified to accommodate this change, and we ex-
perimentally validate that the modification generates far more robust policies. Specifically, the
robot-environment contact force is not typically considered during kinesthetic teaching, which
we resolve with a novel procedure for matching forces read with an inexpensive visuotactile
sensor. We furthermore show that the data provided by multimodal visuotactile sensing is nec-
essary for high-performing policies in contact-rich tasks.

3. Failure Identification for Interventions
Chapter 5 bridges the gap between offline, supervised approaches to IL in Chapters 3 and 4
and online, reinforcement learning-based approaches in Chapters 6 and 7. Specifically, under
the assumption that all IL methods based on supervised learning are likely to encounter OOD
data, we present a general method for interactive IL (Celemin et al., 2022). We identify OOD data
during policy execution and subsequently allow an expert to provide a corrective demonstration,
appending this new data to the expert dataset and retraining the policy on the updated data. In
multiple manipulation tasks, including multiview ones based on those presented in Chapter 3,
we show that interactive data improves sample efficiency compared to simply collecting more
data, as is done by the method from Chapter 3.

4. Learning from Guided Play
In Chapter 6, we move on to an approach based on inverse reinforcement learning (IRL), where
an agent autonomously attempts to learn how to remain within the expert distribution. We

1.2. Applications Beyond Manipulation 5

find that, in practice, IRL can fail dramatically if an agent only partially matches the expert
distribution, without actually completing the task. We add in simple and reusable auxiliary tasks
to encourage the agent to more deeply explore its environment, and ultimately achieve the goal
of matching the expert distribution without requiring any additional expert intervention.

5. Auxiliary Control from Examples
Finally, in Chapter 7, we remove the need for having full expert trajectories, which can be sub-
optimal, biased, or difficult to acquire. Instead, the agent is provided only examples of success,
fully alleviating the potential for the distribution shift explored in Chapters 3 to 6. This sparse
form of feedback presents a particularly challenging exploration problem, but we show that the
technique from Chapter 6 is effective even with only examples of completed auxiliary tasks. This
application can result in unstable learning due to highly overestimated values, and we resolve
the problem with a novel scheme for value penalization.

1.2 Applications Beyond Manipulation

As we allude to in Figs. 1.1 to 1.3, the experiments in this thesis are primarily focused on robotic
manipulation. However, it is worth pointing out that the methods presented in this work are not
strictly limited to manipulation. The approaches presented in Chapters 5 to 7 can be directly applied
to self-driving cars, drones, wheeled robot locomotion, humanoid or legged robot locomotion, and
potentially other sequential decision-making or control domains. Additionally, the core concept of
Chapter 3—in which the problem setup is exploited to deliberately widen the training distribution
through more overlapping data—is not limited to manipulation either.

1.3 Associated Publications

This dissertation is comprised of work from the following first-authored papers:

1. Ablett, T., Zhai, Y., and Kelly, J. (2021b). Seeing All the Angles: Learning Multiview Manip-
ulation Policies for Contact-Rich Tasks from Demonstrations. In Proceedings of the IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS’21), pages 7843–7850, Prague,
Czech Republic

2. Ablett, T., Limoyo, O., Sigal, A., Jilani, A., Kelly, J., Siddiqi, K., Hogan, F., and Dudek, G. (2024b).
Multimodal and Force-Matched Imitation Learning With a See-Through Visuotactile Sensor.
IEEE Transactions on Robotics, 41:946–959

3. Ablett, T., Marić, F., and Kelly, J. (2020). Fighting Failures with FIRE: Failure Identification to
Reduce Expert Burden in Intervention-Based Learning. Technical Report STARS-2020-001, Uni-
versity of Toronto

6 Chapter 1. Introduction

4. Ablett, T., Chan, B., and Kelly, J. (2021a). Learning from Guided Play: A Scheduled Hierarchi-
cal Approach for Improving Exploration in Adversarial Imitation Learning. In Proceedings of

the Neural Information Processing Systems (NeurIPS’21) Deep Reinforcement Learning Workshop,
Online

5. Ablett, T., Chan, B., and Kelly, J. (2023). Learning From Guided Play: Improving Exploration
for Adversarial Imitation Learning With Simple Auxiliary Tasks. IEEE Robotics and Automation

Letters, 8(3):1263–1270

6. Ablett, T., Chan, B., Wang, J. H., and Kelly, J. (2024a). Fast Reinforcement Learning without
Rewards or Demonstrations via Auxiliary Task Examples. In CoRL 2024 Workshop on Mastering

Robot Manipulation in a World of Abundant Data, Munich, Germany

7. Ablett, T., Chan, B., Wang, J. H., and Kelly, J. (2025). Efficient Imitation Without Demonstra-
tions via Value-Penalized Auxiliary Control from Examples. In IEEE International Conference on

Robotics and Automation (ICRA’25), Atlanta, GA, USA

Chapter 2

Background

In this chapter, we describe the key concepts and terminology that the later chapters in the disser-
tation build upon. We start by briefly discussing supervised learning. Next, we present background
on sequential decision making, which provides context for sections on reinforcement learning and
imitation learning that follow.

2.1 Supervised Learning

Supervised learning is a form of machine learning in which the goal is to learn a mapping, or model,
f from inputs x ∈ X to outputs (or labels) y ∈ Y , given a training dataset of N input-output pairs,
D = {xn,yn}Nn=1 (Murphy, 2022). In this dissertation, examples of X (or parts of X containing
multiple modalities) include raw RGB camera images, robot poses, and object poses, while examples
of Y include robot movement control and gripper movement control.

Supervised learning requires some form of loss function ℓ (yn, f(xn;θ)) for determining the error
between a true label yn and predicted output f(xn;θ), given model parameters θ. Generally, ℓ is
used both for both evaluating and improving the quality of f . More specifically, training a supervised
model can be defined as finding a setting of parameters θ̂ = argminθ L(θ) that minimizes the average
training set loss

L(θ) = 1

N

N∑
n=1

ℓ (yn, f(xn;θ)) , (2.1)

2.1.1 Classification

A classification problem constrains Y to a discrete set of C unordered categories or classes, Y =

{1, 2, . . . , C}. If Y contains only two classes, the problem can be equivalently referred to as binary

classification. It is desirable to maintain a probabilistic estimate of our predictions f(xn;θ) to give us
a notion of uncertainty, which we can describe by the conditional distribution

p(y = c | x;θ) = fc(x;θ), (2.2)

7

8 Chapter 2. Background

where f : X → [0, 1]C maps X to a probability distribution over the C possible output labels, and
therefore

∑C
c=1 fc = 1. Given the unconditional distribution f(x;θ), we can describe ℓ as the negative

log probability
ℓ(y, f(x;θ) = − log p(y | f(x;θ)), (2.3)

with a corresponding negative log loss (NLL) of the training set given by

NLL(θ) = − 1

N

N∑
n=1

log p(y | f(x;θ)), (2.4)

which allows us to generate the maximum likelihood estimate (MLE), θ̂mle = argminθ NLL(θ). If f is
a linear model, this approach is known as logistic regression. In this dissertation, classification losses
are used to train discriminators, which are further described in Section 2.4.4 and play a large role in
Chapters 5 to 7.

2.1.2 Regression

A regression problem allows y ∈ Y to contain any real number R, and requires a different loss function
from classification.1 In many cases, the ℓ2 (quadratic) loss function

ℓ2 (yn, f(xn;θ)) = (yn − f(xn;θ))
2 (2.5)

is sufficient, or even optimal, giving us the mean squared error (MSE) for our training set loss when
we substitute Eq. (2.5) as our ℓ in Eq. (2.1).

The most common choice of probabilistic model for regression is to assume that the output y

follows a Gaussian (normal) distribution, defined by

N (y | µ, σ2) ≜
1√
2πσ2

e−
(y−µ)2

2σ2 , (2.6)

where µ is the mean of the distirubtion and σ2 is its variance. We can then make µ, and optionally σ2,
depend on our model as µ = fµ(xn;θ) and σ2 = fσ2(xn;θ). If σ2 is fixed, then the NLL for regression
is proportional to the MSE. If f is a linear model, this approach is known as linear regression, where
f(x;θ) = w⊤x+b and the learnable parameters are θ = {w, b}. If f instead contains M higher-order
terms, the approach is known as polynomial regression, where f(x;w) = w⊤ϕ(x) and ϕ is a feature
vector ϕ(x) =

[
1, x, x2, . . . , xM

]
.

In this dissertation, regression losses are used for training behaviour policies with behavioural
cloning in Chapters 3 to 5, as well as for training value functions in inverse reinforcement learning (IRL)
in Chapters 6 and 7. Policy actions in IRL are sampled from a Gaussian distribution, where a neural
network learns both µ and σ2. More details are given in Section 2.3, Section 2.4.1 and Section 2.4.4.

1For notational convenience, this section deals with one-dimensional outputs y, but the extension to multidimensional
outputs y is straightforward.

2.1. Supervised Learning 9

3 channels 64 filters

5x5 conv
ReLU

conv1 conv2

5x5 conv
ReLU

32 filters

conv3

32 distributions

spatial softmax

expected
 2D position

feature
points

64
robot

configuration

fully
connected
ReLU

40 40

fully
connected
ReLU linear

motor
torques

RGB image

7x7 conv

ReLU

32 filters

109
109

39

7

stride 2
fully
connected

109
109

113
113

117
117240

240

Figure 2.1: The deep neural network architecture used in (Levine et al., 2016), including a series of convolutional
layers followed by a series of fully connected layers. We show that a similar architecture can be extended from
fixed-view manipulation to mobile manipulation in Chapter 3.

2.1.3 Deep Learning

If we wish to model more complicated relationships with ϕ(x), we can compose multiple simple func-
tions together and allow ϕ(x) to have its own parameters. We can describe our model f as a compo-
sition of simpler functions,

f(x;θ) = fL(fL−1(· · · (f1(x)) · · ·)), (2.7)

where fl is the function at layer l and the final layer fL is linear, with the form fL(x) = w⊤f1:L−1(x).
To model non-linear relationships, non-linear differentiable functions (referred to as activation func-
tions in deep learning literature) are added at each layer, meaning that a typical layer fl has the form

zl = fl(zl−1) = φl(bl +Wlzl−1). (2.8)

Here, zl is known as the hidden output at layer l, φl is a differentiable, non-linear function applied per-
element, bl ∈ RMlout is the learned bias vector at layer l, Wl ∈ RMlout × RMlin is the learned weight
matrix at layer l, and Mlout and Mlin are fixed hyperparameters.2 A neural network with this specific
form is known as a fully connected network. Because the whole network is differentiable, training
can be completed via backpropagation (Rumelhart et al., 1986): the loss or error is computed with, for
example, Eq. (2.4) or Eq. (2.5), the gradient of the weights of the entire network are determined via the
chain rule, and the network weights are updated to minimize the loss function via gradient descent.

A universal approximation theorem has provided proof that a sufficiently wide single-layer neural
network can represent any function (Hornik et al., 1989) to arbitrary accuracy, but ongoing research
in the community has found that a variety of deeper networks, with many variations on specific archi-
tectures, obtain far higher performance than wide single-layer networks. The literature has varying
hypotheses for this phenomenon, with explanations typically alluding to the hierarchical structure of
many forms of real data: in a robotic domain, for example, an image make contain local edges, which
can be compiled together to generate semantic objects such as a door or drawer, which can then be
interpreted as being opened or closed.

In this dissertation, all chapters introduce methods that use deep neural networks for function

2A hyperparameter is a term from machine learning literature, referring to a value which is hand-selected or tuned and
then fixed throughout the learning process. The word hyper indicates that they are “above” the weights, which are the model
parameters that are updated autonomously by the algorithm itself.

10 Chapter 2. Background

approximation. We use simple fully connected networks (i.e., as described above) in Chapters 5 to 7. We
combine fully connected networks with convolutional neural networks (CNNs) in Chapters 3 to 5 (see
Fig. 2.1 for an example). CNNs perform a two-dimensional discrete convolutional operation, making
them well-suited for image-based data (Murphy, 2022).3

2.1.4 Generalization and Distribution Shift

Our goal in supervised learning is to minimize a loss function on a particular dataset. In reality, reduc-
ing the loss is only a proxy for our true goal: achieving high prediction accuracy on new, previously-
unseen, data. With a highly flexible model, such as a deep neural network, it is theoretically possible to
reduce training loss to 0. Typically, in a process known as overfitting, this comes at the expense of cre-
ating a model that will likely not generalize to new data beyond D. To avoid overfitting, it is common
to split the dataset D into a training set Dtrain, a test set Dtest, and validation set Dvalid. Dtrain is used
to directly change the model parameters θ, Dtest is used to estimate model performance after training,
andDvalid is used for model selection during training, but not for changing θ directly. Performance on
Dtest is also known as test risk.

In real world applications, including robotics, a trained machine learning model may encounter
new data that does not resemble anything from D, meaning that our test risk is no longer accurate.
This phenomenon is referred to as distribution shift or dataset shift (Quionero-Candela et al., 2009;
Zhang et al., 2023), and data that are sufficiently different from training data are referred to as out-of-
distribution. We can further divide distribution shift into (i) covariate shift: a change in the distribution
of inputs p(x), (ii) label shift: a change in the distribution of outputs p(y), and (iii) concept shift: a
change in the relationship between p(x) and p(y). Any of these factors can cause a machine learning
model to perform far worse than as estimated via our test risk. In this dissertation, Chapters 3 to 7 all
introduce methods meant to handle potential covariate shift.

2.2 Sequential Decision Making and Markov Decision Processes

Section 2.1 describes a general form of data D where (x,y) ∈ D pairs are independent and identically

distributed (IID). Many domains involve sequential data, where we will instead define our data in terms
of input states s ∈ S and output actions a ∈ A (where, compared with x and y, we have also dropped
the vector notation for convenience, but S and A can be multi-dimensional). Sequential decision
making has three major departures from supervised learning: (i) a notion of time is introduced, where,
for example, a data pair (st, at) now has an associated discrete4 timestep t, (ii) actions at are executed
in an environment, and have an effect on future observations st+1:∞, and (iii) model performance is
usually measured in terms of a reward function, which we attempt to maximize over time (Hardt and

3Further detail of the nuances of neural network architectures, including layer types, activations functions, and layer
sizes are beyond the scope of this dissertation, and we refer the reader to (Murphy, 2022; Goodfellow et al., 2016) for a more
thorough treatment.

4Of course, there are sequential decision making tools for handling continuous-time problems, but they are beyond the
scope of this dissertation.

2.2. Sequential Decision Making and Markov Decision Processes 11

Recht, 2022).
Finite Markov decision processes (MDPs) provide a convenient formalization of sequential deci-

sion making that will be used heavily throughout this dissertation, which we summarize here, largely
following (Sutton and Barto, 2018; Achiam, 2018). This section describes three aspects of the problem:
an environment (the MDP itself) which outputs a state and reward given an action, an agent which
outputs an action given a state, and a value function which estimates how much reward a state or
action could eventually generate.5

2.2.1 Environment

We can define an MDP, or environment, asM = ⟨S,A, R,P, ρ0, γ⟩. The sets S and A are the state
and action space and R : S × A → R is a reward function. P : S × S × A → [0, 1] is the state-
transition environment dynamics distribution, where P(s′ | s, a) tells us the probability of the next
state s′ occurring given the current state s and action a. The initial state distribution ρ0 : S → [0, 1]

generates the first state that is provided to the agent. The discount factor γ ≤ 1 is a parameter that
is tuned to increase the priority of rewards that occur sooner, and also to ensure that the return of
an infinite-horizon MDP has a finite value. An MDP can be episodic or continuing: in episodic tasks,
the environment is “reset” using ρ0 after a condition is met (typically successful completion of the
task, failure, or time-out), while in continuing tasks, the environment never resets. The name Markov

decision problem refers to the idea that the system obeys the Markov property, meaning each state
st+1 only depends on st and at.6

Partial Observability

There are many MDPs for which the agent receives only partial observations, rather than states, of
the environment; such MDPs are referred to as partially observable (POMDPs). In POMDPs, the agent
receives observations o ∈ O, which depend on the state but do not necessarily contain all state-
relevant information. For example, in a manipulation task, a camera image of a scene could be an
observation, and the corresponding poses of the objects seen in the image could be the state. While
there is substantial literature investigating a formal treatment of POMDPs, the remaining analysis in
this section, which focuses exclusively on MDPs, can be applied directly to POMDPs in the case of
using function approximation (Sutton and Barto, 2018).

2.2.2 Agent, Trajectories, and Return

The agent includes a policy distribution π(a | s) or function π(s), which interacts with P and R

to yield experience (st, at, rt, st+1) for t = 0, . . . , T , where s0 ∼ ρ0(·), at ∼ π(· | st), st+1 ∼ P(· |
st, at), rt = R(st, at), and T is either a terminal timestep (for episodic tasks) or T =∞ (for continuing

5These concepts equivalently exist in optimal control theory as controller (agent), plant (environment), cost (reward),
and control signal (action).

6In practice, this turns out to not always be true for systems in which we apply this formalism, but there are workarounds.

12 Chapter 2. Background

Agent Environment

Figure 2.2: The agent-environment loop in a Markov decision process. Adapated from Sutton and Barto (2018).

tasks). We can define a trajectory starting from time t as τt = {(st, at), (st+1, at+1), . . . (sT , aT)}, and
can further define return G as the sum of rewards for following trajectory τt,

G(τt) ≜
T∑

k=t

γk−tR(sk, ak),

= R(st, at) + γG(τt+1),

(2.9)

where we have also included a recursive definition of G. The aim in an MDP is to learn an optimal
deterministic policy π∗(s) that maximizes the expected return starting from the initial state

π∗(s) ≜ argmax
π

Eπ [G(τ0)] ,

= argmax
π

Eπ

[
T∑

k=0

γkR(sk, ak)

]
,

(2.10)

where Eπ [·] denotes the expected value of following policy π in the environment. Formally,

Eπ [·] ≜ Es0∼ρ0

[
Ea0∼π(·|s0)

[
Es1∼P(·|s0,a0)

[
Ea1∼π(·|s1)

[
Es2∼P(·|s1,a1) [· · · [·] · · ·]

]]]]
, (2.11)

=
∑
s0∈S

ρ0(s0)
∑
a0∈A

π(a0 | s0)
∑
s1∈S
P(s1 | s0, a0)

∑
a1∈A

π(a1 | s1)
∑
s2∈S
P(s2 | s1, a1) · · · [·] ,

(2.12)

which factors into terms that only rely on the current state (e.g., π(at | st)) due to the Markov property.

2.2.3 The Value Functions and the Bellman Equations

To maximize the expected return in Eq. (2.10), many algorithms make use of the value function of a
particular state,

V π(s) ≜ Eπ [G(τt) | st = s] ,

= Eπ

[
R(s, a) + γG(τt+1) | st+1 = s′

]
,

= Ea∼π(·|s),s′∼P(·|s,a)
[
R(s, a) + γV π(s′)

]
,

(2.13)

2.3. Reinforcement Learning 13

which we have also defined recursively using Eq. (2.9), and used the notation G(τt) | st = s to refer
to the return of trajectory τt where st = s. This recursive formulation is also known as the Bellman

equation for value (Bellman, 1957). Similarly, the action-value of a particular state-action pair is

Qπ(s, a) ≜ Eπ [G(τt) | st = s, at = a] ,

= Eπ

[
R(s, a) + γG(τt+1) | st+1 = s′, at+1 = a′

]
,

= R(s, a) + γEs′∼P(·|s,a),a′∼π(·|s′)
[
Qπ(s′, a′)

]
.

(2.14)

Both V π and Qπ average the return of all possible states and actions, weighing the return of each
partial trajectory by the probability that it occurs. We can relate V π and Qπ , respectively, as

V π(s) = Ea∼π(·|s) [Q
π(s, a)] , (2.15)

Qπ(s, a) = R(s, a) + Es′∼P(·|s,a)
[
V π(s′)

]
. (2.16)

Finally, V π and Qπ have corresponding optimal value functions that are defined, respectively, as

V ∗(s) ≜ max
π

V π(s)

= max
a

Es′∼P(·|s,a)
[
R(s, a) + γV ∗(s′)

]
,

(2.17)

Q∗(s, a) ≜ max
π

Qπ(s, a)

= R(s, a) + Es′∼P(·|s,a)

[
γmax

a′
Q∗(s′, a′)

]
,

(2.18)

where V ∗ and Q∗ define the maximum expected value of the return given a starting state of s or
state-action pair of (s, a).

For most practical systems, precisely finding π∗, V ∗, or Q∗ with Eqs. (2.10), (2.17) and (2.18) is in-
tractable. Sections 2.3 and 2.4 describe practical solutions, using reinforcement learning and imitation
learning, respectively, for solving Eq. (2.10) by approximating Eqs. (2.17) and (2.18).

2.3 Reinforcement Learning

Reinforcement learning (RL) is an approach to solving decision making problems via trial and error. RL
algorithms generally follow a simple, repeating pattern: (i) (optionally) collect experience as an agent
executes actions in the environment, (ii) calculate the value of the experience (policy evaluation), and
(iii) update the agent’s policy to maximize the expected value (policy improvement). In this section, we
will discuss how this procedure, known as generalized policy iteration (GPI), can be applied to sequential
MDPs through temporal difference (TD) methods (Sutton and Barto, 2018). 7 This discussion will build
up to modern approaches to TD learning, which are used as the the backbone for the algorithms

7Although a branch of RL focuses on the nonassociative, non-sequential setting (known as multi-armed bandits), in which
actions do not affect future timesteps, discussion of this topic is beyond the scope of this dissertation.

14 Chapter 2. Background

Algorithm 1 Generalized Policy Iteration (Sutton and Barto, 2018)
1: Initialize V (s) and π(s) randomly for all s ∈ S .
2: policy-stable← false
3: while not policy-stable do
4: policy-stable← true
5: (Potentially partial) policy evaluation sweep through S
6: for s ∈ S do
7: V (s)← R(s, π(s)) + γ

∑
s′∈S P(s′ | s, π(s)) [V (s′)] (Eq. (2.13))

8: end for
9: (Potentially partial) policy improvement sweep through S

10: for s ∈ S do
11: old-action← π(s)
12: π(s) = argmaxa R(s, a) + γ

∑
s′∈S P(s′ | s, a) [V (s′)] (Eq. (2.17))

13: if old-action ̸= π(s) then
14: policy-stable← false
15: end if
16: end for
17: end while
18: Output: π ≈ π∗, V ≈ V ∗

introduced in Chapters 6 and 7. We also include material on reward design and hierarchical agents,
which are also relevant to Chapters 6 and 7.

2.3.1 Generalized Policy Iteration

As stated, generalized policy iteration (GPI) is a broad description of how most RL algorithms func-
tion: an iterative pattern of (i) (optionally) collecting experience with a policy, (ii) policy evaluation,
and (iii) policy improvement. Historically, these algorithms were part of dynamic programming (DP)
(Bellman, 1957), in which the environment dynamicsP are assumed to be perfectly accurate, removing
the need to actually collect experience.

GPI is called policy iteration if the policy evaluation sweep in Algorithm 1 is executed until con-
vergence. Alternatively, it is called value iteration if the update rule of the policy evaluation sweep is
replaced with

V (s)← max
a

R(s, a) + γ
∑
s′∈S
P(s′ | s, a)

[
V (s′)

]
, (2.19)

where we have replaced π(s) with a, and include the maxa term to directly incorporate policy im-
provement and policy evaluation together. Policy evaluation can be switched to policy improvement
without having gone through every s ∈ S , and vice versa. Regardless of whether full sweeps are
completed, GPI is known to converge to the optimal value function and optimal policy (Sutton and
Barto, 2018).

Unfortunately, for most environments we are interested in, S orA (or both) are not finite and P is
not perfectly accurate, meaning that we cannot directly apply Algorithm 1. To address these issues, in
Section 2.3.2, we turn to modern RL algorithms that incorporate environment exploration and function
approximation, such as with deep neural networks (see Section 2.1.3).

2.3. Reinforcement Learning 15

2.3.2 Temporal Difference Learning

Many aspects of most practical problems make it impractical or impossible to apply Algorithm 1 di-
rectly. Most problems either do not have a finite state space S , or if they do, it is intractable to iterate
through the entire space. Furthermore, the environment dynamics P are usually inaccurate or un-
known. To address both of these limitations, we can introduce the collection of experience, where an
agent selects actions in the environment, generating (s, a, r, s′), and we use the experience collected to
evaluate and improve the policy. Temporal difference (TD) learning is a core approach to RL that con-
tinuously improves the estimate for V (s) or Q(s, a) with collected experience, rather than a known
environment model.

Assuming we have experience (s, a, r, s′), where a ∼ π(· | s), r = R(s, a), and s′ ∼ P(· |
s, a) (but we can only sample from P), we can generate a temporal difference (TD) rule for optimally
updating a Q function:

Q(s, a)← Q(s, a) + α

[
r + γmax

a′
Q(s′, a′)−Q(s, a)

]
, (2.20)

whereα is a parameter to determine the update rate. Eq. (2.20) is the update rule inQ-learning (Watkins
and Dayan, 1992), which uses bootstrapping: Q(s, a) is updated using Q(s′, a′), as is done with V (s)

and V (s′) in Algorithm 1. A modern breakthrough using Eq. (2.20) for playing Atari games is Deep
Q-Networks (DQN) (Mnih et al., 2015), which approximates Q(s, a) using a deep neural network.8

Exploration

With TD learning, we can no longer guarantee that we update Q(s, a) using all possible state-action
pairs in S and A as we did in Algorithm 1, so we require a means of exploring the environment.
Environment exploration is an active research area in RL, but a simple approach that works for many
cases with a discrete action space is ε-greedy action selection. If U([0, 1]) is a uniform distribution
between 0 and 1, and U(A) is a discrete uniform distribution over the action space, our policy is:

π(a | s) =

maxaQ(s, a), if x ≥ ε,

a ∼ U(A), otherwise,
(2.21)

where 0 ≤ ε ≤ 1 is a parameter that can be initialized high to encourage exploration, and gradually
lowered to move towards a greedy policy, which still guarantees convergence in GPI (Sutton and Barto,
2018).

Actor-Critic Approaches for Continuous Action Spaces

So far, this section has dealt exclusively with discrete, finite action spaces A, but many environments
(including robotics environments) have a continuous action space. In these cases, we cannot use

8Mnih et al. (2015) also incorporates several other improvements. See remark on the deadly triad at the end of Off-Policy
Actor-Critic in this section for more details.

16 Chapter 2. Background

Eq. (2.20) directly: whenA is discrete, we can simply sample all values of a ∈ A and choose the maxi-
mum, but when A is continuous, maxaQ(s, a) becomes non-trivial. A simple solution is to switch to
state-action-reward-state-action (SARSA) (Rummery and Niranjan, 1994), defined as such because we
use the experience (s, a, r, s′, a′):

Q(s, a)← Q(s, a) + α
[
r + γQ(s′, a′)−Q(s, a)

]
, (2.22)

where the only difference from Eq. (2.20) is the removal of the maxa term, and the use of the true next
action a′.

Since we can no longer easily estimatemaxaQ(s, a), continuous action spaces require us to choose
a new approach to generating a behaviour policy. Following Lillicrap et al. (2016), we parametrize our
policy as a separate differentiable model πθ(s) with parameters θ and unconstrained output, and after
updating Q(s, a), we can update θ via gradient ascent as

θ ← θ + αθ∇θQ(s, πθ(s)), (2.23)

where αθ is the policy learning rate and ∇θ is the gradient with respect to θ. Approaches that use
separate models for Q and π are known as actor-critic methods (where π is the actor, and Q or V is
the critic). The use of Eq. (2.22) is an on-policy approach to TD learning, meaning that the behaviour

policy used to generate the experience is the same as the target policy used to update the model.

Off-Policy Actor-Critic

On-policy methods can be very inefficient, since collected (s, a, r, s′, a′) must be discarded after π has
been updated.9 It is much more desireable to use off-policy methods, where the target policy can be
different from the behaviour policy which generated the experience. The approach taken with deep
deterministic policy gradient (DDPG), as well as other popular methods that build on it (Fujimoto
et al., 2018; Haarnoja et al., 2018, 2019), is to use the policy in the update for Q. Assuming Qϕ is a
differentiable model and we have experience (s, a, r, s′), we update ϕ using the following regression
loss

ℓ((s, a, r, s′), Qϕ) =
(
Qϕ(s, a)−

(
r + γQϕtarg

(
s′, πθtarg(s

′)
)))2

, (2.24)

where Qϕtarg and πθtarg are copies of Qϕ and πθ that are updated slowly (see Eq. (2.29)). Eqs. (2.23)
and (2.24) correspond to policy improvement and policy evaluation, respectively, from Algorithm 1.
Since π(s) is deterministic in Eqs. (2.23) and (2.24), and Eq. (2.21) only applies to discreteA, a popular
approach to encourage exploration is to add zero-mean Gaussian noise to the actions as

a = π(s) + x, x ∼ N (0, σ), (2.25)

9Specifically, they must be discarded because once the policy has changed, there is no guarantee that a′ = π(s′), meaning
that using (s, a, r, s′, a′) to calculate Q(s, a) will no longer be correct.

2.3. Reinforcement Learning 17

where σ must be tuned for each MDP, and the covariance is (typically) diagonal if A is multidimen-
sional.

An alternative, originally introduced by Williams and Peng (1991), is to learn σ via a policy that
maximizes entropy in addition to maximizing return. Information entropy, introduced by Shannon
(1948), is a measure of the average uncertainty of a random variable, defined as

H(p) = Ex∼p [− log p(x)]

= −
∑
x∈X

p(x) log p(x). (2.26)

The higher H is, the less predictable x is. Intuitively, by simultaneously maximizing both entropy and
reward, a policy acts as randomly as possible while still completing the task, encouraging the policy
to explore, rather than settle for local maximums. We can modify our bootstrapping policy evaluation
regression objective in Eq. (2.24) as

ℓ((s, a, r, s′), Qϕ) =
(
Qϕ(s, a)−

(
r + γ

(
Qϕtarg(s

′, a′)− αH log π(a′ | s′)
)))2

, a′ ∼ π(· | s′),
(2.27)

and our policy improvement step in Eq. (2.23) as

θ ← θ + αθ∇θQ(s, a)− αH log πθ(a | s), a ∼ πθ(· | s), (2.28)

where αH is a parameter that controls the relative contribution of the entropy bonus, π(a | s) is
parametrized as a Gaussian distribution, and differentiability of π(a | s) is maintained through the
reparemetrization trick (Kingma et al., 2015). This approach was introduced by Haarnoja et al. (2018) as
soft actor-critic (SAC). Notably, we have substituted one hand-crafted parameter (σ) for another (αH),
but in practice, we use a modified version of SAC, introduced by Haarnoja et al. (2019), where αH is
also learned. SAC has been shown to produce efficient learning across a variety of environments, so
we use it as the primary backbone algorithm in Chapters 6 and 7.

2.3.3 Reward Design

In reinforcement learning (RL), the reward function R(·) is a crucial part of the learning process. Much
research in RL is focused on algorithm design, but without an effective reward function, an optimal
policy may never be learned. Many tasks where RL has achieved groundbreaking success involve re-
ward functions that were already clearly defined by the environment, such as score in a video game
(Mnih et al., 2015) or winning at a board game (Silver et al., 2016). Even in these regimes, however,
the known rewards may not automatically lead to optimal or even sufficiently effective policies. This
difficulty is summarized by the credit assignment problem (Minsky, 1961): how should credit be dis-
tributed for success among a (potentially large) number of decisions? From the perspective reward
design, an attempt to answer this question has led practitioners to divide rewards into two categories:
sparse and dense. Sparse rewards provide feedback only upon successful completion of a task, while

18 Chapter 2. Background

The “deadly triad” in RL, experience replay, and delayed target updates

Sutton and Barto (2018) have noted that the combination of bootstrapping, function approxima-
tion, and off-policy learning results in instability that can significantly hinder or stop policy learn-
ing altogether. Nonetheless, many modern approaches each use all three of these tools to achieve
state-of-the-art results (Mnih et al., 2015; Fujimoto et al., 2018; Haarnoja et al., 2018). Although
many design choices have helped improve stability in this challenging regime, two particular im-
provements, originally introduced by Mnih et al. (2015), are experience replay and delayed target

updates.

Experience replay: instead of updating Q(s, a) as each s is encountered and a is executed, all
encountered (s, a, r, s′) tuples are stored in a replay buffer B, which we sample from to update Q
(and possibly π). We can optionally set a maximum size for the replay buffer (making it first-in-
first-out), depending on the task.

Delayed target updates: rather than directly updating Qϕ(s, a) via bootstrapping from Qϕ(s
′, a′)

(and possibly a′ = πθ(s
′)), Qϕtarg(s

′, a′) and πθtarg(s
′) are used for calculating bootstrap estimates,

and the weights ϕtarg and θtarg are updated gradually using, for example, polyak averaging:

ϕtarg ← ρ ϕtarg + (1− ρ)ϕ, 0 ≤ ρ < 1,

θtarg ← ρ θtarg + (1− ρ) θ, 0 ≤ ρ < 1.
(2.29)

dense rewards provide feedback throughout the task.
Consider an illustrative example: say we have a robot that we would like to wash a set of dishes

for us. A sparse reward could be

R(·) =

1, if all dishes are cleaned and placed in the dish rack,

0, otherwise,
(2.30)

while a dense reward could be

R(·) =
∑

d∈dishes
cleanliness(d)− (loc(d)− loc(dish rack))2, (2.31)

where cleanliness() and loc() are functions that evaluate how clean a dish is and provide the
location of an object, respectively.

Providing only a sparse reward results in a challenging exploration problem (Minsky, 1961), leading
to potentially inefficient or even completely stalled learning. Consider the above example in the case
when there are a dozen or more dishes, and A are the motor torques for 6-DOF robotic arm: through
random exploration alone, it would take an inordinate amount of time for the agent to receive non-
zero reward with Eq. (2.30), and it would likely damage itself and many dishes along the way. On

2.3. Reinforcement Learning 19

the other hand, while Eq. (2.31) is only maximized when all dishes are clean and placed on the dish
rack, Eq. (2.31) provides a partial signal if some dishes (or even one dish) are close to the dish rack or
partly cleaned. Providing a dense reward is related to the concept of shaping, introduced by Skinner
(1953) for training animals. Shaping was designed to address the difficulty of using sparse rewards.
In shaping, the reward function is progressively modified by the practitioner to ensure that the agent
always receives some reward for partial completion of a task. A dense reward provides a similar benefit,
but is fixed throughout training. Indeed, both dense rewards and shaping can significantly accelerate
learning (Sutton and Barto, 2018; Ng and Jordan, 2003).

Unfortunately, both dense rewards and shaping require careful design by a practitioner, and the
negative consequences of poorly designed reward functions are not always immediately obvious.
Dense rewards have been shown to be highly subject to a phenomenon known as reward hacking

(Skalse et al., 2022), in which an agent exploits the reward function, gaining high reward as defined but
not actually completing the desired task. In our dishwashing example, the robot may learn to throw all
of the dishes at the dish rack, breaking each one, but still maximizing the (loc(d)− loc(dish rack))2

term from Eq. (2.31). Shaped rewards require constant interaction between a system and a practitioner,
and may still lead to reward hacking if one is not careful. In summary, sparse, dense, and shaped re-
wards each have pros and cons, and none are guaranteed to work in all cases. In Chapters 5 to 7,
we focus on an alternatives to hand-crafted rewards, where rewards are learned from human demon-
strations (Chapters 5 and 6) or human-provided examples of success (Chapter 7). We describe further
background on this process, known as inverse reinforcement learning, in Section 2.4.4.

2.3.4 Hierarchical Agents

The MDP framework and RL are appealing because they are quite general and can be applied to many
different systems. From a practical perspective, however, MDPs and RL do not address how to actually
choose the state space S and action space A. In many cases, a hierarchical decomposition of S , A, or
both, may be beneficial for efficiently learning an effective agent (Nachum et al., 2019).

Consider, again, our dishwashing robot example from Section 2.3.3: we might choose A to be the
joint torques of the robot arm. Imagine that two of our dishes are identically shaped plates, and our
sensor system is capable of detecting the poses of these plates. As described, our policy π would need
to output different joint torques for moving towards and grasping each of these two plates, even if
many aspects of the motion to grasp each plate are similar. Instead, we could predefine reach and
grasp as separate subtasks, sometimes defined as options (Sutton et al., 1999). In this case, we could
define new MDPs:Mdishwasher, which has a newA consisting of the selection of a target dish d and an
option policy πω , where ω ∈ {reach, grasp, . . . }, andMreach andMgrasp, that have dish d appended
to their state space S and a reward function Rω that is specific to their task. These option policies can
also have corresponding value functions Qω . The new MDPs do not have to be predefined; the choice
of whether to predefine or learn them is up to the designer, and is generally an open research question.

The learning methods described throughout this section can be modified to accommodate hierar-
chical agents, but the explicit details of doing so are beyond the scope of this section. In Chapters 6

20 Chapter 2. Background

Expert Agent Environment

Loss /

Agent

Loss

Behavioural Cloning (BC) Interactive Behavioural Cloning

Figure 2.3: Modifications to the agent-environment loop in behavioural cloning (BC) and interactive BC. In
interactive BC, the action executed in the environment is either the expert’s or the agent’s, and new expert
actions (and states) are continuously appended to the expert dataset DE . BC is used as the base algorithm in
Chapters 3 and 4, and interactive BC is used in Chapter 5.

and 7, we describe a hierarchical modification to the off-policy TD methods described in Section 2.3.2.

2.4 Imitation Learning

The goal of imitation learning (IL), sometimes referred to as learning from demonstrations, is to gen-
erate an agent with desired behaviour by leveraging examples of an expert (often a human) demon-
strating the behaviour. Compared with reinforcement learning (RL), IL has two main advantages: (i)
it can be far more sample efficient (Sun et al., 2017), and (ii) it can remove the need for reward design
(see Section 2.3.3). However, IL is particularly subject to distribution shift (see Section 2.1.4): offline
supervised learning can lead to cascading errors, while online learning can provide insufficient infor-
mation to avoid suboptimal local maximums. In this section, we describe the two primary approaches
to IL, and how they can each suffer from distribution shift: offline, supervised learning, known as be-
havioural cloning when applied to IL (used in Chapters 3 to 5), and online reinforcement learning with
a reward learned from expert data, known as inverse reinforcement learning (used in Chapters 6 and 7).

2.4.1 Behavioural Cloning

Behavioural Cloning (BC) is an approach to IL where we treat our goal of generating an effective
agent as a supervised learning problem (see Section 2.1) (Bain and Sammut, 1996; Pomerleau, 1989).
Replacing the supervised learning notation from Section 2.1 with MDP notation from Section 2.2, the
goal in BC is to learn a policy π given input states (or observations) s ∈ S and output actions a ∈ A,
given a training dataset of N state-action pairs, DE = {sn, an}Nn=1.10 Apart from a shift in notation,

10Compared with Section 2.1, we have dropped the vector notation for convenience, but both S and A can be multidi-
mensional.

2.4. Imitation Learning 21

BC is algorithmically identical to supervised learning, and is trained with a loss function

L(θ) = 1

N

N∑
n=1

ℓ (a, π(s; θ)) , (2.32)

which can be applied to both discrete actions (Section 2.1.1) and continuous actions (Section 2.1.2).

2.4.2 Distribution Shift in Behavioural Cloning

As described in Section 2.1.4, supervised learning approaches (including behavioural cloning) are de-
signed to generalize to data beyond the training dataset, but are not expected to do so outside of the
distribution of the training dataset. If the distribution underlying the test dataset Dtest differs suffi-
ciently from distribution of DE , performance of π is likely to be poor due to distribution shift.11 With
BC, the problem is magnified: a single state sood may only be slightly out-of-distribution (OOD), caus-
ing π to generate an action asuboptimal with some small difference from the optimal action a∗ = π(s).
For a standard ood learning problem (i.e., one where this is no sequential decision making), this would
be the end of the problem, and hopefully the OOD state sood and the suboptimal action asuboptimal are
discovered before it causes significant damage. In BC, asuboptimal is executed in the MDP, generating
s′ as s′ ∼ P(· | sood, asuboptimal). Because both sood and asuboptimal are now slightly OOD compared
withDE , P may generate an s′ that is even more out-of-distribution than sood, and the process repeats,
creating cascading errors.

This problem is well-established in literature on IL, and is usually considered to result from covari-
ate shift (due to the change in p(s)), but could also qualify as label shift due to the change in p(a). One
approach to resolving the problem is to change the initial state distribution ρ0 to ensure a wider distri-
bution of S and A are collected. In Chapter 3, we leverage known structure in a mobile manipulation
domain to significantly widen S , and can generate a more robust policy that even partially generalizes
to OOD states. In Chapter 4, we identify an inevitable distribution shift resulting from the use of kines-
thetic teaching, a popular approach to collecting demonstrations in which an operator directly pushes
a robotic arm. The true cause of the shift is a change in embodiment between a demonstrator and an
agent, which is also a well-established problem in IL that can exacerbate covariate shift. We resolve the
problem by modifying the demonstration collection process to accommodate the embodiment change.

Assuming one has access to an optimal teacher policy π∗(s), Ross et al. (2011) showed that you
can converge to a far better policy by alternately running π in the environment, collecting the states
visited by policy, labelling each with the expert policy, and retraining on the new data. Formally, newly
encountered states are stored in a policy dataset Dπ , each s ∈ Dπ is labelled with the optimal action
a∗ = π∗(s), Dπ is appended to DE as DE ← DE ∪ Dπ , and π is retrained on DE . The process is
known as dataset aggregation (DAgger). Unfortunately, access to π∗ is not possible in most scenarios
we are interested in, making it impossible to apply DAgger directly to most real-world scenarios. In
Chapter 5, we investigate an approach to interactive imitation learning (Celemin et al., 2022) inspired

11Concrete methods for directly measuring statistical distances are beyond the scope of this section, but “how OOD” a
testing dataset or single sample is can be measured, for example, via divergence, uncertainty, or entropy.

22 Chapter 2. Background

Error!Error!

(a) Error recovery.

Error!Error!

(b) Distribution shift.

Figure 2.4: Contrasting two behavioural cloning scenarios: on the left, an idealized case where BC keeps the
policy in-distribution, allowing for the recovery from errors; and on the right, a more typical outcome in which
errors compound due to distributional shift. In the scenario on the right, assuming an error rate of ϵ and a
worst-case scenario where an error occurs on the first timestep, the total worst-case error grows as O(T 2ϵ), as
discussed in Section 2.4.3. DAgger (Ross et al., 2011) recreates the scenario on the left by removing distribution
shift, resulting in total expected error of O(Tϵ).

by DAgger. Specifically, we predict whether s is OOD and switch control from π to a human expert,
allowing the human to guide the agent back to in-distribution states, and retrain on the corrective
data.

2.4.3 Formal Guarantees of DAgger

Ross and Bagnell (2010) established that error accumulation resulting from running a policy trained
via behavioural cloning (BC), assuming an error rate of ϵ, will result in a worst-case total error of

O(T 2ϵ), (2.33)

where T is the horizon length. In BC, each decision incurs a per-step error of ϵ, so across T timesteps
we would expect Tϵ errors. However, in the worst case, each mistake shifts the learner into regions
unseen during training, inflating the per-timestep expected cost. Assuming all future timesteps will
now also be erroneous, per-timestep cost is inflated by a factor of T , resulting in Eq. (2.33). Fig. 2.4
shows a visualization of this expectation compared to the reality of learning with BC.

Ross et al. (2011) showed that Eq. (2.33) can be reduced to the expected linear growth in T from
regular supervised learning,

O(Tϵ), (2.34)

by implementing the DAgger algorithm described in Section 2.4.2. This ensures that the training dis-
tribution and the test distribution are matched, eliminating distribution shift (in the long run). Ross
et al. (2011) also showed that the worst-case number of DAgger iterations, or trajectories, required to

2.4. Imitation Learning 23

Policy
Evaluation

Inverse Reinforcement Learning

Agent EnvironmentPolicy
Improvement

Policy
Evaluation

Multitask Inverse Reinforcement Learning

Agent EnvironmentPolicy
Improvement

Figure 2.5: Modifications to the agent-environment loop in inverse reinforcement learning (IRL) and multitask
IRL. In multitask IRL, we have access to K expert buffers, allowing us to also learn K agents (and corresponding
Q-functions) simultaneously, while the agent ultimately selects a single action to take in the environment. In
Chapters 6 and 7, we use multitask IRL as the base algorithm.

learn a satisfactory policy can, with certain assumptions, be

O (T log T) . (2.35)

With BC, there is no way to provide a similar guarantee.
DAgger relies on two assumptions: (i) no-regret learning, that is, the learning algorithm performs

nearly as well as the best fixed decision in hindsight, as supervised learning often does; and (ii) access to
an expert policy that can provide offline labels, which, for many real-world cases, does not exist. Even
without access to this expert policy, however, DAgger and its corresponding reduction in error bound
can still provide guidelines on how to reduce distribution shift. Each method presented in Chapters 3
to 7 can be thought of as a way of reducing the worst-case error from Eq. (2.33) to a value lower than
Eq. (2.33), but still higher than Eq. (2.34). While our methods are more empirically motivated than (Ross
and Bagnell, 2010; Ross et al., 2011), we will attempt to provide connections to this theory throughout
this thesis so practitioners understand how Chapters 3 to 7 reduce distribution shift compared with
Eq. (2.33) and Eq. (2.34).

2.4.4 Inverse Reinforcement Learning

Inverse reinforcement learning (IRL) is another popular approach to IL, where IL is formulated as
reinforcement learning, but the reward function R is learned or defined using an expert buffer BE of
(s, a, s′) tuples. BE can optionally be appended to the experience buffer B during learning, potentially
further improving learning efficiency to help train π and Q in addition to R.12 Early approaches to IRL
attempted to first learn a linear reward function that would explain the expert data, and subsequently
maximize this function with RL (Ng and Russell, 2000; Abbeel and Ng, 2004). This process presents
many challenges, including the need to predefine appropriate linear features, and the clear possibility
that there are infinitely many reward functions that can generate an optimal policy, although this can
be partially mitigated by adding a term for simultaneously maximizing policy entropy (Ziebart et al.,
2008).

12Appending BE to B is not, by itself, considered IRL. Much work in IRL does not use this technique, and some work in
RL uses this technique with a predefined reward function. Approaches in Chapters 6 and 7 perform both IRL, in which no
reward function is available, as well as appending BE to B.

24 Chapter 2. Background

Newer approaches that scale to learned features with deep neural networks are based on adversarial

imitation learning (AIL) (itself based on generative adversarial networks (GANs) (Goodfellow et al.,
2014)), where the policy is directly recovered through a reward function that is learned or defined
based on BE (Ho and Ermon, 2016; Fu et al., 2018a). AIL methods used in this work frame IRL as an
adversarial process with the minimax objective

J(π,D) ≜ min
π

max
D

E(s,a)∼BE [log(D(s, a))] + Ea∼π,s∼P [log(1−D(s, a))] , (2.36)

where D(s, a) is a discriminator, or a binary classifier (see Section 2.1.1). Intuitively, J(π,D) is maxi-
mized when D gives high outputs to expert data from BE and low outputs to policy data, and J(π,D)

is minimized when D gives high outputs to policy data and low outputs to expert data. In practice,
Eq. (2.36) is maximized by training D as a classifier, and minimized by training π in a reinforcement
learning loop with the reward function R set based on the output of D. When training in the off-policy
regime, Reddy et al. (2020) introduced a modification where D is simply defined, such as

D(s, a) =

1, if (s, a) ∈ BE ,
0, if (s, a) ∈ B.

(2.37)

2.4.5 Distribution Shift in Inverse Reinforcement Learning

IRL can, ostensibly, resolve the behavioural cloning distribution shift problem described in Section 2.4.2,
since the agent autonomously explores until the distribution induced by sampling π and P matches
the distribution induced by sampling BE . As π inevitably encounters states sood that are out-of-
distribution with respect to BE , these states are simply appended to B, rated with a lower reward
than those from BE , and through generalized policy iteration (Section 2.3.1), the policy learns the
highest-rated action to take when encountering sood.

In practice, IRL can generate highly suboptimal policies because of poor exploration, resulting in
reaching a local maximum policy that receives some reward, but ultimately does not complete the task.
Similar to the distribution shift problem in behavioural cloning, because we do not have access to π∗,
we cannot necessarily generate optimal actions for sood. Policies can then learn to output suboptimal
actions that result in states that only partially match BE . This can also be interpreted as a form of
the reward hacking described in Section 2.3.3. We further explore this defect of IRL in Chapter 6, and
resolve it by adding demonstrations of auxiliary tasks that enforce more thorough exploration. We can
do even better by converting the expert data in IRL from dense to sparse (see Section 2.3.3): a dense
expert corresponds to a full trajectory, while a sparse expert corresponds to examples of a completed
task only. In Chapter 7, we expand the ideas in Chapter 6 to the domain of sparse expert data, further
ensuring that the distribution induced by BE cannot be exploited by the policy.

Chapter 3

Multiview Manipulation from
Demonstrations

In this chapter, we present a task-specific method for handling distribution shift.1 If, before collecting
data, we are aware of potential differences between the training and testing distributions, we can
attempt to deliberately generate a wider variety of training data. We show that mobile manipulation
policies trained via behavioural cloning are susceptible to distribution shift: specifically, the covariate
shift caused by collecting data from a single, fixed viewpoint while executing the policy with multiple
similar but different viewpoints. Consider a human moving through a kitchen. Each time they open
the cabinet containing their dishes, they are able to open the cabinet, even if they’re standing in a
position that they may never have stood precisely in before, with a viewpoint they may have never
seen before.

We create a simple scheme for randomizing the initial base pose of a mobile manipulator to directly
collect a wider range of data under the assumption that we expect a distribution shift to occur. We
illustrate the general applicability of the method by learning to complete several challenging multistage
and contact-rich tasks, from numerous viewpoints, both in a simulated environment and on a real
mobile manipulation platform. Furthermore, we analyze our policies to determine the benefits of
learning from multiview data compared to learning with data collected from a fixed perspective. We
show that learning from multiview data results in little, if any, penalty to performance for a fixed-view
task compared to learning with an equivalent amount of fixed-view data. Finally, we examine the
visual features learned by the multiview and fixed-view policies. Our results indicate that multiview
policies implicitly learn to identify spatially correlated features.

3.1 Motivation

The use of end-to-end visuomotor policies, in which observations are mapped directly to actions
through a learned model, has emerged as an effective alternative to the traditional sense-plan-act

1Project website: https://papers.starslab.ca/multiview-manipulation.

25

https://papers.starslab.ca/multiview-manipulation

26 Chapter 3. Multiview Manipulation from Demonstrations

Figure 3.1: Snapshots of three successful trajectories involving different viewpoints for our real-world cabinet-
opening task, executed by a single policy. Each trajectory is shown left-to-right. The yellow boxes highlight
individual 64× 48 RGB input image frames. Our end-to-end policy is able to generalize to the different images
and base poses corresponding to each viewpoint.

approach for many robotic domains including autonomous driving (Pomerleau, 1989; Bojarski et al.,
2016) and manipulation (Levine et al., 2016; Zhang et al., 2018; Laskey et al., 2017a). Visuomotor policies
are particularly appealing for manipulation because programming a robot to complete even relatively
basic tasks can pose a major challenge. Most research on learning end-to-end manipulation policies,
where the inputs to the policy are easily-acquired camera images and proprioceptive sensor data, has
focused on a fixed-base arm and a fixed camera viewpoint. If these policies are naı̈vely rolled out for
a task that requires the camera angle or base position to change slightly, as is often the case for a mo-
bile manipulator, one would not expect the policies to succeed. We seek to learn highly generalizable
policies that are not brittle in the face of perturbations to the viewpoint and base position.

In this work, we investigate the application of supervised imitation learning for generating end-
to-end multiview policies for complex, contact-rich tasks. Specifically, we create datasets containing
trajectories with varying base poses, allowing single policies to learn to complete tasks from a variety
of viewpoints (see Fig. 3.1). Policies learned in this way can be directly applied to mobile manipulators
in conjunction with a separate navigation policy that moves the mobile base to the vicinity of the
manipulation task workspace (Iriondo et al., 2019). Our main contributions in this chapter are the
answers to the following questions:

1. How does supervised imitation learning perform in a series of challenging contact-rich tasks in
the multiview domain?

2. Will a policy trained with multiview data be penalized when performing an equivalent fixed-
perspective task, compared to a policy trained with an equal amount of exclusively fixed-
perspective data?

3.2. Related Work 27

Multiview Expert Demonstrations Supervised Learning Spatially Consistent Features

Figure 3.2: Our system for generating multiview policies: after collecting expert demonstrations from several
viewpoints, we train a deep neural network policy that generalizes to multiple views. The learned visual features
consistently appear on the same parts of objects.

3. How far can fixed-base and multiview policies be pushed beyond their training distributions?

4. Compared with a fixed-view policy, do the features learned by a multiview policy show greater
spatial correlation between different views?

Somewhat surprisingly, we demonstrate that multiview policies have comparable performance to
fixed-view policies in when testing from the specific fixed-base view, motivating their use in any case
where a mobile base is present. We do not explicitly encode view-invariance in the loss function or
policy architecture, and instead show that end-to-end multiview policies can be effectively trained
implicitly by modifying the dataset.

3.2 Related Work

In this section, we begin by examining existing work on end-to-end policy learning for robotics, fol-
lowed by learning-based mobile manipulation and other multiview manipulation research. We close
with a brief discussion of supervised imitation learning, also known as behavioural cloning.

The use of deep visuomotor policies that map raw observations to actions has exploded in popu-
larity recently, largely owing to representational power and generalization capabilities of deep convo-
lutional neural networks (Levine et al., 2016; Finn et al., 2016; Codevilla et al., 2018). Encoding a policy
this way offers the advantage of being able to learn directly from data, given either expert actions
or an external reward signal, without requiring accurate world state information and a handcrafted
behaviour policy. Such policies have the downside of being limited to operating on data that closely re-
semble the data they were trained on. In this work, we expand the training dataset to include multiple
viewpoints, substantially improving the robustness of the learned policies.

Our approach can be compared to other learning-based methods used for mobile manipulation.
The system developed in (Bajracharya et al., 2020) applies several learning techniques, combined with
connected motion primitives, to complete several tasks. View-invariance is encoded within separate
object recognition and planning modules. Our method, in comparison, uses an end-to-end approach
for completing tasks given raw sensor data only.

Several research groups have attempted to learn policies that control both a mobile base and a
manipulator simultaneously (Wang et al., 2020; Welschehold et al., 2017; Kindle et al., 2020). In each

28 Chapter 3. Multiview Manipulation from Demonstrations

of these cases, the authors make assumptions about the availability of lower-level state information
(Welschehold et al., 2017; Wang et al., 2020), or confine their systems to perform only relatively simple
reaching tasks (Wang et al., 2020; Kindle et al., 2020). While we do not attempt to control the base
during task execution, we generate policies that can complete challenging, contact-rich tasks without
access to privileged state information. The authors of (Laskey et al., 2017b) learn a mobile manipulation
bed-making task with imitation learning, but fiduciary markers are required at the base positions to
ensure precise localization.

There has been some interest in learning policies that generalize to multiple views even when a
fixed-base manipulator is employed. Through view synthesis, simulated views (Amini et al., 2020) or
their latent representations (Eslami et al., 2018) can be used for generating higher-quality policies. This
approach has two major drawbacks: it requires a potentially prohibitive amount of training data and
it operates on the assumption that all parts of images are relevant. Our method learns policies that
output control signals given raw images, ensuring that only the parts of the scene relevant for control
are extracted.

Other research has investigated the use of multiview representations learned with contrastive
losses, determined from either time-aligned sequences from multiple camera views (Sermanet et al.,
2018; Dwibedi et al., 2018; Maeda et al., 2020) or via pre-existing object-recognition software (Florence
et al., 2018, 2020). Our method does not assume access to any extra information beyond raw RGB-D
sensor data2, but presumably, these representations could be used to improve the learned policies in
our work.

In (Sadeghi et al., 2018), the authors applied domain randomization (Tobin et al., 2017) to learn
policies that are able to complete a real-world multiview reaching task. The final policy is able to
generalize to inputs from novel viewpoints. In contrast, our tasks require significantly higher dexterity
than reaching alone.

Behavioural cloning (BC) is the common name given to imitation learning treated as supervised
learning (Bain and Sammut, 1996; Pomerleau, 1989): after collecting an expert dataset, a policy is
trained to regress to expert actions given the corresponding observations. As discussed in Section 2.4.2,
a core assumption of supervised learning is that the training and test data are independently and
identically distributed (IID). In BC, this translates to assuming that the policy dataset, generated by
running the policy, is drawn from the same distribution as as the expert dataset. Unfortunately, in
general this assumption is violated (Ross et al., 2011), but the problem can be mitigated by manually
increasing the coverage of the expert dataset (Pomerleau, 1989; Zhang et al., 2018; Laskey et al., 2017a)
or by employing an intervention-based strategy (Ablett et al., 2020). We investigate the effects of
including and excluding multiple views and base poses in the expert dataset for both multiview and
fixed-base tasks.

2We use depth information because it is easily acquired along with images using off-the-shelf RGB-D sensors.

3.3. Problem Formulation 29

3.3 Problem Formulation

We formulate our problem as a Markov Decision Process (MDP). Our goal is to learn a determin-
istic policy πθ : O → A, parameterized by θ, for environment observations o ∈ O and actions
a ∈ A. Instead of maximizing a reward, in imitation learning, we attempt to match a learned pol-
icy πθ to an expert policy πE . In our case, we do not assume we have direct access to πE and
instead only have samples of human-generated demonstrations DE := {τ1, . . . , τn, . . . , τN}, τn :=

{(o0, a0), . . . , (ot, at), . . . , (oT−1, aT−1)}, where T is the task horizon length. The initial observation
o0 is sampled from a pre-defined distribution p(o0).

We train our policies using behavioural cloning. The policy πθ can be trained by minimizing the
mean squared error,

min
θ

∑
(o,a)∈DE

(πθ(o)− a)2 . (3.1)

In our work, each individual task or environment T is a separate MDP that can be considered to be
either multiview (Tm) or fixed-view (Tf), with πm denoting a policy trained with data from Tm (and πf

for Tf), where we omit θ for convenience. For Tf , we can define the observation generating process
gO,f : SM × Si → OTf , noting that oTf ∈ OTf are generated by an unknown function gO,f of the
underlying states of our manipulator sM ∈ SM and task-relevant objects si ∈ Si. The initial states
of each episode, sM,0 and si,0, are uniformly randomized within predefined constraints. In contrast,
for the multiview case, we define gO,m : SM × Si × Sb → OTm , where we have added the state of
the base of our robot sb ∈ Sb, noting that sb is randomized only between episodes. In our formulation,
measurements o ∈ O are acquired from a sensor attached to the robot base and from the arm itself,
so changing sb,0 affects sM,0, the view of task relevant objects, and the set of actions that are able to
‘solve’ the task.

3.4 Multiview Training and Shared Information

As stated in Section 3.1, we are interested in the comparison between a fixed-base task Tf and an
equivalent multiview version Tm, as well as policies πf and πm trained on observations OTf and
OTm . It is important to note that because SM and Si are shared between these environments and
dim(OTm) = dim(OTf), we can generate actions from πm or πf with both OTm and OTf .

3.4.1 Comparing Tm and Tf
Considering the sizes of the sets of possible states for Tm and Tf leads to a well-known challenge
in prediction problems, the curse of dimensionality (Bellman, 1957): since dim(SM × Si × Sb) >

dim(SM × Si), we should require more training examples from OTm to learn πm than from OTf to
learn πf (i.e., to achieve the same success rate). Stated differently, more examples are required to
adequately populate the observation space OTm than to populate OTf .

30 Chapter 3. Multiview Manipulation from Demonstrations

A natural conclusion is that, given the same quantity of training data, πm will perform worse than
πf on Tf , for two separate but related reasons: (i) πm is required to learn a higher-dimensional problem
than πf , and (ii) πm is provided with less (or possibly no) oTf ∈ OTf at training time.

3.4.2 When Multiview Data Helps

Implicit in the above conclusion is the assumption that, for a specific task, the distributions of expert
actions p(aE | sb = α) and p(aE | sb = β) for two different base poses, α, β ∈ Sb, are independent.
However, this is not true for our problem, or for many other supervised learning tasks. The distri-
butions of observations (and actions) for poses that are ‘nearby’ in the state space, Sb, must have
nonzero mutual information, as well as smooth state, observation, and action spaces. If this were not
the case, multiview policies would be unable to generalize to new poses. We experimentally show
that our policies are able to generalize to new poses (in Section 3.7.1) and even to out-of-distribution
data (in Section 3.7.2). We consider the task-dependent mutual information I(AE,α;AE,β) between
AE,α ∼ p(aE | sb = α) and AE,β ∼ p(aE | sb = β) below.

For tasks where I(AE,α;AE,β) is large in general, πm will provide little benefit over πf in Tm.
However, when I(AE,α;AE,β) is small in general, πm may be prohibitively costly to learn and suffer
compared withπf in Tf . This issue arises due to the increased number of expert demonstrations needed
to cover the space of OTm . For this reason, we expect πm will provide the most benefit, compared to
πf learned from an equivalent amount of data, when I(AE,α;AE,β) falls somewhere in the middle—
each base pose generates similar observations and requires a similar, but not identical, trajectory of
actions to allow successful completion of the task (see Fig. 3.1). As an example, consider a lifting task,
where the robot has to lift an object sitting on a table. If, when varying sb, the object poses in the
set Si,0 remain the same relative to both the imaging sensor and the robot base, a multiview policy
would provide little benefit. Conversely, consider a door opening task, where the robot has to open
a cabinet door: the initial pose of the cabinet si,0 does not change relative to the world. Therefore, if
sb is changed, the initial pose of the cabinet, relative to the imaging sensor and the robot base, will
necessarily change, and a fixed-view policy will likely fail.

We can rephrase our first two experimental questions (see Section 3.1): provided that a task has
an upper bound on the range of base poses to consider, is there sufficient mutual information between
trajectories at different (but ‘nearby’) poses to enable a policy πm to be learned that not only performs
adequately in Tm, but performs comparably to πf in Tf , given the same amount of training data? That
is, if we reduce the sampling density (of expert demonstrations), is the mutual information between
those demonstrations sufficient to ensure that πm performs well in Tm and similarly to πf in Tf? We
explore this question in Section 3.7.1.

Finally, despite nonzero mutual information, it remains true that πm must learn in the larger space
of OTm , compared to πf and OTf . If πm relies on mutual information, we would expect that many of
the visual features learned by πm would consistently refer to the same parts of the scene, regardless
of viewpoint, a possibility which we examine in Section 3.7.3.

3.5. Methodology 31

(a) Relevant robot and task reference frames. (b) Base poses form a semi-circle.

(c) Base poses where bϕ is set to bϕ,min, 0.5(bϕ,min + bϕ,max), and bϕ,max.

Figure 3.3: Base poses (F−→b) are randomized along a semi-circle to ensure that the z-axis of the sensor frame
(F−→s) always points towards the world frame (F−→w), defined to be the center of the task space.

3.5 Methodology

As previously noted, we assume that we have access to an “approach” policy that is capable of moving
the mobile base to a pose where the task-relevant objects are (i) in view of the base-mounted sensor
and (ii) within the reachable workspace of the manipulator.

We use an automated process to generate randomized base poses for each new training episode.
We require (i) a rough estimate of the transform from the robot base frame to the sensor (often pro-
vided, and easily acquired through off-the-shelf calibration), (ii) a rough estimate of the robot base
pose in the fixed world reference frame F−→w (the estimate from wheel odometry is adequate), (iii) a
pre-selected centre point in F−→w, and (iv) the desired distance (again, approximate) between the cam-
era frame origin and the centre point in F−→w. We desire poses of the mobile base where the main
optical axis of the camera sensor, at F−→s, always very nearly intersects with the selected centre point
in F−→w. Each pose in the feasible set lies on a circle, as shown in Fig. 3.3. Since the base poses are in
SE(2), they can be defined by bϕ, bx and by : new poses are generated by uniformly randomly sam-
pling bϕ ∼ U(bϕ,min, bϕ,max) (where bϕ,min and bϕ,max are set to ensure that there are no collisions
with the environment) and computing the appropriate corresponding bx and by using the constraints
outlined above. After sampling and solving for the full base pose, we add a small amount of uniform

32 Chapter 3. Multiview Manipulation from Demonstrations

HTC Vive
Controller

Robotiq
Gripper

UR10 Arm
RealSense

RGB-D Camera

Robotiq FT
Sensor

Ridgeback
Mobile Base

Figure 3.4: Our experimental setup in the real world. Pictured is our mobile manipulation platform as described
in Section 3.6.1, as well as a human expert in the process of collecting a demonstration for our DoorReal task.
See attached video for example demonstrations.

random noise to the pose values (ensuring that task-relevant objects remain in view), with the aim of
increasing the robustness of our learned policy. Importantly, our learned policies do not require direct
knowledge of the base-to-camera transform or the workspace-to-base transform—this information is
used only during the autonomous view generation process.

Our method also requires the collection of a datasetDE of expert trajectories of observation-action
pairs (o, a) acquired through teleoperation. We only require that the demonstrations are collected
without an operator in view of the imaging sensor, though we note that this constraint exists for all
visuomotor imitation learning methods.

3.6. Experimental Setup 33

Table 3.1: Environments considered in this work. Demo time is the cumulative real time of the 200 demon-
strations in the multiview version of each expert dataset and the p(o0) params are the initial conditions of the
environment that are randomized between episodes. The “base bϕ range” corresponds to bϕ,max − bϕ,min, as de-
scribed in Section 3.5.

Environment Objective Demo time p(o0) params p(o0) (ranges) Actions

LiftSim Reach block and lift
above 7.5cm

18m23s base pose, block
pose

base bϕ range: 45◦, block
center in 25cm×25cm box

Trans vel,
grip

StackSim Stack blue block on
green block

25m05s base pose, blue
block pose,
green block pose

base bϕ range: 45◦, block
centers in 15cm×15cm box

6-DOF vel,
grip

PickAnd

InsertSim

Grasp cylinder and
insert in hole
(<1mm tol.)

14m23s base pose,
cylinder pose

base bϕ range: 45◦, cylinder
center in 2.5cm×2.5cm box

6-DOF vel,
grip

DoorSim Grasp door handle,
open >90◦

25m17s base pose, initial
gripper pose

base bϕ range: 45◦, gripper:
in 12cm×5cm×5cm box

6-DOF vel,
grip

PickAnd

InsertReal

Grasp cylinder and
insert in hole
(<1mm tol.)

28m30s base pose,
cylinder pose

base bϕ range: 35◦, cylinder
center in 2.5cm×2.5cm box

6-DOF vel,
grip

DoorReal Hook door handle,
open >90◦

30m56s base pose, initial
gripper pose

base bϕ range: 35◦, gripper:
in 12cm×5cm×5cm box

6-DOF vel

DrawerReal Hook drawer
handle, open within
2cm of max

32m23s base pose, initial
gripper pose

base bϕ range: 35◦, gripper:
in 12cm×5cm×5cm box

6-DOF vel

3.6 Experimental Setup

In this section, we describe our experimental design, including the hardware used, the parameters of
our tasks, and how we train our policies.

3.6.1 Hardware

We carry out experiments on both simulated and real versions of our mobile manipulation platform,
shown in Fig. 3.4. Our real platform has a Robotiq three-finger gripper, while our simulated platform
in PyBullet (Coumans and Bai, 2019) uses either a PR2 gripper or a Franka Emika Panda gripper due
to the difficulty of simulating the three-finger gripper.

On our physical platform, we employ a simple compliant controller that uses a Robotiq FT-300
force-torque sensor for feedback, allowing our policies to operate safely in our contact-rich tasks. Our
robot is controlled using off-the-shelf ROS packages at the lower level and our own inverse kinematics
library.

On both the real and the simulated platforms, we use, in addition to other data as detailed in
Section 3.6.2, RGB images and depth images. On the real platform, images are captured from an Intel
RealSense D435. The sensor is firmly mounted to the mobile base (see Fig. 3.4), ensuring that, when
the base moves, the sensor moves with it (see Fig. 3.3).

We collect human demonstrations with a single HTC Vive hand controller (see Fig. 3.4) and custom-
designed software. For visual feedback, we found that having the user observe the real robot during
collection was sufficient. The force-torque sensor measurements provide proportional haptic feedback

34 Chapter 3. Multiview Manipulation from Demonstrations

to the demonstrator through the vibration motor in the controller—the vibration amplitude increases
with the magnitude of the force and/or torque.

3.6.2 Environments

For a summary of our environments/tasks, see Table 3.1. Representative images from successful tra-
jectories in each environment are shown in Fig. 3.5. All of the tasks’ input data include, in addition to
RGB and depth images, the current pose of the end-effector in the frame of the robot, provided by for-
ward kinematics and represented as a seven-tuple with Cartesian coordinates for position and a unit
quaternion for orientation. As well, each environment that requires actuating the gripper includes the
current and previous two positions of each gripper finger. Finally, the real environments also include
force-torque sensor data.

Figure 3.5: Successful trajectories for tasks studied in this work. From top to bottom: LiftSim, StackSim,
PickAndInsertSim, DoorSim, PickAndInsertReal, DoorReal, and DrawerReal. See attached video for full
examples.

3.6.
Experim

ental
Setup

35

25 50 75 100 125 150 175 200
0.00

0.25

0.50

0.75

1.00

Fi
xe

d-
ba

se
E

nv

LiftSim

25 50 75 100 125 150 175 200
0.00

0.25

0.50

0.75

1.00
StackSim

25 50 75 100 125 150 175 200
0.00

0.25

0.50

0.75

1.00
PickAndInsertSim

25 50 75 100 125 150 175 200
0.00

0.25

0.50

0.75

1.00
DoorSim

50 100 150 200
0.00

0.25

0.50

0.75

1.00
DoorReal

25 50 75 100 125 150 175 200
0.00

0.25

0.50

0.75

1.00

M
ul

tiv
ie

w
E

nv

25 50 75 100 125 150 175 200
0.00

0.25

0.50

0.75

1.00

25 50 75 100 125 150 175 200
0.00

0.25

0.50

0.75

1.00

25 50 75 100 125 150 175 200
0.00

0.25

0.50

0.75

1.00

50 100 150 200
0.00

0.25

0.50

0.75

1.00

0.0 0.2 0.4 0.6 0.8 1.0

Number of Training Demonstrations

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

R
at

e

Fixed-base Policy Multiview Policy

Figure 3.6: Performance of our policies for environments in which we compared fixed-base with multiview policies in fixed-base (top) and multiview (bottom)
environments. The shaded region shows the two-sigma bounds across five policy seeds in simulation, and three in the DoorReal environment. The multiview
policies, as expected, outperform fixed-base policies in multiview settings, often substantially so, with either no or only minor detriment compared with a fixed-
base policy in a fixed-base environment.

36 Chapter 3. Multiview Manipulation from Demonstrations

50 100 150 200
0.00

0.25

0.50

0.75

1.00
PickAndInsertReal

50 100 150 200
0.00

0.25

0.50

0.75

1.00
DrawerReal

0.0 0.2 0.4 0.6 0.8 1.0

Number of Training Demonstrations

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

R
at

e

Figure 3.7: Performance results for the other real environments in which we only tested multiview policies.
The shaded region shows the two-sigma bounds across three policy seeds.

3.6.3 Policy Architecture and Training

Our policy networks are inspired by (Zhang et al., 2018). Specifically, we use a mutli-layer convolu-
tional neural network (CNN) to process the RGB and depth images, take the spatial soft-argmax (Levine
et al., 2016) of the final CNN layer, and concatenate these points with other numerical state information
before pushing them through a set of two fully-connected layers. Our CNN layers are the same as in
(Zhang et al., 2018), but we use 512 neurons in each of our fully-connected, hidden layers. Crucially, all
inputs are available from raw sensor data and our policy does not have access to any privileged state
information, including object poses or the relative base pose. We reduce the resolution of our RGB
and depth images to 64×48×3 and 64×48, respectively, and initialize the weights of the RGB layer
with weights from ResNet (He et al., 2016). Empirically, we found greatly reduced variance between
the performance of differently seeded policies by training our policies as ensembles (Breiman, 1996),
so each policy is a five-member ensemble, with the final output being the mean output. Each member
policy is trained with the same data shuffled differently, initialized with different random orthogonal
weights (apart from the pretrained weights).

We train the policies using Tensorflow (Abadi et al., 2015) and the Adam optimizer (Kingma and
Ba, 2015) with early stopping, ending training when the validation error on a 20% holdout set has not
improved for 30 epochs. We use a learning rate of 0.001, a mini-batch size of 64, and a maximum
of 200 epochs. Our loss function is the mean squared error (Eq. (3.1)) between the expert and policy
action. We did not do a hyperparameter search because our results given these parameters sufficiently
answered the questions posed in Section 3.1, but presumably, a search could have marginally improved
our success rates.

The LiftSim environment policies are trained using demonstrations generated from a policy
learned with Soft-Actor Critic (Haarnoja et al., 2018) to encourage repeatable experiments. Given
the high cost of generating autonomous policies for the other tasks, all other tasks use exclusively
human-generated data.

3.7. Experiments 37

3.7 Experiments

Our goal is to investigate the performance of multiview policies relative to fixed-view policies on a
series of contact-rich manipulation tasks. To do so, we compare the performance of πm and πf in both
Tm and Tf and on out-of-distribution data. To attempt to explain performance gaps, we additionally
examine the spatial consistency of the visual features learned by πm and πf .

For each task, we collected 200 demonstrations and trained five policies, with different seeds and
at multiple demonstration quantities, and finally ran a series of test episodes with held-out initial
conditions to evaluate the success rate of each policy. We trained our policies with increments of 25
demonstrations per policy in simulation, and 50 per policy on the real robot. We tested our policies
with 50 evaluation episodes per policy in simulation, and 10 evaluation episodes per policy on the real
robot.

3.7.1 Multiview Versus Fixed-base

For LiftSim, StackSim, PickAndInsertSim, DoorSim, and DoorReal, we collected both multiview
and fixed-base data on each task and compared performance under four conditions: πm in Tm, πm in
Tf , πf in Tm, and πf in Tf (see Fig. 3.6). Notably, as we predicted in Section 3.4.2, in the Lift and
Stack environments, the multiview policy only provides a marginal benefit over a fixed-base policy
in a multiview environment. For these two environments, πm does not perform any worse than πf

in Tf , indicating that a multiview policy can improve performance, and does not appear to cause any
detriment.

The benefits of a multiview policy are much clearer in the PickAndInsertSim, DoorSim, and
DoorReal environments, where the fixed-base policy fails often in the multiview case, while the mul-
tiview policy, as expected, increases in performance with the number of demonstrations. Compared
with a fixed-base policy, the multiview policy does lose a small amount of performance in the Tf
DoorSim task—an appealing direction for furture work is to consider whether a small amount of data
from Tf provided to πm, after pretraining on Tm, could close this gap. Notably, we do not see the same
effect in the real world version of the Door task. We suspect that in the real world, it is quite difficult
to ensure that the base is in the exact same pose it was in during data collection. Of course, this small
deviation is not an issue for the multiview policy and further motivates its use over a fixed-view policy.

The performance results of multiview policies for PickAndInsertReal and DrawerReal are shown
in Fig. 3.7. As is the case for PickAndInsertSim, DoorSim, and DoorReal, we would reasonably
expect that a fixed-base policy would not be able to complete these tasks successfully given differ-
ing views. It is worth noting that the performance variation between differently-seeded policies for
PickAndInsertReal is relatively high. We suspect this is due to the difficulty of learning this task
in a purely supervised framework. Empirically, many of the failures in this environment were “near-
misses.”

38 Chapter 3. Multiview Manipulation from Demonstrations

Figure 3.8: Results of testing multiview policies (πm) and fixed-base policies (πf), each trained with 200 demon-
strations, in multiview environments at a range of angles. The whiskers show the two-sigma bounds across five
policy seeds. Here, πm outperforms πf , and also shows some ability to perform adequately outside of the train-
ing distribution bounds.

3.7.2 Out-of-Distribution (OOD) Experiments

To investigate performance on OOD data, we compared the success rate of multiview policies with
fixed-view policies given specific base angles, bϕ, as described in Section 3.5. Our multiview policies
were trained in our simulated environments with bϕ ∼ U [−0.6, 0.2] (radians), and our fixed-view
policies were trained with bϕ = 0. We tested both policies with 12 sets of initial conditions for bϕ:
bϕ,range = {[−0.8,−0.7] , [−0.7,−0.6] , . . . , [0.3, 0.4]}. We drew 50 random values from each bϕ,range,
and recorded the success rate on these episodes for five seeds of multiview policies and fixed-base
policies, each trained with 200 expert demonstrations. The results are shown in Fig. 3.8.

As predicted, both types of policies tend to perform roughly equally in each range of angles in
LiftSim, and, as shown in Section 3.7.1, the StackSim multiview policy tends to perform better in
general. For PickAndInsertSim and DoorSim, a clearer picture emerges to explain the performance
difference shown in Fig. 3.6: the fixed-base policies were trained exclusively at bϕ = 0with no variation
in bx or by , so πf performance, with even small variations in bϕ, falls dramatically compared with the
performance of πf on Tf . The performance of πf continues to deteriorate as |bϕ| increases, while the
multiview policies do well throughout the training distribution, with a noticeable negative skew in
performance towards the negative angles. This reduced performance may occur because our camera
is already at an angle to the left of the scene (see Fig. 3.3), so moving it further to the left makes the
task particularly challenging. The multiview policies show some degree of ability to generalize beyond
their training distribution, indicating that the multiview policies learn about the geometric relationship
between the arm and the objects in the scene.

3.7. Experiments 39

(a) Spatially inconsistent SSAM points from πf . (b) More spatially consistent SSAM points from πm.

Figure 3.9: A comparison of the three SSAM points with highest activation on the gripper and the door, repro-
jected from five different time steps for five different episodes with different viewpoints. The five-image columns
on the left side of each figure show the locations of the six features for each different viewpoint, with each SSAM
output corresponding to a different colour. The images on the right show all SSAM points reprojected to a single
view. The ellipsoids show the two-sigma bounds of the covariance of all of the object-consistent SSAM positions.
The features from πf display far less spatial consistency than the features from πm.

3.7.3 Learned Feature Analysis

Expanding on our analysis in Section 3.4.2, we compare the visual features learned by policies πf and
πm. The vision portion of our network terminates with a set of 32 spatial soft-argmax (SSAM) outputs
per ensemble member, generated from each of the last convolutional filters, which can be interpreted
as points in image space (we refer the reader to (Levine et al., 2016) for a more detailed explanation
of SSAM). In this section, we refer to SSAM outputs/points interchangeably as features, but unlike
traditional features in computer vision (i.e., those used for feature matching), they do not specifically
encode a descriptor that can consistently identify exactly the same parts of different images.

The use of SSAM outputs allows us to interpret where the network directs its attention. We can
therefore observe whether individual SSAM outputs are spatially consistent, which would imply that
a view-independent geometric representation has been learned and potentially (partially) explain the
generalization capability. As noted in Section 3.4.2, the reuse of information between views would
lead to spatially consistent (correlated) features.

For this analysis, we use five random episodes (i.e., with five different views) of each of πm and
πf acting in Tm in our DoorSim environment. In each episode, starting from one time step before the
policy initially closed the gripper (attempting to grasp the door handle—arguably the most challenging

40 Chapter 3. Multiview Manipulation from Demonstrations

part of the task), we record all of the SSAM points and activation magnitudes from each policy for
five time steps. These SSAM points are then projected into Cartesian space using the known camera
intrinsic parameters, depth image data, and the world gripper and door poses. Given five episodes and
five time steps per episode, each SSAM output produces 25 3D feature points in the world frame. We
sort the SSAM points by their activation magnitudes, and take the three SSAM points with the highest
average activation magnitudes that also show up at least 20 out of 25 times on either the door or
the gripper (as determined using ground-truth information from PyBullet), yielding six representative
SSAM outputs in total (three for the door, three for the gripper) for each of πm and πf . Each of these
six SSAM features has between 20 and 25 positions on either the gripper or the door. We plot the
reprojected locations of these features in Fig. 3.9.

The features learned by πm clearly show a smaller degree of spread, and higher spatial correlation,
than the features from πf . The spatial correlation of the SSAM layer activations indicates that a degree
of view-invariance has been learned without the need to explicitly train using a view-invariance loss or
architecture—the policy has learned a visual representation of the task-relevant objects (including the
arm) in terms of features that are robust to viewpoint changes. Our interpretation that πm has learned
a degree of true view-invariance is also supported by our results in Section 3.7.2: πm generalizes to
viewpoint shifts beyond its training distribution.

3.8 Limitations

In this section, we discuss some limitations of our work. While we experimentally showed that our
policies generalize to multiple views, we did not actually test them in tandem with a separate mobile
base policy, so it is possible that our choice for generating multiple views may not be representative
of a true mobile base policy. Furthermore, we train policies end-to-end on raw image and depth data,
meaning that slight changes to the background, or to lighting, could potentially have highly detrimen-
tal effects on our policies. Finally, our policies still fail in many cases, and do not have any means for
addressing these failures or recovering.

3.9 Summary

In this chapter, we learned end-to-end policies for challenging, contact-rich tasks involving multiple
views, effectively resolving the distribution shift that occurs when a mobile manipulation base position
changes between task attempts. We demonstrated the benefits of multiview policies through extensive
experiments on a mobile manipulation platform in both simulation and in the real world. Specifically,
given the same amount of training data, a multiview policy can be learned with very little, if any,
detriment to performance compared with a fixed-base policy and a corresponding fixed-base task.

Multiview data and the corresponding policies leverage knowledge of the task to more broadly
cover the expert distribution, thereby reducing the likelihood of encountering out-of-distribution states.
Referring to the theoretical gap of the worst-case error between BC and DAgger from Section 2.4.3,

3.9. Summary 41

this increased spread provides a partial approximation to the on-policy learning enabled by DAgger.
This indicates that, while we cannot expect to achieve the worst-case error ofO(Tϵ) provided by DAg-
ger, we can do substantially better than regular BC with fixed-base data, with a worst-case error rate
of O(T 2ϵ). As we see in our results, the longer horizon tasks, such as opening a door or picking and
inserting a peg, tend to have lower success rates overall, indicating that we likely do have a superlinear
relationship between cost and T .

Since multiview policies are considerably more flexible than their fixed-based counterparts, we
assert that multiview data is always desirable. Possible directions for future work include further in-
vestigation into methods for reducing the data required to learn effective policies through the use of
traditional and learning-based view synthesis techniques or multiview representation learning. Train-
ing a policy with multiview data can be interpreted as an attempt to generate a policy that is agnostic to
the view of task objects. Ideally, this would be done at the level of objects, meaning that a view-agnostic
representation of an object could be shared between tasks, and potentially even between similar ob-
jects (e.g. (Florence et al., 2018; Zeng et al., 2022)). Although these representations can help with visual
recognition and state estimation, transforming robotic trajectories based on new object states is still
an open problem, although newer work has shown some progress (Johns, 2021; Mandlekar et al., 2023).

Chapter 4

Force-Matched Demonstrations

In this chapter, we present another approach to mitigate distribution shift in behavioural cloning by
directly modifying the training dataset.1 Instead of simply adding more data, we identify that the use
of raw kinesthetic teaching for demonstrations results in a change of the applied force between train-
ing and testing, and present an algorithm to resolve the problem during data collection. We further
identify that the complex contact involved in many tasks (e.g. roll, slip, shear forces) may benefit from
controllable multimodal visuotactile sensing, the control of which we integrate into our modified ap-
proach to data collection, simplifying the application of the sensor. Compared with Chapter 3, this
approach can be seen as also immediately identifying a potential shift between the training and test-
ing distribution, but instead of increasing the variety of data collected, we directly modify individual
demonstration trajectories themselves to better match the testing distribution.

We introduce two algorithmic contributions, tactile force matching and learned mode switching, as
complimentary methods for improving IL via kinesthetic teaching. Tactile force matching enhances
kinesthetic teaching by reading approximate forces during the demonstration with a visuotactile sen-
sor and generating an adapted robot trajectory that recreates the recorded forces, reducing the detri-
mental effects of the distribution shift from training to testing data. Learned mode switching uses IL to
couple visual and tactile sensor modes with the learned motion policy, simplifying the transition from
reaching to contacting. We perform robotic manipulation experiments on four door opening tasks with
a variety of observation and algorithm configurations to study the utility of our proposed improve-
ments and multimodal visuotactile sensing. Our results show that the inclusion of force matching
raises average policy success rates by 62.5%, visuotactile mode switching by 30.3%, and visuotactile
data as a policy input by 42.5%, emphasizing the value of see-through tactile sensing for IL, both for
data collection to allow force matching, and for policy execution to allow accurate task feedback.

1Project website: https://papers.starslab.ca/sts-il.

42

https://papers.starslab.ca/sts-il

4.1. Motivation 43

Figure 4.1: Our STS sensor before and during contact (right column) with a cabinet knob (middle column)
during a door opening task (left column). In visual mode, the camera sees through the gel membrane, allowing
the knob to be found, while tactile mode provides contact-based feedback, via gel deformation and resultant dot
displacement, upon initial contact and during opening. Red circles highlight the knob in sensor view.

4.1 Motivation

The conventional approach to manipulating articulated objects such as doors and drawers with robots
relies on a firm, stable grasp of the handle followed by a large arm motion to complete the open-
ing/closing task. In contrast, humans are capable of opening and closing doors with minimal arm
motions, by relaxing their grasp on the handle and allowing for relative motion between their fingers
and the handle (see Section 4.1). In this chapter, we aim to learn robot policies for door opening that
are more in line with human manipulation, by leveraging high-resolution visual and tactile feedback
to control the contact interactions between the robot end-effector and the handle.

Optical tactile sensors (Chi et al., 2018) combine a gel-based material with an internal camera
to yield rich tactile information (Yuan et al., 2017) and are able to provide the feedback needed for
dexterous manipulation (Padmanabha et al., 2020; Ma et al., 2019). A recently-introduced see-through-
your-skin (STS) multimodal optical sensor variant combines visual sensing with tactile sensing by
leveraging a transparent membrane and controllable lighting (Hogan et al., 2021, 2022). This sensor
enables perception of the full interaction, from approach, through initial contact, to grasping and
pulling or pushing.

In this chapter, we investigate how to leverage visuotactile sensing for imitation learning (IL) on a
real robotic platform for contact-rich manipulation tasks. We focus on the tasks of opening and closing
cabinet doors with challenging handle geometries (e.g., flat and spherical knobs) that are difficult to
grasp with a parallel jaw gripper and that require fine motor control and tactile feedback. We complete
these tasks with a 7-DOF robotic system that integrates a single robotic finger outfitted with an STS
visuotactile sensor (see Fig. 4.1), evaluating on four tasks in total.

44 Chapter 4. Force-Matched Demonstrations

(a) Grasp and rotate. (b) Press and pull.

Figure 4.2: Various human approaches to opening a cabinet. The “Press” approach on the right requires far less
arm rotation, but also generates relative motion between the knob and the hand, motivating the use of high-
resolution tactile sensing to replicate.

Human-based expert demonstrations for IL can be generated in a variety of ways, though most
methods fall generally into the kinesthetic teaching (in which a person directly moves and pushes the
arm to complete a task) or teleoperation (in which a person remotely controls the robot through a
secondary apparatus) categories (Billard et al., 2016). While neither method is the definitive choice in
all cases, kinesthetic teaching offers two specific major advantages over teleoperation: 1) a degree of
haptic feedback is provided to the demonstrator, since they indirectly feel contact between the end-
effector and the environment (similar to tactile feedback that humans feel during tool use), and 2) no
extra devices beyond the arm itself are required. Teleoperation requires a proxy (i.e., a separate sensor,
actuator and system) to provide a substitute for true haptic feedback (Ablett et al., 2021b; Li et al.,
2023b), and can be costly or inaccurate. Additionally, prior work has found that kinesthetic teaching
is preferred over teleoperation for its ease of use and speed of providing demonstrations (Pervez et al.,
2017; Fischer et al., 2016; Akgun and Subramanian, 2011).

Unfortunately, kinesthetic teaching methods typically only measure robot motion, without con-
sidering the robot-environment contact force (and torque). To match the force profile2 of the demon-
stration, we require a means of measuring robot-environment forces, in addition to a mechanism for
reproducing those forces. Our first contribution is a tactile force matching method that uses the read-
ings from an STS sensor to modify the poses recorded from kinesthetic teaching. Our method generates
a new trajectory that, when used as input to a Cartesian impedance controller, recovers the recorded
forces and poses to generate a force-matched replay (see steps 2, 3 and 4 from Fig. 4.3). Assuming
a linear relationship between surface deformation and force, we measure approximate force in x, y,
z, and torque τz using tracked dot motion. This affords multiple advantages compared with typical
approaches to force-torque sensing: (i) standard methods for measuring robot-environment force are
corrupted by human-robot force (see Fig. 4.4), (ii) an STS is an order of magnitude less expensive than
a similarly-mounted force-torque sensor, and (iii) the STS can be additionally used, in both visual and
tactile modes, to provide raw sensor data for learning policies.

2We refer to forces in this section, but the method also applies to wrenches. When necessary, we specify individual
dimensions of force and torque.

4.2. Related Work 45

Figure 4.3: Visual representations of each component of our system: (1) Raw, human demonstrations are gen-
erated via kinesthetic teaching. (2) During the demonstration, an STS sensor in tactile mode allows us to read
a four dimensions of an unscaled wrench in x, y, z, and rotationally about z. (3) For each timestep t from the
demonstration trajectory from (1), each raw demonstration pose xraw,t uses the linear calibration parameters A
and b (relating unscaled F̃ from (2) to control error e) and the measured wrench F̃ raw,t from (2) to generate a
force-matched replay pose xd

rep,t. (4) The new, modified replay poses are used to replay the demonstration while
a human provides an STS mode switch label. These replayed, force-matched demonstrations are stored in an
expert dataset containing STS, wrist camera, and relative pose data as observations, as well as robot motion and
STS mode labels as actions. (5) We train policies using some or all of STS, wrist camera, and relative pose data
with behavioural cloning.

To take advantage of both visual and tactile modes of an STS sensor, a method is required to
decide when to switch modes. Previous work (Hogan et al., 2022) accomplished this using known
object information and a hand-crafted rule. Our second contribution is a novel method for switching
between the visual and tactile modes of an STS sensor. We include mode switching as a policy output,
allowing the human to set the sensor mode during the demonstration replay, which acts as a label for
the expert dataset (see Step 4 of Fig. 4.3). We find that this approach effectively learns to switch the
sensor at the point of contact, significantly improving policy performance compared with single-mode
sensing. Our third contribution in this chapter is an extensive experimental evaluation of the benefits
of including STS visual and tactile data (depending on the active mode) as inputs to a multimodal
control policy. We compare the use of an STS sensor (both with and without mode switching) with the
use of an eye-in-hand camera. Together, our contributions exhibit a system for significantly improving
performance on contact-rich manipulation tasks by leveraging an STS sensor.

4.2 Related Work

Our work can be situated within the literature at the intersection of imitation learning, tactile sensing,
and impedance control.

Impedance control is an approach to robotic control in which force and position are related by the
dynamics of a theoretical mass-spring-damper system (Hogan, 1984). Impedance control can be easier
to employ in robotic manipulation than standard force control (Siciliano, 2009) because it allows for

46 Chapter 4. Force-Matched Demonstrations

position control and because the contact dynamics between the robot and the environment are often
difficult to model. It is not possible to apply desired forces in this scheme, and hybrid position/force
control must be used instead (Raibert and Craig, 1981).

The development of gel-based optical visuotactile sensors has led to a range of research on tactile
feedback (Yuan et al., 2017; Padmanabha et al., 2020; Ma et al., 2019). Using a semi-transparent polymer
on top of these sensors allows for both visual and tactile sensing (Yamaguchi and Atkeson, 2017), and
is further improved through the addition of controllable lighting (Hogan et al., 2021). These sensors
can be used to map normal and shear forces to displacements by tracking printed dots embedded in
the sensor membrane (Yuan, 2014; Ma et al., 2019; Kim et al., 2022). In this work, we determine the
approximate applied wrench based on tracked marker motion. For example, in the z dimension, we use
the average surface depth change, using an algorithm that estimates the depth via dot displacement
(Jilani, 2024).

Imitation learning (IL) is an approach for training a control policy given a set of expert demon-
strations of the desired behaviour. IL can generally be separated into methods based on behavioural
cloning (Bain and Sammut, 1996), in which supervised learning is carried out on the expert demonstra-
tion set, or inverse reinforcement learning (Abbeel and Ng, 2004), where the expert’s reward function
is inferred from the demonstration set. Both behavioural cloning (Ablett et al., 2021b; Mandlekar et al.,
2022; Zhang et al., 2018) and inverse reinforcement learning (Ablett et al., 2023; Chang et al., 2024;
Orsini et al., 2021) have been used successfully for many robotic manipulation tasks. Recent appli-
cations tend to avoid the use of kinesthetic teaching (Billard et al., 2016) in favour of teleoperation,
despite the ability of the former to provide a degree of haptic feedback to the demonstrator. Teleop-
eration requires a proxy system to provide haptic feedback (Ablett et al., 2021b; Li et al., 2023b) that
may be inaccurate or expensive. Although we do not compare teleoperation to kinesthetic teaching,
previous work has shown kinesthetic teaching to be preferred for many tasks for its ease of use and
speed of demonstration (Pervez et al., 2017; Fischer et al., 2016; Akgun and Subramanian, 2011).

Prior work that combines kinesthetic teaching with force profile reproduction does not externally
measure forces (Lee et al., 2015; Abu-Dakka et al., 2018), or requires one demonstration for positions
and a separate demonstration for forces (Kormushev et al., 2011), which can be inconvenient and
difficult to provide. In our work, a single demonstration provides both the desired poses and forces.

Learning-based manipulation has benefited from the use of force-torque sensing (Chebotar et al.,
2014; Limoyo et al., 2023), and visuotactile sensing for both reinforcement learning (Hansen et al., 2022)
and imitation learning (Huang and Bajcsy, 2020; Li et al., 2023a). Our learning architecture is similar to
(Li et al., 2023a), in which tactile and visual data are fed to a single neural network that is trained with
behavioural cloning. In (Li et al., 2023a), demonstrations are generated primarily with task-specific
scripts, while we use kinesthetic teaching without any task-based assumptions or scripted policies.
Our work is closely related to (Hogan et al., 2022), in which a multimodal tactile sensor is used to
complete a bead-maze task with a robotic manipulator. Unlike (Hogan et al., 2022), we learn a single,
unified policy for motion and sensor mode-switching, instead of relying on two separate, hand-crafted
policies.

4.3. Methodology 47

4.3 Methodology

In this section, we introduce each component of our system. We first provide a brief background on
imitation learning (Section 4.3.1), Cartesian impedance control (Section 4.3.2), and kinesthetic teach-
ing (Section 4.3.3). We then present our methods for (i) force matching, to match expert demonstrator
wrenches (Section 4.3.4), (ii) measuring unscaled forces, where we explain how we use tactile displace-
ment fields to provide wrench estimates (Section 4.3.5), (iii) tactile force matching, where we implement
force matching using tactile wrench estimates (Section 4.3.6), and (iv) contact mode labelling, to super-
vise the visuotactile modality during data collection (Section 4.3.7). Finally, we provide our training
objective in Section 4.3.8.

4.3.1 Markov Decision Processes and Imitation Learning

A Markov decision process (MDP) is a tupleM = ⟨S,A, R,P, ρ0⟩, where the sets S andA are respec-
tively the state and action space, R : S × A→ R is a reward function, P is the state-transition envi-
ronment dynamics distribution and ρ0 is the initial state distribution. A deterministic policy π(s) gen-
erates actions a. The policy π interacts with the environment to yield the experience (st, at, rt, st+1)

for t = 0, . . . , T where s0 ∼ ρ0(·), at = π(st), st+1 ∼ P(·|st, at), rt = R(st, at), T is the finite
horizon length, and τt:T = {(st, at), . . . , (sT , aT)} is the trajectory starting with (st, at).

We focus on imitation learning (IL), where R is unknown during training and instead we are
given a finite set of task-specific expert demonstration pairs (s, a), DE = {(s, a), . . . }. Our goal is to
learn a policy that maximizes task performance on the same evaluation function used to generate the
demonstrations, for exmaple, whether a door is fully opened.

4.3.2 Impedance Control

During data collection and policy execution, we control the robot arm using Cartesian impedance
control. This control strategy enables us to apply predictable forces on the environment by controlling
the stiffness, damping, and desired position of the robot end effector in Cartesian space. By adjusting
these parameters, we can regulate the interaction forces between the robot and its environment while
maintaining the desired position of the end effector (Hogan, 1984).

Consider a robot arm with the motion equation

F = Λ(q)ẍ+ µ(x, ẋ) + γ(q) + η(q, q̇) +F ext, (4.1)

where dimF = dimx = 6, F is task-space wrench, q is joint position, x is task-space pose (where
rotations are treated as rotation vectors), Λ is the task-space inertia matrix, µ is the generalized Cori-
olis and centrifugal force, γ is the gravitation, η represents further non-linear terms, and F ext are
environmental contacts. An impedance control law can be defined by

F = Ke+Dė+ Λ̂(q)ẍd + µ̂(x, ẋ) + γ̂(q) + η̂(q, q̇) +F ext, (4.2)

48 Chapter 4. Force-Matched Demonstrations

where xd is desired task-space pose, e = xd−x is the task-space error, K and D are the selected task-
space stiffness and damping matrices, and Λ̂, µ̂, γ̂ and η̂ are the internal models of corresponding
terms from Eq. (4.1). Substituting Eq. (4.2) into Eq. (4.1), we arrive at the closed-loop dynamics given
by

F ext = Ke+Dė+Λë. (4.3)

4.3.3 Data Collection with Kinesthetic Teaching

In this section, we explain our method for generating raw demonstrations via kinesthetic teaching
using impedance control, and why this method motivates force matching. We collect one expert dataset
DE for each task separately using kinesthetic teaching, where the expert physically pushes the robot
to generate demonstrations (Billard et al., 2016) (see left side of Fig. 4.3 for an example). To allow for
demonstrations via kinesthetic teaching, we set K and D from Eq. (4.3) very close to zero, ensuring the
robot has full compliance with the environment. We then record end-effector poses xE at a fixed rate
as the robot is moved by the human, and use these poses, or, equivalently, the changes between poses,
as expert actions (Billard et al., 2016). This recording process suffers from two limitations, however:
(i) the recorded states and actions may not accurately reflect S and A, and (ii) the recorded trajectory
is unable to replicate the reference forces generated by the human during robot-environment contact.
An example the first case above for S would be the presence of the human demonstrator, or even the
shadow of the human demonstrator, in the frame of a camera being used to generate S . For A, it
is difficult to guarantee that the controller can accurately reproduce the motion generated under full
compliance while the human is pushing the arm.

This issue can be resolved with replays, in which the demonstrator generates a single demonstra-
tion trajectory τx,raw = {xraw,0, . . . ,xraw,T }, resets the environment to the same s0, and then uses
a sufficiently accurate controller to reproduce each xraw (Dasari et al., 2021). For trajectories in free
space or where minimal force is exerted on the environment, this can be enough to learn effective
policies (Dasari et al., 2021; Figueroa, 2023). The resolution of the second limitation requires additional
sensory input, as we discuss in the next section.

4.3.4 Force Matching

In this section, we explain our method for generating force-matched replays of our raw kinesthetic
teaching trajectories under the assumption that the true external end-effector contact wrench can be
measured. As a reminder, force-matched replays recreate both the poses and the forces from the kines-
thetic teaching trajectory, whereas standard kinesthetic teaching typically only recreates the poses.

Assuming static equilibrium with ė = ë = 0, Eq. (4.3) simplifies to

F = Kex, (4.4)

where the position and external force are related as a spring and where we have dropped (·)ext from
external wrench F for notational convenience. In our case, dimF = dim ex = 6, since we control

4.3. Methodology 49

the robot in six degrees of freedom (three translational, three rotational). We treat the rotational
components of ex as a rotation vector. On our robot, we control joint torques 3 τ , such that

τ = J⊤F , (4.5)

where J is the the current manipulator Jacobian. Our per-timestep discrete control setpoints are

F t = K
(
xd
t − xt

)
, (4.6)

τ d
t = J⊤F t. (4.7)

Substituting Eq. (4.6) into Eq. (4.7) yields

τ d
t = J⊤K

(
xd
t − xt

)
, (4.8)

illustrating that measuring external end-effector contact wrenches is not necessary for the indirect
control scheme employed by a standard impedance controller (Villani and De Schutter, 2016).

Consider a raw demonstrator trajectory of recorded end-effector poses τx,raw = {xraw,0, . . . ,xraw,T }
and wrenches τf,raw = {F raw,0, . . . ,F raw,T } as a set of poses and wrenches that we would like our
controller to achieve. We invert the spring relationship in Eq. (4.6) to show how we can instead solve
for desired (replay) positions xd

rep,t that would generate particular wrenches F raw,t as

xd
rep,t = K−1F raw,t + xraw,t, (4.9)

as illustrated in the replay pose generation step of Fig. 4.3. Considering the modified replay poses from
Eq. (4.9) and substituting these into Eq. (4.8) as our new desired poses, we obtain

τ d
t = J⊤K

(
K−1F raw,t + xraw,t − xt

)
= J⊤F raw,t + J⊤K (xraw,t − xt) .

(4.10)

Eq. (4.10) shows that we have modified the controller with an open-loop term to directly reproduce
F raw,t, assuming static conditions, while maintaining the same original stiffness/impedance control
term to reproduce xraw,t. In cases where F raw,t = 0, our approach acts as a simple position-based
controller.

We consider the stiffness K to be fixed (typically a diagonal matrix with one value for all transla-
tional components, and another for all rotational ones), selected to optimally trade off control accuracy
and environmental compliance. Using Eq. (4.9), we can generate a trajectory of replay pose setpoints
τdx,rep = {xd

rep,0, . . . ,x
d
rep,T }, a new set of poses that, under static conditions, would reproduce the both

the positions τx,raw and the wrenches τf,raw from the raw kinesthetic teaching trajectory.

3Note that our symbol for joint torques τ (in bold) does not refer to a vector form of a trajectory τ . We choose these
symbols to be consistent with existing literature on both force control and imitation learning.

50 Chapter 4. Force-Matched Demonstrations

(a) Kinesthetic Teaching. (b) Autonomous Execution.

Figure 4.4: With a human hand generating F⃗h and τ⃗h, wrenches measured at the wrist (F⃗w, τ⃗w) via typical
force-torque sensing modalities cannot isolate F⃗d, as required for the force matching procedure outlined in
Section 4.3.4. This notation applies only to this figure.

4.3.5 Measuring Unscaled Forces with A Tactile Sensor

Our force matching method requires access to robot-environment contact wrenches. Common ap-
proaches to measuring external end-effector wrenches include the use of a wrist-mounted force torque
sensor, or kinematics and dynamics modelling combined with joint torque sensors. Fig. 4.4 shows
estimated wrist wrenches on a robotic end effector, and illustrates that robot-environment contact
wrenches cannot be decoupled from human-generated wrenches, making wrist-measured wrench val-
ues inadequate for our purposes. Our method requires measuring wrenches at the point of contact,
making our visuotactile sensor a natural sensor choice. Below, we provide further detail on how we
measure approximate, unscaled wrench signals F̃ with a visuotactile sensor. In the following section
(Section 4.3.6), we describe how to calibrate these wrench signals for use in force matching.

Prior work has shown that the relationship between surface deformation and normal force is linear
for membrane-based optical tactile sensors in their elastic region (Yuan, 2014), and as such, our ap-
proaches to approximating wrenches are based on measuring surface deformation via sensor surface
marker tracking. We track the locations of these markers in the RGB camera using OpenCV’s adap-
tive threshold (Bradski, 2000) as well as common filtering strategies, including low-pass filtering and
a scheme for rejecting outlier marker displacements based on nearest neighbour distributions. Values
for F̃x, F̃y, F̃z and τ̃z are then measured via separate methods, described below (we do not attempt to
measure τ̃x or τ̃y).

For F̃z (i.e., perpendicular to the surface of the finger), we use a method for estimating mem-
brane depth, where depth is inferred from marker movement on the surface of the membrane. The
method, introduced in (Jilani, 2024), uses a perspective camera model to recover a relationship be-
tween the separation of markers (locally), and the amount of displacement of the surface towards the
camera. Specifically, the Voronoi diagram between the markers and its corresponding medial axis are
used to compute the changes in nearest-neighbour marker distance, giving a robust estimate of each

4.3. Methodology 51

Figure 4.5: Example raw images along with corresponding marker displacements, inferred depths (Jilani, 2024),
and ez and F̃z values, along with the piecewise linear relationship between ez and F̃z . See supplementary
materials for corresponding video.

marker’s displacement towards the camera (Jilani, 2024). We use the average of each of these marker
depths (displacements) for the normal force F̃z . Fig. 4.5 shows examples of both dot displacement and
corresponding estimated depth at all points as the knob is pushed against the sensor, as well as our
corresponding estimates for F̃z .

For approximate shear forces (F̃x and F̃y), we use the average of the tracked dot movement in
both the horizontal and vertical directions parallel to the sensor plane, For torque (only τ̃z), we use the
average of the tracked dot movement that is perpendicular to an estimate of a center point of maximal
normal force. Finally, while it would be possible to calibrate the transform between our robot and
sensor frames using standard eye-in-hand manipulator calibration (Tsai and Lenz, 1989) or a form of
touch-based eye-in-hand calibration (Limoyo et al., 2018), we find that assuming a fixed transformation
is adequate.

4.3.6 Tactile Force Matching via Calibration

As a reminder, our goal is to generate replay trajectories τdx,rep with Eq. (4.9) using a means of sensing
robot-environment wrenches τf,raw. Under the assumption that the deformation signals described
in Section 4.3.5 are linear with respect to applied wrench, and the assumption that our impedance
controller adequately models the spring relationship in Eq. (4.4), we can directly find the relationship
between our unscaled wrench F̃ and control position error ex = xd

t − xt by solving the linear least
squares problem

F̃ = Ae+ b, (4.11)

52 Chapter 4. Force-Matched Demonstrations

Figure 4.6: A front view of our finger-STS sensor in visual mode (left) and tactile mode (right), mounted on a
Franka Emika Panda gripper.

where we drop the superscript x from ex for brevity, and A and b are a matrix and vector, respectively,
defining the linear relationship between F̃ and e.

We generate values for F̃ and e through a short calibration procedure, where we incrementally
push the sensor against the static environment numerous times, providing small initial perturbations
to each trajectory to increase robustness. The calibration procedure is not object-specific and is only
performed once before completing all of our experiments. Furthermore, we modify Eq. (4.11) to be
piecewise linear, as we find that this fits our data more adequately. See the bottom of Fig. 4.5 for an
example of collected F̃z and ez values, as well as the corresponding piecewise linear model. For further
description of specific design choices related to this procedure in practice, see Section 4.4.1.

Returning to our original goal, we can rearrange Eq. (4.11) to resemble Eq. (4.9), yielding the indi-
vidual poses in τdx,rep as

xd
rep,t = A−1

(
F̃ raw,t − b

)
+ xraw,t. (4.12)

An advantage of this approach is that it is valid for any type of sensor that follows Hooke’s law (e.g.
visuotactile, pressure, or strain-gauge sensors). Furthermore, any repeatable control errors (where true
joint torques do not match desired joint torques specified in Eq. (4.7)) or mild physical deformation of
the sensor housing are accommodated, whereas simply using a finger-mounted force-torque sensor
with Eq. (4.9) would not handle these issues. We identify three potential sources of error in this pro-
cedure: (i) measurement errors, where the same ex value will result in different values for F̃ , and (ii)
hysteresis errors, which we do not attempt to mitigate, and (iii) aliasing errors, where different true
six-dimensional F values project to the same four-dimensional F̃ .

4.3.7 STS Sensor Mode Labelling

Unlike a regular visuotactile sensor (Yuan, 2014; Ma et al., 2019), an STS sensor has a semi-transparent
membrane and a ring of controllable LED lights, as shown in Fig. 4.6. The STS sensor can operate in
two modes: visual mode, where the LEDs are off, allowing for pre-contact scene observation by the
camera, and tactile mode, where the LEDs are on, enabling contact feedback.

An STS sensor requires a method to control the switching between visual and tactile modes. We
treat the mode switching signal as an output from our control policy, and let the human demonstrator
switch the mode of the sensor as part of their demonstration. During the replay phase, the controller
autonomously generates τx,rep, and the demonstrator observes and presses a button to change the
sensor mode. This mode change is also used as an action label for training policy outputs. Our approach

4.4. Experiments 53

F
la

tH
an

dl
eO

pe
n

G
la

ss
K

no
bO

pe
n

Wrist Camera STS (Visual)

Figure 4.7: Our robot and sensor setup for FlatHandleOpen and GlassKnobOpen, showing example sensor
data and a zoomed in view of STS and the handle/knob. Note that the glass knob on the top door is not used for
experiments.

ensures that the visuotactile images that are added to the expert dataset DE contain both visual and
tactile data, since the initial demonstration of τx,raw had the sensor mode exclusively set to to tactile
mode to read F̃ .

An advantage of this data collection method is that the demonstrator can choose on a task-by-task
basis whether the sensor mode switch should occur before contact, at the point of contact, or after
contact. Tasks that require scene tracking until the point of contact may benefit from having the mode
switch occur post-contact, while tasks which require a delicate and less forceful touch or grasp may
benefit from the opposite.

4.3.8 Policy Training

The previous sections detailed how we go from the human demonstration trajectories τx,raw to force-
matched replay trajectories τx,rep. The motion commands used to generate these replay trajectories (the
desired replay trajectories, τdx,rep) comprise the motion components of our actions a used for training
policies. Our policies are trained with a standard mean-squared-error behavioural cloning loss,

L(π) =
∑

(s,a)∈DE

(π(s)− a)2 , (4.13)

where s ∈ S and a ∈ A. S can include any or all of raw STS images, wrist camera images, and robot
pose information, while A includes motion control and sensor mode commands (see Section 4.4.1 for
more details).

4.4 Experiments

Our experiments are designed to answer the following questions:

1. What are the benefits of force matching and policy mode switching for imitation learning via
kinesthetic teaching?

2. Is a see-through visuotactile sensor (STS) a required policy input for our door manipulation
tasks, or is a wrist-mounted eye-in-hand camera sufficient?

54 Chapter 4. Force-Matched Demonstrations

Figure 4.8: Example trajectories for each of our four tasks, showing the motion of the robot from approach
through contact.

3. Can an STS sensor alone (i.e., without another external sensor) provide sufficient visual and
tactile information to complete our door manipulation tasks successfully, and if so, is there a
benefit to including mode switching?

In Section 4.4.1, we describe our experimental environment and task parameters. Next, we report the
performance results of our system as a whole in Section 4.4.3, the benefits of using force matching in
Section 4.4.4, and the benefits of our policy mode-switching output in Section 4.4.5. We follow with
details from our observational space study (i.e., of whether success is possible with the eye-in-hand
camera alone) in Section 4.4.6. We then give results for training and testing policies with STS data
exclusively in Section 4.4.7. Finally, we examine expert data scaling in Section 4.4.8.

4.4.1 Environment and Task Parameters

We study cabinet door opening and closing, using one door with a flat metal handle and one with
a spherical glass knob (see Fig. 4.7), giving us four total experimental tasks, hereafter referred to as
FlatHandleOpen, FlatHandleClose, GlassKnobOpen, and GlassKnobClose. All tasks include an
initial reaching/approach component (see Fig. 4.7, Fig. 4.8, and Fig. 4.9), where the initial pose of the
robot relative to the the knob or handle is randomized. See Fig. 4.9 for visual examples of the continuous
slipping between the finger and the knobs/handles throughout demonstrations.

Door opening tasks are considered successful if the door fully opens within a given time limit.
Door closing tasks are considered successful if the door closes without “slamming”: if the finger fully
slips off of the knob or handle before the door is closed, the spring hinges cause it to loudly slam shut.
In either case, failure occurs because the finger loses contact with the handle or knob before the motion
is complete.

Our robotic platform is a Franka Emika Panda, and we use the default controller that comes with
Polymetis (Lin et al., 2021) as our Cartesian impedance controller. For all tasks, at the beginning of

4.4. Experiments 55

each episode, the initial pose of the end-effector frame is randomized to be within a 3 cm × 3 cm × 3
cm cube in free space, with the rotation about the global z-axis (upwards facing) randomized between
−0.15 and +0.15 radians. Our training data can include wrist camera 212 × 120 pixel RGB images,
raw 212× 120 STS images (in either visual or tactile mode), and the current and previous relative end-
effector poses (position, quaternion). In this work, by relative poses, we mean that, for each episode,
the initial pose is set to {0, 0, 0, 0, 0, 0, 1}, although the global pose is randomized for every episode, as
previously described. Finally, our action space consists of 6-DOF relative position changes in the frame
of the end-effector. These choices are meant to simulate the situation in which an approximate reach
is performed with an existing policy and global pose information between episodes is inconsistent, as
is often the case in mobile manipulation (Ablett et al., 2021b).

Our sensor is based on the one described in (Hogan et al., 2022, 2021), but in a smaller form factor.
The finger housing is 3D-printed and mounted on the Franka Emika Panda gripper. Owing to the
fragility of the top layer of the sensor, especially when subject to large shear forces, we use the sensor
with this top layer, as well as the semi-reflective paint, fully removed. The LED values and camera
parameters for the sensor are set using a simple tool to optimize scene visibility in visual mode, and
marker visibility in tactile mode.

As detailed in Section 4.3.5, a short calibration procedure allows us to solve for the parameters in
Eq. (4.12). This procedure takes about seven minutes in practice, and is fully autonomous. We use our
glass knob as the calibration object, and move the desired pose of the end-effector 3.5 cm towards the
glass knob while moving at 1 mm increments, with each trajectory starting between 1 mm and 3 mm
away from the knob. We also generate shear by moving 1 cm laterally, and torque by moving 1 rad
rotationally, after already having made initial contact with the knob.

4.4.2 Imitation Learning and Training Parameters

Kinesthetic teaching data are collected at 10 Hz once the robot has exceeded a minimum initial move-
ment threshold of 0.5 mm. After a kinesthetic demonstration is completed, the robot is reset to the
same initial (global) pose, and the demonstration is replayed with or without force matching, and with
or without the human providing a mode-switch label. Notably, this environment setup does not pre-
clude the possibility of using an actual mobile manipulator to collect data and execute policies, as in
(Ablett et al., 2021b). We collected 20 raw kinesthetic teaching demonstrations with a human expert
for each task (80 total). With these demonstrations, we complete replay trajectories in a variety of con-
figurations (described in Sections 4.4.4, 4.4.5 and 4.4.8, depending on which algorithm is being tested.
A benefit of this approach is that we were able to not only minimize the required human labour of
completing demonstrations, but we were also able to more directly compare the benefits of including
force matching and mode switching since the raw human trajectories were identical for each configu-
ration. For every configuration, we train policies with three different random seeds, and complete 10
test episodes per seed.

We train our policies in PyTorch with the Adam optimizer and a learning rate of 0.0003, halving
the learning rate halfway through training. We use a ResNet-18 (He et al., 2016) architecture pre-

56
C
hapter

4.
Force-M

atched
D
em

onstrations

Figure 4.9: Wrist camera and STS data for two replayed demonstration trajectories per task (see Fig. 4.8 for corresponding examples showing the full scene).
Notable features are differences in initial observations due to randomized initial poses, the change in appearance before and after the STS mode switches, the
informative nature of the STS data compared with the wrist camera, and the amount of slip between the handle/knob and the sensor throughout each trajectory.

4.4. Experiments 57

Average

FlatHandleOpen

FlatHandleClose

GlassKnobOpen

GlassKnobClose

0.0

0.25

0.5

0.75

1.0

S
u

cc
es

s
R

at
e

Force Matching, Mode Switching, All Sensor Data

No Force Matching, no Mode Switching, no STS Data

Figure 4.10: Performance results with and without each of the three novel additions presented in this work:
force matching, STS mode switching, and STS as a policy input. There is a clear benefit across all tasks, with
greater benefit for each of the GlassKnob tasks. For this and the following figures, the average across all tasks
is shown in bold on the left and black lines indicate standard deviation of seeds.

trained on ImageNet and ending with spatial soft-argmax (Levine et al., 2016) for image data, and a
small fully connected network for relative pose data. Features from each modality are concatenated
and passed through another small fully connected network before outputting our seven-dimensional
action: relative position change, orientation change as a rotation vector, and STS mode. All layers use
ReLU non-linearities. We train each policy for 20k gradient steps using weight decay of 0.1 to avoid
overfitting, as this has been shown to improve behavioural cloning results compared to early stopping
(Mandlekar et al., 2022; Ablett et al., 2023).

4.4.3 System Performance

We evaluate the benefits of collectively including force matching, mode switching as a policy output,
and STS data as a policy input by training policies with all three of these additions, as well as policies
with none of them, and comparing their success rates. As stated in Section 4.4.2, we train three seeds
per task with 10 test episodes per seed, that is, 30 episodes for each task and configuration, and 120 to-
tal test episodes per configuration. The comparison is visualized for each individual task, and with an
overall average across all tasks, in Fig. 4.10. Including the three additions results in a 64.2% average ab-
solute across-task performance gain over the baseline where none are included, demonstrating a clear
benefit. There is a task-related correlation also, where the average improvement for the FlatHandle
tasks is 46.7%, while the average improvement for GlassKnob tasks is 81.7%. The remaining sections
ablate each of these additions individually to better understand each component’s contribution.

4.4.4 Force Matching Performance

To evaluate the benefit of force matching, we complete replays of our raw expert datasets both with and
without force matching and compare their performance. To isolate the benefits of force matching, and
reduce the effect of including or excluding policy mode switching, we include policy mode switching
in both configurations. We also include all three sensing modalities (wrist-mounted eye-in-hand RGB
images, STS images, and relative positions) in both. The results of these tests are shown in Fig. 4.11.

58 Chapter 4. Force-Matched Demonstrations

Average

FlatHandleOpen

FlatHandleClose

GlassKnobOpen

GlassKnobClose

0.0

0.25

0.5

0.75

1.0

S
u

cc
es

s
R

at
e

With Force Matching Without Force Matching

Figure 4.11: Performance results showing the effect of excluding force matching, while keeping mode switching
and the STS as a policy input in both cases. Force matching improves performance in all tasks, with particularly
large gains for FlatHandleClose and GlassKnobOpen.

The average absolute across-task performance increase with force matching is 62.5%, although the
performance gain is greater for some tasks than for others. A notable case is the discrepancy between
gains for the two GlassKnob tasks: the GlassKnobOpen policy always fails without force matching,
while the GlassKnobClose policy sees only a slight benefit from force matching. This can partially
be explained by the pose angle for much of the demonstration. This can partially be explained by
the pose angle for much of the demonstration. For the GlassKnobOpen task, after contact is made
with the knob, the door is almost exclusively pulled via a shear force. Poor initial contact caused by
too little force often results in failure (see third column, third row of Fig. 4.12). In contrast, for the
GlassKnobClose task, the angle of the robot finger relative to the knob ensures that normal force is
still applied throughout much of the trajectory.

The force-matching results in Fig. 4.11 may appear contradictory to those from Fig. 4.10. In Fig. 4.11,
the use of STS data without force matching actually performs worse, for FlatHandleClose and Glass
KnobOpen, than excluding STS data and force matching (as shown in Fig. 4.10). We hypothesize that
this is due to causal mismatch (de Haan et al., 2019): the highly suboptimal demonstration data gen-
erated without force matching may cause the policy to learn to switch the STS modality without firm
contact. This then causes the policy to initiate the “open” or “close” phase (as opposed to the “reach”
phase) of the task too early. We leave further investigation of this result to future work.

Force Matching Trajectory Comparison

While our policy learning experiments in Section 4.4.4 implicitly illustrate the value of force matching,
Fig. 4.12 shows specific examples of how trajectories change with and without force matching. We label
the initial timestep t = 0, final timestep t = T , and a single representative timestep for each trajectory,
also including a cropped STS image at the representative timestep for each trajectory. Note that the No
FM desired poses (bottom, green) are the same as the true demo poses (top, blue), while the difference
between the desired poses and actual poses in the FM row lead to increased STS force (see Eq. (4.12)).
In all four cases, the No FM replay causes the end-effector to slip off of the handle or knob, leading to
failure.

We conclude that force matching generates τx,rep and τf̃ ,rep that better match τx,raw and τf̃ ,raw.

4.4. Experiments 59

Figure 4.12: Top: a raw demonstration trajectory τx,raw (blue) as well as demonstration forces τf̃ ,raw (red).
Middle: a new set of desired poses that incorporate force matching τdx,rep (green), the new set of replayed poses
τx,rep given τdx,rep (blue), and the actual forces with the modified trajectory τf̃ ,rep (red). Bottom: a set of desired
and actual poses, along with resulting forces, that use τx,raw directly (i.e., without force matching), while ignoring
τf̃ ,raw, to generate a replay (green, blue, and red, respectively).

While τf̃ ,rep occasionally has mismatches with τf̃ ,raw, most of these errors can be attributed to a com-
bination of sensor reading errors (see noise in bottom of Fig. 4.5) and control errors.

4.4.5 Policy STS Mode Switching Performance

To better understand how mode switching can benefit performance on a real door-opening task, we col-
lect replays of demonstrations both with and without mode switching. Specifically, we consider three
configurations: mode switching enabled, tactile-only (the sensor lights are always on), and visual-
only (the sensor lights are always off). Given the benefit of including force matching (as shown in
Section 4.4.4) and to isolate the benefits of mode switching, we included force matching in all three
configurations. We also include all three sensing modalities. Our results are shown in Fig. 4.13, using
the same training and testing parameters as described in Section 4.4.2.

Averaging the success rates of the visual-only and tactile-only results together, the use of mode-

Average

FlatHandleOpen

FlatHandleClose

GlassKnobOpen

GlassKnobClose

0.0

0.25

0.5

0.75

1.0

S
u

cc
es

s
R

at
e

With Mode Switching Tactile Only Visual Only

Figure 4.13: Performance results comparing the use of mode switching with setting the STS sensor to visual-
only and tactile-only. Mode switching provides a clear benefit over keeping the sensor in a single mode, but
there is no obvious pattern between whether a tactile-only or visual-only sensor would be preferred without
mode switching.

60 Chapter 4. Force-Matched Demonstrations

F
la
tH
an
dl
eO
pe
n

G
la
ss
K
no
bO
pe
n

G
la
ss
K
no
bC
lo
se

F
la
tH
an
dl
eC
lo
se

Tactile

Visual

Wrist

Figure 4.14: Partial trajectories from the same replay in visual-only and tactile-only for all four tasks. Red
boxes highlight parts of the scene (knob, handle) that are significantly clearer in the respective sensor mode.
The corresponding wrist camera images are provided on the top rows for reference.

0

5

D
em

os

x: 1.00
s: 1.00

FlatHandleOpen

0

5

x: 0.85
s: 0.85

FlatHandleClose

0

5

x: 0.25
s: 0.70

GlassKnobOpen

0

5

x: -1.10
s: 2.75

GlassKnobClose

−5 0 5
0

5

10

P
ol

ic
ie

s x: 1.13
s: 1.84

−5 0 5
0

10

x: 0.37
s: 0.66

−5 0 5
0

10

20 x: 0.17
s: 0.52

−5 0 5
0

10

20 x: -0.57
s: 2.08

0.0 0.2 0.4 0.6 0.8 1.0

Switch timestep − Contact timestep

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.15: Histograms of the difference between mode switch action timestep and the true first contact
timestep, for both our demonstrations and our learned policies with force matching, mode switching, and all
sensing modalities.

switching results in an a task-average performance gain of 30.4%. As with force matching, there are
some task-specific patterns. Task-specific correlations are similar to Section 4.4.3: the performance
gain for GlassKnob tasks is 38.3%, while the performance gain for FlatHandle tasks is only 22.5%.
This is perhaps unsurprising, given that the handle requires less precision to maintain contact. Qual-
itatively, Fig. 4.14 shows the value of including sensor mode switching: tactile-only data provides no
information before contact, while visual-only data provides poor tactile information during contact.

Mode Switching Timing Analysis

While Section 4.4.5 helps verify the efficacy of mode switching in general, its evaluation of our specific
mode switching policy output is only implicit. To evaluate the quality of our learned mode switching
policy output, we completed an analysis of the timing of the learned mode switch action compared
with the expert labels. An expert demonstrator may have a preference for having the sensor switch
modes slightly before or after contact occurs, but for this analysis, we will consider that an optimal
switch occurs at the moment of contact.

4.4. Experiments 61

For each dataset with force matching, mode switching, and all three sensing modalities, we man-
ually annotated each episode with the timestep at which contact was made between the handle/knob
and the surface of the STS, and compared that to the timestep that the demonstrator provided a mode
switch action label. The histograms of these timestep differences are shown in the top row of Fig. 4.15.
While there are certain task-specific patterns, such as a slightly greater timestep difference average for
the handle tasks, the clearest pattern is that the mode switch label usually occurs within one timestep
(0.1s) of contact being made. The bottom row shows the same analysis, but for autonomous policies.
With the exception of a few outliers (e.g., for FlatHandleOpen), the policies have converged to be
close to an average of zero timesteps between contact and mode switching (i.e., smoothing out the re-
active/predictive timing errors from the expert dataset). The outliers in Flat Handle are most likely due
to a causal mismatch, where the policy learns to switch modes based on when the arm starts opening
the handle, instead of at the moment of contact (de Haan et al., 2019).

4.4.6 Observation Space Study

The second experimental question we hope to answer is whether our door manipulation tasks can
be complete with a wrist-mounted eye-in-hand camera alone, and whether the inclusion of STS data
improves performance. To complete these tests, we do not collect any new human demonstration
data or any new replay data, instead we selectively exclude some observations during training. All
policies are trained with force matching enabled, and policies trained with STS data include mode
switching. For policies that exclude STS data, we set the sensor to visual-only mode, since the wrist
camera captures STS lighting changes that might provide a contact cue.

Results from these tests are shown in Fig. 4.16. Adding the STS sensor as an input yields in an
average across-task increase in performance of 42.5%. It is worth reiterating that this performance gain
only corresponds to the case where STS data is excluded as an input into the policy; the STS itself is
still used indirectly for these policies through the use of force matching. Elaborating, for this baseline,
the STS sensor is used exclusively in tactile mode and could be replaced with a regular visuotactile
sensor or a finger-mounted force-torque sensor. Without force matching, the performance gain over
the baseline is 64.2% (as shown in Section 4.4.3), indicating that force matching alone provides some

Average

FlatHandleOpen

FlatHandleClose

GlassKnobOpen

GlassKnobClose

0.0

0.25

0.5

0.75

1.0

S
u

cc
es

s
R

at
e

All Data (STS, Wrist Camera, Relative Pose) No STS

Figure 4.16: Performance when STS data are excluded as a policy input. Force matching is still included in this
case. The data from the STS clearly provide substantial benefit for learned policies.

62 Chapter 4. Force-Matched Demonstrations

Average

FlatHandleOpen

FlatHandleClose

GlassKnobOpen

GlassKnobClose

0.0

0.25

0.5

0.75

1.0

S
u

cc
es

s
R

at
e

All Data (STS, Wrist Camera, Relative Pose)

Only Relative Pose

No Relative Pose

Figure 4.17: Performance results to illustrate the contribution of relative pose as a policy input. Relative pose
alone is not capable of solving the tasks, but its inclusion along with each of our sensors does have a positive
effect on performance.

Average

FlatHandleOpen

FlatHandleClose

GlassKnobOpen

GlassKnobClose

0.0

0.25

0.5

0.75

1.0

S
u

cc
es

s
R

at
e

Wrist Camera and Relative Pose

Wrist Camera only

Figure 4.18: Performance results to evaluate the contribution of relative pose when excluding the STS. When
only the eye-in-hand wrist-mounted camera is included, relative pose has a negligible effect on policy perfor-
mance.

benefit, but that the STS as a policy input is still quite valuable. The average performance gain of
50% for the GlassKnob policies is again higher than 35% for the FlatHandle policies, indicating once
more that the utility of the STS as a policy input is partially task-dependent.

Contribution of Relative Pose Input

To better understand the value of relative poses as inputs, we train policies with and without relative
pose, as well as policies with only relative pose as an input (and no other changes). Results for train-
ing and testing in these three configurations are shown in Fig. 4.17. The relatively high performance
of policies that exclude relative pose shows that the visual data alone often provides enough infor-
mation to solve the task. However, including relative pose still yields an average across-task policy
improvement of 17.5%.

We include relative pose alone as a baseline to show that, due to the initial randomization described
in Section 4.4.1, the tasks require visual feedback to succeed consistently, and that a single “average”
trajectory combined with impedance control is not, by itself, effective.

4.4. Experiments 63

We also present the results of this comparison for policies excluding STS data in Fig. 4.18. The
clear benefit of including relative pose shown in Fig. 4.17 is not exhibited when using eye-in-hand
wrist camera data only. This result does not necessarily have a single explanation, but it does indicate
that further study of the inclusion of numerical observation data is warranted in imitation learning,
since prior work has shown it to have both a strictly positive (Zhang et al., 2018; Ablett et al., 2021b)
and strictly negative (Mandlekar et al., 2022) effect.

4.4.7 STS-Only Policy Performance

Our third experimental question concerns whether an STS camera alone provides enough feedback to
complete these challenging door manipulation tasks. Prior work has shown that simply adding more
sensor data to learned models does not always lead to improved performance (Limoyo et al., 2020;
Hansen et al., 2022; Mandlekar et al., 2022). In this section, we train and test several policies without
using data from the wrist-mounted eye-in-hand camera.

The results in Fig. 4.19 show an average across-task absolute performance increase of 25.0% with the
wrist camera data. The amount of improvement varies significantly by task, however, with no improve-
ment for FlatHandleClose and GlassKnobOpen, but a dramatic improvement for GlassKnobClose.
This is at least partially because the initial reach in GlassKnobClose is more difficult than for any of
the other tasks, and the wrist camera provides a clear view of the approach. Excluding the wrist cam-
era data (Fig. 4.19, red) from policy inputs results in a 17.5% higher success rate than excluding the STS
data (Fig. 4.16, light green). This finding may indicate that contact-rich door tasks benefit more from
a multimodal STS sensor alone than from a wrist camera alone.

Mode Switching Performance (STS-Only)

We also evaluate the benefits of our policy mode switching output, replicating the experiments in
Section 4.4.5, but excluding the wrist camera data. Specifically, we train and test policies using STS
data and in three configurations: with mode switching enabled, with the STS mode set to visual-only,

Average

FlatHandleOpen

FlatHandleClose

GlassKnobOpen

GlassKnobClose

0.0

0.25

0.5

0.75

1.0

S
u

cc
es

s
R

at
e

All Data (STS, Wrist Camera, Relative Pose)

No Wrist Camera

Figure 4.19: A performance comparison of the effect of excluding the eye-in-hand wrist-mounted RGB camera
data while keeping both force matching and mode switching enabled. Performance deteriorates slightly in
FlatHandleOpen and dramatically in GlassKnobClose, but an STS-only policy does perform adequately in
certain cases.

64 Chapter 4. Force-Matched Demonstrations

Average

FlatHandleOpen

FlatHandleClose

GlassKnobOpen

GlassKnobClose

0.0

0.25

0.5

0.75

1.0

S
u

cc
es

s
R

at
e

With Mode Switching (no Wrist)

Tactile Only (no Wrist)

Visual Only (no Wrist)

Figure 4.20: An STS-only variant of the mode switching performance results shown previously in Fig. 4.13. A
similar pattern emerges, highlighting the value of mode switching. In the STS-only case, tactile-only policies
are shown to be significantly poorer than visual-only policies.

and with the mode set to tactile-only. As in Section 4.4.5, we include both force matching and relative
poses. Results are shown in Fig. 4.20. The average across-task performance gain, for visual-only and
tactile-only combined, is 27.9%. This is comparable to the increase of 30.4% shown in Section 4.4.5
when wrist camera data is included.

One striking difference is the performance increase from mode switching over tactile-only policies
of 40.8%, compared to only a 15.0% increase over visual-only policies. These tasks require reaching
to make adequate contact with the handle or knob, and with both visual STS data and eye-in-hand
wrist data absent, the tasks become much more difficult. Tactile-only performance matches visual-
only performance for GlassKnobOpen, which may be because, even in tactile mode, the glass knob
faintly shows up in the STS sensor images (see Fig. 4.21). However, even for GlassKnobOpen, mode
switching is clearly the optimal configuration in which to use the STS sensor.

Contribution of Relative Pose Input (STS-only)

As a comparison with the effect of including relative positions as in input to policies with wrist camera
data only (see Section 4.4.6), we also completed similar experiments for policies with only STS data. The
results in Fig. 4.22 compare testing results for policies with both STS and relative position data, only

Figure 4.21: A short sub-trajectory of a GlassKnobOpen run showing the reaching phase with the STS sensor
set to tactile-only mode. The top row shows the wrist camera view for reference, the middle row shows the
(tactile) STS images, and the bottom row shows pixels that have changed since the previous timestep. The
glass knob shows up faintly, explaining the surprisingly good performance of STS-only tactile-only policies in
GlassKnobOpen from Fig. 4.20.

4.4. Experiments 65

Average

FlatHandleOpen

FlatHandleClose

GlassKnobOpen

GlassKnobClose

0.0

0.25

0.5

0.75

1.0

S
u

cc
es

s
R

at
e

STS and Relative Pose STS Only

Figure 4.22: Performance results to evaluate the contribution of relative pose when excluding the wrist camera.
The STS receives a small average bump in performance from adding relative pose as an input.

5 10 15 20
0.0

0.25

0.5

0.75

1.0
Average

5 10 15 20

FlatHandleOpen

Force Matching, Mode Switching, all Sensor Data

Force Matching, Mode Switching, no Wrist Camera

Force Matching, no STS

No Force Matching, no Mode Switching, no STS Data

5 10 15 20

FlatHandleClose

5 10 15 20

GlassKnobOpen

5 10 15 20

GlassKnobClose

0.0 0.2 0.4 0.6 0.8 1.0

Number of Demonstrations

0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
es

s
R

at
e

Figure 4.23: Performance with varying amounts of expert data for representative configurations from our prior
experiments. The shading indicates one standard deviation. All modalities show increasing performance with
increasing dataset sizes, but the two modalities without STS data reach a plateau at 15 demonstrations.

STS data, and only relative position data as inputs. In comparison with the results from Section 4.4.6,
there is an average performance increase of 12.5% when using relative poses with STS compared to
the STS alone. However, the gain is not as significant as one may expect, once again reiterating that
deeper study on the benefits of including numerical observation data for policies learned with imitation
learning is warranted.

4.4.8 Expert Data Scaling

In our final set of experiments, we choose representative configurations from the preceding sections
and train and test policies with 5, 10, and 15 expert trajectories (compared with 20 for all of our previous
experiments). Fig. 4.23 shows the results of experiments with less training data for these configura-
tions. Most methods improve with more data, but there are exceptions. For example, both STS-free
methods do not improve significantly for FlatHandleClose, GlassKnobOpen, or GlassKnobClose,
indicating that the eye-in-hand wrist camera does not provide sufficient information to complete the
task alone, regardless of data quantity. Conversely, eye-in-finger visual data, as well as tactile data, are
sufficient for these three tasks, so their performance scales up with increasing data. A surprising find-

66 Chapter 4. Force-Matched Demonstrations

ing is that for FlatHandleOpen, FlatHandleClose, and GlassKnobOpen, performance is quite good
with force matching, mode switching, and across all sensing modalities, even with only five demon-
strations. Performance on the most difficult task, GlassKnobClose, clearly increases with more data,
but the STS data alone are not sufficient to complete this task. Results for the two configurations that
exclude STS input data plateau at 15 demonstrations, indicating that these tasks may be simply not
possible to complete without the STS, even with an increasing amount of data.

4.4.9 Decoupling Human Forces from Contact Forces

As described in Section 4.3.5, common approaches to sensing end-effector force-torque, such as wrist-
mounted force-torque sensors or joint-torque sensors with dynamics modelling, cause recorded wrenches
τf,raw to be corrupted by the demonstrator’s own force against the robot. To avoid this corruption, a
sensor must be mounted at a point on the end-effector where human-applied forces are ignored during
demonstrations, such as on the finger of a gripper.

In Fig. 4.24, we validate the presence of this corruption, and its resolution through the use of finger-
mounted wrench sensing. The STS sensor correctly shows no readings in the circular trajectory, where
there is no contact, and shows increasing and then decreasing force during contact in the trajectory
where it is pushed against the knob. Conversely, the Panda force readings are primarily in response to
the human pushing force against the robot, making it difficult to isolate end-effector to environment
forces.

4.5 Limitations

In this section, we discuss some limitations of our work. Although we used a single sensor for all of our
experiments, the gel-based contact surface of the STS physically degrades over time. This limitation
partially motivates the use of learned models for gel-based sensors; if sensor data changes marginally

Figure 4.24: Example expert demonstrations showing measured forces (collapsed to 2-DOF) with Panda (the
robot) joint-torque sensors and dynamics modelling (blue) and our own sensor (red). The top trajectory corre-
sponds to pushing the end-effector in a circle without environmental contact, and the bottom trajectory cor-
responds to pushing the end-effector towards, against, and away from the door knob while fixed. Panda force
readings are corrupted by human-robot interaction forces.

4.6. Summary 67

due to degradation, a practitioner can simply add more data to the dataset and retrain the policy.
As well, the STS incorporates a standard camera, so policies trained on its data are susceptible to the
same problems as other visual data paired with neural networks, such as overfitting to specific lighting
conditions. Finally, our force-matched replayed demonstrations still occasionally fail because both our
method for measuring forces as well as our Cartesian impedance controller can suffer from accuracy
issues, but both of these limitations can be improved with further tuning.

4.6 Summary

In this chapter, we presented a robotic imitation learning system that leverages a see-through-your-
skin (STS) visuotactile sensor as both a measurement device to improve demonstration quality and
a multimodal source of raw data to learn from. Our first contribution was a method to use the STS
in its tactile mode as a force-torque sensor to improve demonstration quality through force-matched

replays that better recreate the demonstrator’s force profile. Our second contribution was a learned
approach to STS mode switching, in which a policy output is added to switch the sensor mode on the
fly, and labels are provided by the demonstrator during demonstration replays. Our final contribution
was an observational study in which we compared and contrasted the value of the STS visuotactile
data (in mode-switching, visual-only, and tactile-only configurations) with the use of an eye-in-hand
wrist-mounted camera on four challenging, contact-rich door opening and closing tasks on a real
manipulator. We found that the inclusion of force matching, STS mode switching, and visuotactile
data from an STS sensor as a policy input each increased policy success rates by 62.5%, 30.4%, and
42.5%, respectively.

The force matching method presented in this chapter exclusively uses behavioural cloning to gen-
erate a policy, which, as described in Section 2.4.3 and by Ross and Bagnell (2010), has a worst case
cost of O(T 2ϵ). Force matching does not directly reduce this worst-case dependency on T , but rather
improves demonstration quality, which can be interpreted as lowering the error rate ϵ. Our results
show that force matching clearly improves the success rate of policies, but it is likely that for longer-
horizon tasks (i.e., increasing T), policies would still have higher cost, according toO(T 2ϵ). An online
component akin to DAgger (Ross et al., 2011) would be required to reduce the cost to O(Tϵ), but
accomplishing this with demonstrations based on replays, as presented in this chapter, might be chal-
lenging. As such, force matching is most beneficial for tasks with a relatively low T and low variance
in the initial state.

Potential directions for future work include improving the accuracy of our force sensing approach
and adding a means for self-improvement by automatically detecting execution failures.

Chapter 5

Failure Identification for Interventions

In this chapter, we present an approach to imitation learning (IL) that implicitly acknowledges the
inherent distribution shift of behavioural cloning directly. If we can identify when an agent has en-
tered an out-of-distribution region, we can stop execution and request a corrective demonstration
from an expert to return the agent back in-distribution. These corrective data can be then appended
to the expert dataset, gradually improving the policy. This can be viewed as an attempt to combine
the convenience of offline behavioural cloning with the robustness of online reinforcement learning.
The approach presented in this chapter is called failure identification to reduce expert burden (FIRE).
Compared with true reinforcement learning, FIRE reduces algorithmic complexity and increases sys-
tem safety. Compared with a standard intervention-based (or interactive) system (e.g., right side of
Fig. 2.3), the failure prediction provided by FIRE reduces the burden on the expert.

Our system can predict when a running policy is likely to fail, halt its execution, and request a
correction from the expert. Unlike existing approaches that learn only from expert data, our approach
learns from both expert and non-expert data, akin to adversarial learning. We demonstrate exper-
imentally for a series of manipulation tasks that our method is able to recognize state-action pairs
that lead to failures. This permits seamless integration into an intervention-based learning system.
We show an order-of-magnitude gain in sample efficiency compared with a state-of-the-art inverse
reinforcement learning method and improved performance over an equivalent amount of data learned
with behavioural cloning.

This chapter is associated with (Ablett et al., 2020), and includes details from that report and a
previously unpublished expansion of the method to the multiview domain from Chapter 3. This chapter
also includes a section on an unpublished improvement of the failure prediction method from (Ablett
et al., 2020) based on Gaussian discriminant analysis.

5.1 Motivation

Imitation learning has proven to be an effective approach to overcome many of the limitations of
reinforcement learning for robotic agents: it can significantly reduce the sample complexity of pure
reinforcement learning (Sun et al., 2017) and it can eliminate the need for hand-designed rewards,

68

5.1. Motivation 69

Behavioural Cloning

Failure Prediction

Teleoperation

Intervention

True

False

Figure 5.1: An overview of our proposed technique for learning policies through intervention-based learn-
ing with predicted failures. An initial policy is learned with a handful of demonstrations through behavioural
cloning (top left), which the agent then executes. A failure predictor that uses a discriminator to classify ex-
pert and non-expert data predicts if and when a failure is likely to occur (center). When a failure is predicted
(f(s, a) = 1), execution of the policy halts, and a human observer intervenes by either agreeing (True) or dis-
agreeing (False) with the prediction. If they agree with the prediction, they teleoperate the robot to move it into
a new state where they believe the existing policy can complete the task (top right). Periodically, the policy is
retrained on both existing and new expert data (top left).

enabling agents to operate directly from observations without access to the state information often
required by reward functions. In some cases, even behavioural cloning (BC), in which a model is
trained directly on a dataset of expert state-action pairs, can achieve impressive results (Zhang et al.,
2018; Pomerleau, 1989; Bojarski et al., 2016; Giusti et al., 2016). Unfortunately, in a phenomenon known
as covariate shift, policies learned through BC will fail if they encounter data sufficiently outside the
original expert distribution (Ross et al., 2011). In addition, policies learned with this paradigm may
work in many cases, but may also fail in surprising ways (Zhang et al., 2018; Pomerleau, 1989), because
they do not provide a means for failure recognition.

Covariate shift can be resolved by having an expert relabel every state that an agent encountered
during execution in a process known as dataset aggregation, or DAgger (Ross et al., 2011). This so-
lution and other related approaches are very effective when a programmatic expert is available to
autonomously relabel states (Pan et al., 2018), but for many robotics tasks the only expert available is a
human being. In such cases, except for trivially simple action spaces, it can be difficult or even impos-
sible for a human to provide an adequate label: given the offline setting, the human has no feedback
on whether the magnitudes of their action labels are correct. Existing work has shown that policies
learned from offline human labels in a DAgger framework tend to be unstable (Kelly et al., 2019; Ross
et al., 2013). Furthermore, in its standard form and with only a human expert available, DAgger re-
quires a learned (or novice) policy to execute without intervention, meaning that the policy will reach
many failure states or irrelevant states before a desirable policy is learned—this is problematic, and
potentially catastrophic, for real robots interacting with the physical world.

Much of the prior work on failure recognition and prediction in imitation learning reduces to out-
of-distribution detection (Menda et al., 2019; Laskey et al., 2016; Kelly et al., 2019; Kim and Pineau, 2013;
Cui et al., 2019), that is, attempting to recognize state-action pairs that do not resemble those in the

70 Chapter 5. Failure Identification for Interventions

expert dataset. These methods require setting a threshold for determining an allowable distance from
the expert distribution, which can be nontrivial. A different method for predicting failures involves
training a safety policy that attempts to predict whether an individual policy action deviates from the
expert (Zhang and Cho, 2017). While this method is able empirically to reduce the expert relabelling
burden in DAgger, it suffers from the limitation (noted in (Menda et al., 2019)) that it does not consider
the policy’s epistemic uncertainty—a single threshold may be too conservative in certain states, but
too permissive in uncertain states.

We present failure identification to reduce expert burden (FIRE), a technique for attempting to
resolve covariate shift and failure recognition simultaneously while learning a policy for completing
a particular task. Compared to DAgger-based approaches for solving covariate shift, a human expert
directly corrects the policy during execution and receives feedback on the effects of their actions im-
mediately, making it possible for them to provide higher-quality labels than in DAgger with offline
human labelling. Recent work has shown an online intervention-based approach can effectively learn
a policy in self-driving car (Kelly et al., 2019) and drone landing (Goecks et al., 2019) domains.

Intervention-based learning suffers from high expert burden: an expert must be vigilant through-
out execution of the novice policy for an indefinite number of trials. To address this, we incorporate
failure prediction into our framework, so that when our system predicts a failure, motion can be halted
and the human expert can add corrective data. Of course, this approach only works for tasks that are
quasistatic, with relatively low speeds throughout the motion, but manipulation tasks that the commu-
nity is interested in fall into this category. Our approach builds on adversarial inverse reinforcement
learning methods that learn a discriminator between expert and non-expert data which doubles as a
reward function (Ho and Ermon, 2016; Fu et al., 2018a). We use the learned discriminator and a thresh-
old that is modified during policy execution based on human feedback to predict failures, effectively
reducing the burden on the expert. Specifically, we make the following novel contributions:

1. We present a new method (FIRE) for predicting failures based on learning a discriminator and
combining its output with a threshold value that is adjusted automatically based on human
preferences during execution.

2. We demonstrate that a statistically grounded improvement based on Gaussian discriminant anal-
ysis (GDA) allows for significantly improved accuracy compared with competing methods.

3. We show that FIRE, an online-intervention-based approach with dataset aggregation, can learn
effective policies in a variety of robotic manipulation domains, including a simulated view-
agnostic domain for mobile manipulation policies, akin to Chapter 3. This learning occurs with
significantly better sample complexity than a state-of-the-art inverse reinforcement learning-
based technique and with greater stability than behavioural cloning.

4. We compare our failure prediction results with an existing method for identifying unsafe states.

5.2. Related Work 71

5.2 Related Work

We use the notation for MDPs, imitation learning, and inverse reinforcement learning presented in
Sections 2.2 and 2.4.

5.2.1 Behavioural Cloning and DAgger

A simple, but often very effective, approach for learning an agent given expert demonstrations is to
simply treat DE as a dataset and use supervised learning, often referred to as behavioural cloning
(BC) (Pomerleau, 1989). We can model πθ(a | s) using any function approximator and then learn its
parameters θ by maximizing the likelihood, as shown in Eq. (2.32).

As previously discussed in Section 2.4.1, BC on its own will typically fail, in at least some cases,
because the distribution of states encountered when executing πθ does not necessarily match the dis-
tribution found in DE . This problem is resolved by DAgger (Ross et al., 2011), in which a BC-trained
policy iteratively executes and relabels the states in the recorded datasetDπ with their corresponding
expert actions. The new dataset is appended to the existing dataset, and the policy is re-trained. As
stated, this strategy can be non-trivial to implement when the expert is a human. It is much easier
for a human to provide labels by actually directly controlling the agent, allowing the (s, a) pairs to be
recorded naturally as they occur.

5.2.2 Online, Intervention-Based Learning

To attempt to leverage the convergence properties of DAgger while allowing a human to provide high-
quality labels, a human observer can predict when a policy will fail, intervene, return the agent to a
state closer to the distribution DE , and then return control to πθ . Strictly speaking, this approach is
not the same as DAgger, since only the predicted failure states are relabelled with their corresponding
expert actions, and the expert subsequently provides data to recover. This ensures that πθ is not allowed
to execute until failure, and does not require the human to provide labels offline.

Intervention-based approaches have been empirically shown to have varying degrees of success
(Goecks et al., 2019; Cabi et al., 2020; Kelly et al., 2019). An obvious limitation of this approach is that
it requires a vigilant human expert to perpetually watch the agent execute its policy, and be able to
react quickly enough to take over control from the agent at appropriate times. This can be difficult due
to an individual’s inherent, delayed reaction time. For the general goal of finding an effective policy,
the process may be exhausting for a human, since there is no guarantee of how many corrections the
individual will have to provide before the policy reaches satisfactory performance.

5.2.3 Safe Intervention-Based Learning

Our work is most similar to (Kelly et al., 2019), in which the authors use expert feedback to find a
threshold for determining when a policy may take an unsafe action. The authors of (Kelly et al., 2019)
formulate their policy as an ensemble, following (Menda et al., 2019), which provides estimates of epis-
temic uncertainty for the policy actions. The mean of the measured uncertainty of state-action pairs

72 Chapter 5. Failure Identification for Interventions

before human corrections is employed as the threshold for determining what degree of policy uncer-
tainty is considered safe. In other words, policy uncertainty is considered to be inversely proportional
to safety. The authors claim that their uncertainty method could be used to notify an expert when the
agent has reached an unsafe state, but they do not actually incorporate this ability into their system.

Our method for predicting failures is similar to but distinct from another popular method for re-
ducing expert burden (Zhang and Cho, 2017), in which a “safety” policy is learned that outputs whether
an action is safe or not based on the mean squared error between it and an expert action. In (Zhang
and Cho, 2017), an oracle policy must still be available to be queried arbitrarily to update the safety
policy, however, as is the case in DAgger. We do not assume to have access to an oracle policy, making
it impossible to use (Zhang and Cho, 2017) in our case.

5.2.4 Inverse Reinforcement Learning (IRL)

As originally discussed in Section 2.4.4, an alternative approach to imitation learning involves trying
to learn a reward function r(s, a) : S ×A→ R that is maximized by πE , as shown by Eq. (2.36). Our
method for predicting failures is inspired by the discriminator trained in adversarial IRL methods, but
we do not use the discriminator directly to improve our policy.

5.3 Failure Identification to Reduce Expert Burden (FIRE)

In Section 5.3.1 and Section 5.3.2 we present our original approach to intervention-based learning
with failure identification and how we automatically adjust the prediction threshold. In Section 5.3.3,
we describe an improvement to the original approach to FIRE based on time-conditional Gaussian
discriminant analysis, and finally, in Section 5.3.4, we describe additional implementation details for
FIRE, including how the policy is updated as new data is added by the expert. The full FIRE algorithm
is shown in Algorithm 2.

5.3.1 Predicting Failures with a Discriminator

As shown in Algorithm 2, failures are predicted at every timestep of a trajectory when the human is
not controlling the robot. As previously described in Section 2.4.4, a discriminator function D(st, at)

is a binary classifier which attempts to classify expert data from non-expert data. In other words, the
output of D(st, at) outputs the probability that (st, at) is from DE . Given D(st, at), we can use the
following rule to predict failures with a failure predictor f : S × A → {0, 1}, where f(s, a) = 1

indicates a failure:

f(st, at) =

D(st, at) < 0.5 1,

else 0.
(5.1)

In this case, we have chosen 0.5 as the threshold point for choosing whether data should be classified
as expert or not. While this may be reasonable in the general classification case, we will show in

5.3. Failure Identification to Reduce Expert Burden (FIRE) 73

Algorithm 2 Intervention-Based Learning with FIRE (GDA additions from Section 5.3.3 in teal)
1: Input: Expert dataset of state-action pairs DE , β, δfn, δfp, d, human observer H , environment Env, γ

Initialize Dw randomly.
Initialize policy πθ ← BehaviouralCloning(πθ , DE)
Initialize policy data Dπ with initial episodes
Initialize human control← 0
Initialize st ∼ Env

2: while task performance is unsatisfactory do
3: for t = 1, . . . , T do
4: // 1. Get policy action, perform failure prediction, possibly get human action
5: if not human control then
6: at ← π(st)
7: Failure prediction f(st, at)← Eq. (5.2) or Eq. (5.5)
8: if f(st, at) = 1 (predicted failure) then
9: stop execution; query human: will agent fail?

10: if yes then
11: (true positive) human control← 1
12: else
13: (false positive) β ← β + δfp or γ ← γ + δfp
14: end if
15: else if human predicts failure (false negative) then
16: human control← 1
17: β ← β − δfn or γ ← γ − δfn
18: end if
19: end if
20: if human control then
21: at ← H(st)
22: end if

23: // 2. Take step in environment, update corresponding dataset
24: st+1 ← Env(st, at)
25: if human control then
26: DE ← DE ∪ (st, at, st+1)
27: if human intervention complete then
28: human control← 0
29: end if
30: else
31: Dπ ← Dπ ∪ (st, at, st+1)
32: end if
33: st ← st+1

34: end for
35: Update Dw with Eq. (2.36) for T steps
36: Update πθ with T sampled batches from DE and T gradient steps using Eq. (2.32)
37: Update statistics for p(Dt | fail) = N (Dt | µfail, σfail) and p(Dt | success) = N (Dt | µsuccess, σsuccess)
38: if |DE | mod d = 0 then
39: πθ ← BehaviouralCloning(πθ , DE)
40: end if
41: end while
42: Function BehaviouralCloning(π, D)
43: Train π with D and Eq. (2.32) by minimizing validation error
44: EndFunction

74 Chapter 5. Failure Identification for Interventions

Section 5.3.3 that this choice may be highly suboptimal.
Individual values of D(st, at) will fluctuate above and below 0.5 for data that is on the cusp of

resembling expert data. To mitigate this uncertainty, we can also filter our failure prediction via a
heuristic as

f(st, at) =

{D(sk, ak) < 0.5}k=t−β,...,t 1,

else 0,
(5.2)

by adding a parameter β to only predict failures after β consecutive estimates below the threshold.
The larger the value used for β, the less likely the system is to predict a failure.

Naturally, adding free parameters to any method is undesirable, and an ideal value for β would
vary based on the environment, the tolerance for risk, the current accuracy of D, and the current
performance of πθ . In our case, similar to (Kelly et al., 2019), we use human feedback during execution
to indirectly adjust the parameter, accounting for all of these factors simultaneously without forcing
the human expert to directly supply β themselves. As is common in adversarial imitation learning
approaches, we train our discriminator after every episode with a cross-entropy loss (Eq. (2.36)) by
sampling random batches of data from Dπ and DE with a number of gradient steps equivalent to the
episode length.

5.3.2 Automatic Adjustment of β

Adjustments to β are made based on three possible responses to the failure prediction system:

1. Correct prediction (true positive): The human expert agrees with the prediction, meaning that
they agree that the agent will fail if it continues to execute, in which case β remains the same.

2. Incorrect prediction (false positive): The human expert disagrees with the prediction, meaning that
the expert believes the agent will not fail if it continues to execute. β is increased by δfp ∈ N+

to make the system more permissive.

3. Missed prediction (false negative): The human expert manually stops the system when they be-
lieve a failure should have been predicted, but was not. β is decreased by δfn ∈ N+ to make the
system more conservative.

The modification hyperparameters δfp and δfn are easier to manually tune than β directly, and can
be set based on an expert’s own tolerance for false positives and false negatives (i.e., higher settings
indicate a lower tolerance). While there are numerous other possibilities for determining how to mod-
ify β, we found that this simple scheme performed adequately. While the use of β can help in cases
where D(st, at) alone incorrectly classifies data, the use of 0.5 as a threshold in Eq. (5.1) can be quite
suboptimal, which we will discuss in the foll section.

5.3. Failure Identification to Reduce Expert Burden (FIRE) 75

5.3.3 Gaussian Discriminant Analysis (GDA) for Failure Prediction

This section presents a modification to the prediction rule defined in Section 5.3.1 to use prior statistics
and discriminant analysis. Ideally, raw discriminator outputs can be used to predict failures (e.g.,
predict a failure if D(s, a) < 0.5), but in practice, this is challenging for two reasons: (i) as D is being
trained, and the relative size of Dπ changes dramatically from one episode to the next, D values are
noisy and inconsistent, and (ii) overall D values are strongly correlated with their frequency in DE

and Dπ . A concrete example of the second point occurs in many manipulation tasks, where the final,
successful states of many trajectories are often quite similar to one another, while the initial state
distribution, along with the trajectories leading to successful states, can be quite varied. For a further
illustration of the second point, consider the average timestep-specific values of D shown in Fig. 5.6.
For PickAndPlaceXY (shown in the middle plot), for both successful and unsuccessful trajectories, D
is rarely above 0.5. Using Eq. (5.2), a failure could only be consistently correctly predicted with a very
high value of β, since D values are, on average, below 0.5 for all early parts of trajectories.

If we assume to have access to labels for the true outcomes for each episode, and further assume
that the timing of motions in episodes have a degree of between-episode consistency (e.g., the reach
portion of a task happens consistently from timestep x to timestep y), we instead use two-class Gaus-
sian discriminant analysis (GDA) on the outputs of D (Murphy, 2022), conditioned on each timestep.
We periodically acquire statistics for D from past trajectories to obtain separate distributions at each
timestep for success and failure of the task. In other words, given that a trajectory failed or succeeded,
and assuming that D values at each timestep are normally distributed after being conditioned on suc-
cess or failure, we generate per-timestep means and standard deviations for Dt data for both successful
and failed trajectories.

We also maintain a prior estimate of failure using the final outcomes of all trajectories, which
is simply Nf

N . In turn, we are able to use Bayes’ rule to solve for the posterior p(fail | Dt), where
Dt = D(st, at) is the discriminator output at time step t of any given episode.

p(fail | Dt) =
p(Dt | fail)p(fail)

p(Dt)
(5.3)

=
p(Dt | fail)Nf

N

p(Dt | fail)Nf

N + p(Dt | success)Ns
N

. (5.4)

Here, p(Dt | fail) = N (Dt | µfail, σfail) and p(Dt | success) = N (Dt | µsuccess, σsuccess) are class condi-
tional densities, the parameters for which are re-estimated after each episode based on all discriminator
values at timestep t based on whether an episode ultimately failed or succeeded. Ultimately, our new
failure prediction rule is

f(st, at) =

p(fail | Dt) < γ,Dt = D(st, at) 1,

else 0.
(5.5)

We update the threshold γ based on progressive user feedback, in the same fashion as we did with β in

76 Chapter 5. Failure Identification for Interventions

Section 5.3.2. We can optionally choose whether or not to use the β parameter with the GDA scheme
for predicting failures.

5.3.4 Intervention-Based Learning with Failure Prediction

As detailed in Algorithm 2, and as is done in (Goecks et al., 2019), although our policy is constantly
updating with new samples generated from the expert, we retrain on the full batch of expert samples
whenever d new expert samples are added by minimizing the loss of a random subset of validation
expert data.

Since in our online intervention setting we have access to a human expert, we assume that we
receive a binary sparse reward signal indicating whether each episode ends successfully. In practice,
this is used to add (sT , aT) of a successful episode to DE , regardless of whether aT was an expert
action or not, to ensure that D always gives high value to successful states. We argue that this is a
fair assumption, since most finite-horizon benchmark environments will output a “done” signal when
a goal is reached.

To ensure that our initial model for D does not overfit, we allow our BC-initialized policy to com-
plete a small number of episodes in the environment before we start execution of our method. This
tactic is employed in (Fujimoto et al., 2018; Kostrikov et al., 2019), but because our policy is initialized
with BC, the actions will not be random and it will be easier for a human to cut an episode short if the
agent executes an unsafe action.

Given that our algorithm follows a reinforcement learning paradigm, and that we could easily learn
Q in addition to learningD as is done in (Fujimoto et al., 2018; Kostrikov et al., 2019), a natural question
is whether we could expand FIRE to include a self-improving reinforcement learning component, as
is done in (Goecks et al., 2020; Jena et al., 2020; Rajeswaran et al., 2018). In each of these works, it
was shown that attempting to learn a policy with an RL framework after initializing with BC either
required careful tuning of weighting parameters for combined loss functions, or that initializing the
policy with BC actually caused the final performance of the policy to deteriorate considerably (Jena
et al., 2020). On top of that, attempting to learn using RL would require us to add exploration noise
to our policy, decreasing the performance and potentially requiring even more expert interactions to
learn a satisfactory policy. Owing to the varying results in existing literature, we choose to leave this
extension as future work.

5.4 Fixed-Base Experiments

In our fixed-base experiments, we attempt to answer the following questions:

1. Does FIRE learn policies that can have strong performance with lower sample complexity than
a state-of-the-art IRL-based method and with greater robustness than BC?

2. How accurately does our system predict failures? Does our failure prediction accuracy improve
as more data is added?

5.4. Fixed-Base Experiments 77

Figure 5.2: Examples of successful episodes in each of our original, fixed-base, environments, PushingXY,
PickAndPlaceXY, and PickAndPlace6Dof, showing frames from t = {1, .25T, .5T, .75T, T}.

3. How does the failure prediction performance of FIRE compare to an existing, alternative method?

4. Is there empirical justification for this method of predicting failures? Do successful episodes
tend to result in D ≥ 0.5, while failures result in D < 0.5?

5.4.1 Environment Details

To demonstrate the efficacy of our method, we present experiments where we attempt to learn high-
performing policies (measured by success rate) in a variety of challenging manipulation environments
(see Fig. 5.2) described below:

1. PushingXY: A pushing environment, in which a narrow, cylindrical end-effector must push a
block to be close to another block. The location and rotation of the first block are randomized
between trials to positions within a 25 cm x 10 cm rectangle.

2. PickAndPlaceXY: A pick-and-place environment, in which a two-fingered gripper must grab
a large cylinder and place it on a coaster. The location of the cylinder is randomized between
trials to positions within a 25 cm x 10 cm rectangle.

3. PickAndPlace6Dof: A six degrees-of-freedom pick-and-place environment, where the end-
effector can translate and rotate freely, and must grab a long block and place it on a plate. The
location of the center of the block is randomized between trials to positions within a 5 cm x 5
cm square, while the rotation is randomized to all possible orientations. The gripper must rotate,
often significantly, from its initial position to reach an orientation where it is possible for it to
grab the block (see Fig. 5.2).

Environments 1 and 2 are constrained to only allow movement in two dimensions. As shown in
Fig. 5.4, a state-of-the-art IRL method (Kostrikov et al., 2019) still struggles to solve even these two-
dimensional environments adequately, failing altogether in the pick and place environment. The expert
controls the agent in Environment 3 with an HTC Vive virtual reality hand tracker. Although we do
not have access to a dense reward, we do have a binary success signal that determines if, for example,

78 Chapter 5. Failure Identification for Interventions

the block is on the plate. The states in each of these environments consist of the poses of the task
objects and the end-effector as well as the gripper link positions, while the actions are the end-effector
velocity and, for the pick and place environments, a binary signal indicating whether to open or close
the gripper. Our environments are simulated in PyBullet (Coumans and Bai, 2019) with a UR10 arm
and a two-fingered gripper. A timestep in each environment is 0.1 s, while, at the level of simulation,
each action is repeated 10 times, as is common in robotics learning environments (Plappert et al., 2018).
Since we are exclusively dealing with the finite-horizon problem, for environments 1, 2, and 3, T is 70,
70, and 80 respectively.

5.4.2 Implementation Details

We use the discriminator gradient-penalty trick from (Gulrajani et al., 2017) to learn a discriminator D
that avoids overfitting. We set our network and learning hyperparameters the same as in (Kostrikov
et al., 2019): a 2-layer MLP policy with 256 hidden units, ReLU activations and a tanh acvitation for
the output, and a 2-layer MLP discriminator with 256 hidden units and tanh activations. We train
using the Adam optimizer (Kingma and Ba, 2015) with learning rates of 10−3 and 10−4 for the policy
during behavioural cloning and episode training respectively. We set our periodic full batch retraining
parameter d to 500, and we allow our initially BC-trained policy to collect 10,000 (s, a) pairs (or roughly
125 episodes, 15 minutes of wall clock time) before we start training D. When we rerun BC on all of
our expert data, we always warm-start with the existing policy since we empirically found this to
give better results. Intuitively, we expect that this is because the corrections that the human expert
provides specifically address mistakes made by a particular policy, and restarting from scratch wastes
this advantage.

In our experiments, we set δfn as 3 and δfp to be 1 because we consider the cost of a false negative
to be higher than that of a false positive. A false negative causes the agent to fail or requires the human
expert to react quickly themselves, while a false positive merely requires the expert to allow execution
to continue, with no requirement for a fast reaction. For each run of FIRE, we initialize β to 20, and it
quickly self-adjusts to the expert’s preferences. The pushing and 3D pick-and-place environments are
initialized with 50 expert trajectories, while the 2D pick-and-place environment is initialized with 15
expert trajectories.

5.4.3 Evaluating Policy Performance

In this section, we evaluate the performance of policies trained using FIRE. Because our method is
inherently based on human decision-making, we validate the efficacy of our method by completing
experiments in a variety of environments requiring different manipulation capabilities. Given the
previously described difficulty of generating offline human labels in continuous domains, we do not
attempt to benchmark against DAgger. In particular, we expect that it would be nearly impossible to
supply human-generated offline expert labels to the six degrees-of-freedom environment.

We first compare FIRE with BC alone. Since FIRE requires the collection of progressively more
expert data, a natural question is whether an expert could simply provide more demonstrations initially

5.4. Fixed-Base Experiments 79

0.0 0.2 0.4 0.6 0.8 1.0

Number of expert (s,a) samples

0.0

0.2

0.4

0.6

0.8

1.0

S
uc

ce
ss

R
at

e

3500 4000 4500 5000 5500 6000 6500
0.0

0.2

0.4

0.6

0.8

PushingXY

FIRE
BC

1200 1400 1600 1800 2000 2200

0.2

0.4

0.6

0.8

PickAndPlaceXY

FIRE
BC

4000 5000 6000 7000 8000 9000

0.0

0.2

0.4

0.6

0.8

1.0
PickAndPlace6Dof

FIRE
BC

Figure 5.3: Performance of FIRE and BC in each of our test environments, compared with total number of expert
(s, a) samples. Due to the suboptimality of human demonstrations, behavioural cloning has high variance, and
adding more data does not necessarily improve performance. As well, the corrective expert data we collect
throughout the execution of FIRE ensures that we address the distribution drift that occurs during standard BC,
without requiring the collection of costly offline labels, as in (Ross et al., 2011).

and achieve the same performance as that found in FIRE. To answer this question, in Fig. 5.3, we
compare the performance of FIRE with the performance of BC on an equivalent amount of data. The
BC data are all collected from full episode rollouts, without any interactive component. The policies
learned with data collected from FIRE clearly show substantial improvement over policies trained with
behavioural cloning alone.

To illustrate the sample efficiency in terms of total execution time, we also compare against a state-
of-the-art sample-efficient inverse reinforcement learning method (Kostrikov et al., 2019) in Fig. 5.4.
It is clear that FIRE learns with considerably greater sample efficiency than (Kostrikov et al., 2019),
and performs better than BC alone after only a small number of iterations. Our algorithm allows us to
learn policies that complete each task with a success rate of over 80% with 50 minutes or less of wall
clock execution time. We stopped execution of (Kostrikov et al., 2019) after it had converged (in the
pushingXY environment) or after it was sufficiently clear that its sample efficiency, were it to converge,
would be at least an order-of-magnitude worse than FIRE.

0.0 0.2 0.4 0.6 0.8 1.0

Total number of environment (s,a) samples

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

R
at

e

104 105

0.0

0.2

0.4

0.6

0.8

1.0

PushingXY

FIRE
DAC
BC

104 105

0.0

0.2

0.4

0.6

0.8

1.0

PickAndPlaceXY

FIRE
DAC
BC

104 105

0.0

0.2

0.4

0.6

0.8

1.0
PickAndPlace6Dof

FIRE
DAC
BC

Figure 5.4: Performance of FIRE in our test environments, compared with the total number of environment
samples. FIRE, Discriminator Actor Critic (DAC) (Kostrikov et al., 2019), and BC were all started with the same
number of expert trajectories. Of course, in FIRE, more expert data was added throughout execution. The success
rate of DAC starts off significantly lower than BC or FIRE because naively initializing RL-based methods with
BC has been shown to be detrimental to learning (see end of Section 5.3.4).

80 Chapter 5. Failure Identification for Interventions

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

Po
si

tiv
e

R
at

e 0.0 0.5 1.0
0.0

0.5

1.0
PushingXY

0.0 0.5 1.0
0.0

0.5

1.0

0.0 0.5 1.0
0.0

0.5

1.0

0.0 0.5 1.0
0.0

0.5

1.0
PickAndPlaceXY

0.0 0.5 1.0
0.0

0.5

1.0

0.0 0.5 1.0
0.0

0.5

1.0

0.0 0.5 1.0
0.0

0.5

1.0
PickAndPlace6Dof

FIRE
Ensemble
Combined

0.0 0.5 1.0
0.0

0.5

1.0

0.0 0.5 1.0
0.0

0.5

1.0

Figure 5.5: ROC curves for each environment throughout the execution of FIRE, compared with ensemble-
based uncertainty (Kelly et al., 2019; Menda et al., 2019) and a method combining both. Columns correspond to
environments, while rows correspond to the percentage of time between when we started and when we stopped
executing FIRE, with the first row being 20%, the second being 50%, and the final being 70%. The method with
the largest area under the curve is bolded in each case.

5.4.4 Evaluating Failure Prediction Performance

In addition to showing that FIRE is able to learn good policies, it is important to know if the failure
prediction system is actually capable of predicting failures. To analyze our system’s capability in
this regard, we consider failure prediction as a binary classification problem, which allows us to use
standard statistical measures. We show receiver operating characteristic (ROC) curves (Fig. 5.5) for
our learned D at several points during the running of FIRE.

In existing similar work (Kelly et al., 2019; Cui et al., 2019), the authors have chosen to evaluate
their binary predictor based on whether it correctly predicts infractions, which they define as hitting

0.0 0.2 0.4 0.6 0.8 1.0

Episode timestep

0.0

0.2

0.4

0.6

0.8

1.0

D
is

cr
im

in
at

or
O

ut
pu

t

0 10 20 30 40 50 60 70

0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

PushingXY

Successes
Failures

0 10 20 30 40 50 60 70

0.30

0.35

0.40

0.45

0.50

0.55

0.60

PickAndPlaceXY

Successes
Failures

0 10 20 30 40 50 60 70 80

0.30

0.35

0.40

0.45

0.50

0.55

0.60

PickAndPlace6Dof

Successes
Failures

Figure 5.6: The average estimate from the discriminator for 200 episodes sampled using a fixed policy and
discriminator approximately 70% of the way through the execution of FIRE. The average values for the successful
and unsuccessful episodes are separated.

5.4. Fixed-Base Experiments 81

another car or driving off the road. Unfortunately, the concept of an infraction is not so cut-and-dry
in manipulation environments. To generate the ROC curves, we used snapshots of our policy weights
at various stages of executing FIRE and ran them for 200 episodes, allowing the episodes to fully run
to failure or success. From these executions, along with the associated value of D for all steps of each
episode, we generated true positive rates and false positive rates for different values of β, where we
define a true positive to be a correct failure prediction.

It is clear from Fig. 5.5 that in the majority of cases, FIRE can predict failures at a level above
random, though it is stronger in some cases than in others. To answer our original question, it is not
clear whether our failure prediction improves as more data is added, as the results are not consistent
between environments.

5.4.5 Comparing Failure Prediction Performance

To generate the curves based on the method from (Kelly et al., 2019; Menda et al., 2019), we trained an
ensemble of 10 policies on all of the expert data up to various points during the execution of FIRE. Also,
we used the ℓ2-norm doubt metric d(st) = ∥diag(Ct)∥2, where Ct is the current covariance matrix
of the output of the ensemble. We used the same 200 episode rollouts that we used for evaluating
FIRE. We consider a prediction to be a true positive whenever d(st) is greater than the test value of
the parameter at any point during an unsuccessful trajectory, and a true negative when d(st) is less
than the test value for an entire successful trajectory.

It is clear from Fig. 5.5 that there are some cases where our method for predicting failures performs
best, and some cases where the ensemble-based doubt metric performs best. However, in general,
combining the two methods tends to provide at least reasonable performance even if the ensemble
metric performs the best, and performs either the best or nearly equivalent to the FIRE-only metric
in other cases. We acknowledge that our technique for combining the two methods is quite basic: we
simply take the logical OR of the two predictions at every timestep. We expect that a more intelligent
combination of the two methods would provide the best performance overall.

5.4.6 Further Analysis

In Fig. 5.6, we show the average predicted D values for 200 full episodes of each environment using
the D and πθ fixed from about 70% of the way through the execution of FIRE. We separate the curves
into averages for successful and unsuccessful episodes. By setting β to a number of timesteps where
D is predicted to be, on average, consistently above 0.5 for successful episodes and consistently below
0.5 for failed episodes, we can predict failures correctly at least some of the time. For example, for the
PushingXY, PickAndPlaceXY, and PickAndPlace6Dof environments respectively, we can expect
that values of β ≥ 30, β ≥ 35, and β ≥ 50 should predict failures correctly more often than not.
However, a clear limitation of this approach is that, should the agent begin to fail significantly before
the timestep where it tends to fail most often, the predictor, limited by its higher value of β, will show
a significant lag in predicting the failure. We acknowledge that setting the cutoff for D to 0.5, while
intuitive, is somewhat arbitrary. In this work, we chose to demonstrate that the values of D can be

82 Chapter 5. Failure Identification for Interventions

Fixed
world
view

Robot
mounted
camera

Base pose variation

Object pose variation

Figure 5.7: Example initial conditions for our Stack2 task, showing both base pose variation and object pose
variation at the beginning of episodes.

used to predict failures, even with a very simple decision rule. It is also worth noting that a value of
β that approaches the horizon length T will become less and less useful. Our scheme, which allows
the human expert to adjust β, indirectly ensures that β will only approach the horizon length once the
policy is succeeding almost all of the time.

5.5 Multiview Experiments with GDA-FIRE

In followup work, we completed more experiments with FIRE in multiview environments, akin to the
challenging environments originally presented in Chapter 3, and we also tested the Gaussian discrim-
inant analysis (GDA) approach to predicting failures with FIRE. Specifically, compared with the envi-
ronments from Section 5.4, these environments (i) vary the base pose at the beginning of each episode,
and (ii) use 64 × 48 RGB image observations, instead of numerical state data. Our environments (see
Fig. 5.7 and Fig. 5.8) are described below:

1. PickAndInsert: The manipulator must grasp a peg and insert it into a block with a hole within
12 seconds. The peg starts randomly in a 2.5 cm × 2.5 cm box, while the block’s position is the
same between episodes. The diameters of the peg and hole are 3.7 cm and 4 cm respectively.

2. Stack2: The manipulator must stack two blocks on top of a third to make a stack of three blocks
within 15 seconds. The centers of all three blocks start in random positions and orientations in
separate 5 cm × 5 cm boxes.

Figure 5.8: Examples of successful episodes in each of our multiview environments, PickAndInsert (originally
presented in Chapter 3) and Stack2, showing frames from t = {1, .25T, .5T, .75T, T}.

5.5. Multiview Experiments with GDA-FIRE 83

0.0 0.2 0.4 0.6 0.8 1.0

Robot Execution Time (minutes)
0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

R
at

e
20 30 40 50

0.0

0.2

0.4

0.6

0.8

PickAndInsert

FIRE
BC

20 40 60 80

0.0

0.2

0.4

0.6

Stack2

FIRE
BC

Figure 5.9: A comparison of our method (FIRE: Failure Identification for Reducing Expert burden) with be-
havioural cloning (BC) for equivalent amounts of robot execution time. The bolded line and surrounding fill are
a 7-step moving average and standard deviation. Notably, the results compare total execution time, as opposed
to the results from Fig. 5.3, which compare expert data quantity only.

5.5.1 Performance Results

In Fig. 5.9, we benchmark our method’s performance by comparing its success rate against behavioural
cloning (BC) for an equivalent number of executed episodes: demonstrations in BC, and a combina-
tion of demonstrations, corrections, and autonomous execution in our method. We compare against
BC since, to the best of our knowledge, BC continues to be the most sample-efficient imitation learning
method when one cannot query πE . In particular, state-of-the-art methods based on inverse reinforce-
ment learning still require hundreds of thousands, if not millions, of environment interactions before
learning a good policy in manipulation environments (Kostrikov et al., 2019; Cabi et al., 2020), while
our policies are learned with less than 50,000 environment interactions corresponding to less than 1.5
hours of robot execution time. With an equivalent amount of time, our method clearly performs better
than BC in both of our tasks.

It is important to note that, compared with the results from Section 5.4.3 and Fig. 5.3, these results
appear to show BC scaling well as data increases. The results from Fig. 5.3 only compare the actual
number of expert examples used, and because many episodes of FIRE add no or only few new expert
samples to the dataset, it can appear to be far more efficient than BC when comparing samples only.
Comparing total execution time is, in most cases, a more useful baseline, since it signals to a prac-
titioner how useful it is to collect intervention-based data, as opposed to simply collecting more full
trajectories.

5.5.2 Failure Prediction Results

In Fig. 5.10, we compare our failure prediction method against the method shown in Section 5.3.1 and
Section 5.4, as well as a method based on using the uncertainty provided by ensemble variance (Menda
et al., 2019). We generated 100 episodes with πθ using snapshots from two evaluation points in our
training for both environments. We created receiver operating characteristic (ROC) curves by varying
the threshold of each method for predicting failures, and comparing that threshold with the maximum
output value from each episode. Our method based on discriminant analysis (DA) consistently has
the best performance for both tasks, and particularly, strongly improved the performance of using a

84 Chapter 5. Failure Identification for Interventions

0.0

0.5

1.0
PickAndInsert, 21.0 min. Stack2, 29.5 min.

DA
β
Ensemble

0.0 0.5 1.0
0.0

0.5

1.0
PickAndInsert, 45.0 min.

0.0 0.5 1.0

Stack2, 77.5 min.

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

Po
si

tiv
e

R
at

e

Figure 5.10: ROC curves showing the accuracy of our Discriminant Analysis(DA)-based failure predictor com-
pared with the original β threshold from Section 5.3.1 and with ensemble doubt (Menda et al., 2019) at different
points during training for both environments.

Reach

Approach

InsertGrasp Drag

Su
cc
es
s

Fa
ilu
re

InsertDragGrasp

.45 .47 .46

.40 .37 .35

.46 .56 .56 .41 .44 .57

.24 .27 .20 .26 .21 .35

Figure 5.11: Left: Average and standard deviation of discriminator at each timestep of an episode, condi-
tioned on successful episodes and failure episodes separately, used for predicting failures across 100 episodes
in PickAndInsert. Individual approximate timing of sub-tasks (reach, grasp, approach, drag, insert) are also
labelled, although these are not enforced in any way. Right: Examples of frames from successful and failed
trajectories. Their corresponding Dt values, underneath each image, are also shown in the left plot.

discriminator compared to the results shown in Fig. 5.5.

5.5.3 Quantitative Analysis of GDA-FIRE

Fig. 5.11 shows a quantitative example of why Gaussian discriminate analysis (GDA) (see Section 5.3.3
for description) might be more useful for failure prediction than raw discriminator outputs alone. The
mean and standard deviation for each timestep are shown for estimates of p(Dt|fail) and p(Dt|success)
in red and green, respectively. Clearly, a fixed D value is unlikely to be accurate for predicting failures:
the initial states of the trajectory, for both successful and failed episodes, tend to have the highest D
values overall, meaning that a fixed D value would most likely produce many false negatives or false
positives. Instead, by maintaining statistics of D values at each timestep, a general pattern of D values
becomes clear, and there is a gap between the average for p(Dt|success) and p(Dt|fail). The right side
of Fig. 5.11 shows examples of both successes and failures and their corresponding D values, showing

5.6. Limitations 85

Figure 5.12: An example Stack2 trajectory showing that our policy learns to recover from errors. The robot
only successfully grasps and stacks the red block on its second attempt. Trajectory proceeds left to right, top to
bottom.

that D values for failure or success can vary quite substantially, again indicating that GDA may be a
more useful approach than raw D values for predicting failures.

5.5.4 Learning to Fix Errors

A major benefit of our method compared with pure behavioural cloning (BC) is the ability for our poli-
cies to learn strategies for recovering from potential failures (see Fig. 5.12). Of course, an ideal policy
would be optimal and not make any mistakes, but a policy that can recover from potential failures
will be more robust in the face of adversarial inputs. This robustness shows that an intervention-based
framework can achieve the same consistent increase in performance as DAgger but without requiring
costly offline relabelling. On top of that, our method outperforms BC significantly (with an equiva-
lent amount of data) on two challenging view-invariant manipulation tasks, demonstrating that inter-
ventions with failure prediction can assist users in providing higher-quality data to a learning-based
manipulation system.

5.6 Limitations

In this section, we discuss some limitations of our work. We only train policies in simulation; real-
world conditions that may be affected by the presence of an expert demonstrator, such as shadows or
errors due to poor views of the system, may cause performance to deteriorate. Furthermore, our system
inherently adds data in which the robot has failed or nearly failed to an expert dataset. By adding the
failed data, we can inadvertently end up training suboptimal policies that make mistakes, such as that
shown in Fig. 5.12. Finally, predicting failures in manipulation is potentially an ill-defined task. A
policy may make many slightly suboptimal movements before reaching an unrecoverable failure, or
it might still succeed. An intervention-based system will always need to be tuned to individual user
preferences to decide what level of suboptimality is acceptable.

86 Chapter 5. Failure Identification for Interventions

5.7 Summary

In this chapter, we presented failure identification for reducing expert burden (FIRE), a method for
learning a policy from expert demonstrations followed by expert interventions based on failure pre-
diction. Our method predicts failures with a discriminator, and optionally with Gaussian discriminant
analysis, and an adjustable threshold indicating the tolerable number of non-expert (s, a) pairs in a
row. We showed that this technique can be used to learn high-performance policies in several chal-
lenging manipulation environments with an order of magnitude better sample efficiency than a state-
of-the-art inverse reinforcement learning method. As well, policies learned using our method exhibit
significantly better final performance than then those learned using an equivalent amount of data and
pure behavioural cloning.

To allow policies learned from data and stored in deep neural networks to execute in the real world,
we need to better understand when and if such policies are going to fail. Most state-of-the-art methods
for failure prediction are based on uncertainty estimated from ensembles or pseudo-ensembles. As we
showed in this work, these methods can be partially effective, but are limited by the fact that they do
not directly learn from non-expert data.

A fruitful direction for future research would be to attempt to formally prove that on-the-fly inter-
ventions benefit policy performance, since at the moment, this approach is only justified empirically.
It is possible that following the analysis from Ross and Bagnell (2010); Ross et al. (2011) could help in
this regard; FIRE is meant to be a more realistic alternative to DAgger and other schemes (e.g., (Laskey
et al., 2016)) that relabel offline data with expert actions. The corrective demonstrations provided in an
interactive scheme, such as FIRE, will eventually reduce worst case error to O(Tϵ) by removing dis-
tribution shift, as described in Section 2.4.3 and by Ross et al. (2011). Practically, however, the number
of interactive demonstrations required to achieve this goal will likely be higher than O(T log T) (one
estimate of the amount required for DAgger by Ross et al. (2011)), because corrective demonstrations
provided by interventions will be strictly of equal or lower quality than the perfect labels provided by
DAgger.

Chapter 6

Learning from Guided Play

In practice, the interactive approach from Chapter 5 can still be costly to implement, requiring an
unknown amount of expert time and data to acquire a proficient policy. In this chapter, we switch
from approaches to imitation learning based on behavioural cloning to an approach based on inverse
reinforcement learning (IRL).1 In IRL, the expert data is provided once at the beginning of training,
and, in principle, the agent learns to stay in-distribution through its own exploration and distribution
matching. In practice, modern approaches to IRL can suffer poor exploration coupled with deceptive
rewards, leading to a local maximum where the distribution visited by the agent only partially matches
the expert distribution, and ultimately fails to complete tasks.

We present Learning from Guided Play (LfGP), a framework in which we leverage expert demon-
strations of multiple exploratory, auxiliary tasks in addition to a main task. The addition of these
auxiliary tasks forces the agent to explore states and actions that standard adversarial imitation learn-
ing (AIL) methods may learn to ignore, allowing for full matching between the expert distribution and
the policy distribution. In addition, this particular formulation allows for the reusability of expert data
between main tasks. Our experimental results in a challenging multitask robotic manipulation domain
indicate that LfGP significantly outperforms both AIL and behavioural cloning, while also being more
expert sample efficient than these baselines. To explain this performance gap, we provide further anal-
ysis of a toy problem that highlights the coupling between a local maximum and poor exploration, and
also visualize the differences between the learned models from AIL and LfGP.

6.1 Motivation

Exploration is a crucial part of effective reinforcement learning (RL). A variety of methods have at-
tempted to optimize the exploration-exploitation trade-off of RL agents (Sutton and Barto, 2018; Belle-
mare et al., 2016; Nair et al., 2018), but the development of a technique that generalizes across domains
remains an open research problem. A simple, well-known approach to reduce the need for random
exploration is to provide a dense, or “shaped,” reward to learn from, but this can be very challenging to

1Project website: https://papers.starslab.ca/lfgp.

87

https://papers.starslab.ca/lfgp

88 Chapter 6. Learning from Guided Play

Figure 6.1: Learning from Guided Play (LfGP) finds an effective stacking policy by learning to compose multiple
simple auxiliary tasks (only Reach is shown, for this episode) along with stacking. Discriminator Actor-Critic
(DAC) (Kostrikov et al., 2019), or off-policy AIL, reaches a local maximum action-value function and policy,
failing to solve the task. Arrow direction indicates mean policy velocity action, red-to-yellow (background)
indicates low-to-high learned value, while arrow colour indicates probability of closing (green) or opening (blue)
the gripper.

design appropriately (Ng and Jordan, 2003). Furthermore, the environment may not directly provide
the low-level state information required for such a reward. An alternative to providing a dense reward
is to learn a reward function from expert demonstrations of a task, in a process known as inverse
RL (IRL) (Ng and Russell, 2000). Many modern approaches to IRL are part of the adversarial imitation
learning (AIL) family (Ho and Ermon, 2016). In AIL, rather than learning a reward function directly, the
policy and a learned discriminator form a two-player min-max optimization problem, where the policy
aims to confuse the discriminator by producing expert-like data, while the discriminator attempts to
classify expert and non-expert data.

Although AIL has been shown to be more expert sample efficient than behavioural cloning in
continuous-control environments (Ho and Ermon, 2016; Fu et al., 2018a; Kostrikov et al., 2019), its
application to long-horizon robotic manipulation tasks with a wide distribution of possible initial con-
figurations remains challenging (Kostrikov et al., 2019; Orsini et al., 2021).

In this chapter, we investigate the use of AIL in a multitask robotic manipulation domain. We
find that a state-of-the-art AIL method, in which off-policy learning is used to maximize environment

sample efficiency (Kostrikov et al., 2019) (i.e., reduce the quantity of environment interaction required
from the online RL portion of AIL), is outperformed by BC with an equivalent amount of expert data,
contradicting previous results (Ho and Ermon, 2016; Fu et al., 2018a; Kostrikov et al., 2019). Through
a simplified example, simulated robotic experiments, and learned model analysis, we show that this
outcome occurs because a model learned with expert data and a discriminator is susceptible to the

6.1. Motivation 89

Multitask Environment

Reach Lift Bring

Together Insert Stack

Guided Expert Play

G
ui

de
Ex

pe
rt

bring_0 together stack_01

Multitask Environment

Reach() Lift()

Bring()

Insert() Stack()

Multitask Environment
Reach Lift Bring

Together Insert Stack

Guided Expert Play

Expert

lift()

Guide

Guide

stack()

Guided Agent Play

Move()

RESETNEXT

Expert

lift()
Sched

()

stack()
Sched

(lift())

Agent

Multitask
AIL Update

Figure 6.2: The main components of our system for learning from guided play. In a multitask environment, a
guide prompts an expert for a mix of multitask demonstrations, after which we learn a multitask policy through
scheduled hierarchical AIL.

deceptive reward problem (Ecoffet et al., 2021). In other words, while AIL, and more generally IRL,
can provide something akin to a dense reward, this reward is not necessarily optimal for teaching, and
AIL alone does not enforce sufficiently diverse exploration to escape locally optimal but globally poor
models. A locally optimal policy has converged to match a subset of the expert data, but in doing so,
avoids crucial states and actions (e.g., in Fig. 6.1, grasping the blue block) required to globally match
the full expert set.

To overcome this limitation of AIL, we present Learning from Guided Play (LfGP), in which we
combine AIL with a scheduled approach to hierarchical RL (HRL) (Riedmiller et al., 2018), allowing
an agent to ‘play’ in the environment with an expert guide. Using expert demonstrations of multiple
relevant auxiliary tasks (e.g., Reach, Lift, Move-Object), along with a main task (e.g., Stack, Bring,
Insert), our scheduled hierarchical agent is able to learn tasks where AIL alone fails. The use of a
multitask agent affords other benefits as well: expert data for auxiliary tasks can be reused from one
main task to another, and the possibility of reusing previously-learned auxiliary models for transfer
learning is opened. Crucially, our formulation also allows auxiliary expert data to be reused between
main tasks, further emphasizing the expert sample efficiency of our method.

We use the word play to describe an agent that simultaneously attempts and learns numerous tasks
at once, freely composing them together, inspired by the playful (as opposed to goal-directed) phase of
learning experienced by children (Riedmiller et al., 2018). In our case, guided represents two separate
but related ideas: first, that the expert guides this play, as opposed to requiring hand-crafted sparse
rewards as in (Riedmiller et al., 2018) (right side of Fig. 6.2), and second, that the expert gathering
of multitask, semi-structured demonstrations is guided by uniform-random task selection (middle of
Fig. 6.2), rather than requiring the expert to choose transitions between goals, as in (Lynch et al., 2019;
Gupta et al., 2019). Our specific contributions are the following:

1. A novel application of a hierarchical framework (Riedmiller et al., 2018) to AIL that learns a
reward and policy for a challenging main task by simultaneously learning rewards and policies
for auxiliary tasks.

90 Chapter 6. Learning from Guided Play

2. Manipulation experiments in which we demonstrate that AIL fails, while LfGP significantly
outperforms both AIL and BC.

3. An extension of our method to transfer learning.

4. A thorough ablation study to examine the effects of various design choices for LfGP and our
baselines.

5. Empirical analysis, including a simplified representative example and visualization of the learned
models of LfGP and AIL, to better understand why AIL fails and how LfGP improves upon it.

6.2 Related Work

Imitation learning is often divided into two main categories: behavioural cloning (BC) (Ross et al.,
2011; Ablett et al., 2021b) and inverse reinforcement learning (IRL) (Ng and Russell, 2000; Abbeel and
Ng, 2004). BC recovers the expert policy via supervised learning, but it suffers from compounding
errors due to covariate shift (Ross et al., 2011; Ablett et al., 2020). Alternatively, IRL partially allevi-
ates the covariate shift problem by estimating the reward function and then applying RL using the
learned reward. A popular approach to IRL is adversarial imitation learning (AIL) (Ho and Ermon,
2016; Kostrikov et al., 2019; Hausman et al., 2017), in which the expert policy is recovered by match-
ing the occupancy measure between the generated data and the demonstration data. Our proposed
method enhances existing AIL algorithms by enabling exploration of key auxiliary tasks via the use of
a scheduled multitask model, simultaneously resolving the susceptibility of AIL to deceptive rewards.

Agents learned via hierarchical reinforcement learning (HRL), which act over multiple levels of
temporal abstractions in long-horizon tasks, are shown to provide more effective exploration than
agents operating over only a single level of abstraction (Riedmiller et al., 2018; Sutton et al., 1999;
Nachum et al., 2019). Our approach for learning agents most closely resembles hierarchical AIL meth-
ods that attempt to combine AIL with HRL (Hausman et al., 2017; Henderson et al., 2018; Sharma
et al., 2019; Jing et al., 2021). Existing work (Henderson et al., 2018; Sharma et al., 2019; Jing et al.,
2021) often formulates the hierarchical agent using the Options framework (Sutton et al., 1999) and
learns the reward function with AIL (Ho and Ermon, 2016). Both (Henderson et al., 2018) and (Jing
et al., 2021) leverage task-specific expert demonstrations to learn options using mixture-of-experts and
expectation-maximization strategies, respectively. In contrast, our work focuses on expert demonstra-
tions that include multiple reusable auxiliary tasks, each of which has clear semantic meaning.

In the multitask setting, (Hausman et al., 2017) and (Sharma et al., 2019) leverage unsegmented,
multitask expert demonstrations to learn low-level policies via a latent variable model. Other work
has used a large corpus of unsegmented but semantically meaningful “play” expert data to bootstrap
policy learning (Lynch et al., 2019; Gupta et al., 2019). We define our expert dataset as being derived
from guided play, in that the expert completes semantically meaningful auxiliary tasks with provided
transitions, reducing the burden on the expert to generate these data arbitrarily and simultaneously
providing auxiliary task labels. Compared with learning from unsegmented demonstrations, the use of

6.3. Problem Formulation 91

Figure 6.3: An MDP, analogous to stacking, with an expert demonstration. Poor exploration can lead AIL to
learn a suboptimal policy.

segmented demonstrations, as in (Codevilla et al., 2018), ensures that we know which auxiliary tasks
our model will be learning, and opens up the possibility of expert data reuse and also transfer learning.
Finally, we deviate from the Options framework and build upon Scheduled Auxiliary Control (SAC-X)
to train our hierarchical agent, since SAC-X has been shown to work well for challenging manipulation
tasks (Riedmiller et al., 2018).

6.3 Problem Formulation

For a background on Markov decision processes (MDPs) and the notation used in this section, see
Section 2.2. In this chapter, to accommodate hierarchical learning, we augment an MDP M with
auxiliary tasks, where Taux = {T1, . . . , TK} are separate MDPs that share S,A,P, ρ0 and γ with the
main task Tmain but have their own reward functions, Rk. With this modification, we refer to entities
in our model that are specific to task T ∈ Tall, Tall = Taux ∪ {Tmain}, as (·)T . We assume that we have
a set of expert data BET for each task.

6.4 Local Maximum with Off-Policy AIL

In this section, we provide a representative example of how AIL can fail by reaching a locally maximum
policy due to a learned deceptive reward (Ecoffet et al., 2021) coupled with poor exploration. A simple
six-state MDP is shown in Fig. 6.3, with ten state-conditional actions. We refer to actions as at = anm

and states as st = sn where t, n and m refer to the current timestep, current state, and next state,
respectively. The reward function is R(s5, a55) = +1, R(s1, a15) = −5 and 0 for all other state-action
pairs. The initial state s1 is always s1, the fixed horizon length is 5, and no discounting is used.

The MDP is meant to be roughly analogous to a stacking manipulation task: s2, s3, s4 and s6

represent the first block being reached, grasped, lifted, and dropped respectively. State s5 represents

92 Chapter 6. Learning from Guided Play

the gripper hovering over the second block (whether the first block has been stacked or not), while s1

is the reset state, and a15 represents reaching s5 without grasping the first block. Taking action a15

results in a total return of -1 (because R(s1, a15) = −5), since the first block has not actually been
grasped. In our case, the agent does not receive any reward, and instead an expert demonstration of
the optimal trajectory is provided. We will assume access to a learned (perfect) discriminator, and will
use the AIRL (Fu et al., 2018a) reward, so state-action pairs in the expert set receive +1 reward and all
others receive -1.

We define the action-value Q(st, at) as the expected value of taking action at in state st, and
initialize it to zero for all (s, a) pairs. We define our update rule as the standard Q-Learning update
(Sutton and Barto, 2018), Q(st, at) = Q(st, at) + α (R(st, at) + maxaQ(st+1, a)−Q(st, at)), with
α = 0.1. The agent uses ϵ-greedy exploration, storing each (st, at, st+1) tuple into a buffer. After each
episode, all Q values are updated to convergence using the whole buffer.

After the first complete episode of {a15, a55, a55, a55, a55}, Q(s1, a15) = 2.7, and Q(s1, a12) = 0.
In the second ({a12, a26, a61, a15, a55}) and third ({a12, a23, a36, a61, a15}) episodes, the agent initially
moves in the correct direction, but ultimately still fails. The final Q values in s1 are Q(s1, a15) = 0.49

and Q(s1, a12) = 0.13.5

A policy maximizing Q, having simultaneously learned to avoid s6 (by avoiding s2 and s3) and ex-
ploiting the (s5, a55) expert pair, will choose a1 = a15, giving a final return of
-1 in the real MDP. This behaviour matches what we see in Fig. 6.1: due to the large negative re-
ward from dropping the block, AIL learns a policy that avoids stacking altogether and merely reaches
the second block, just as AIL here learns to skip s2 and s3 and exploit a55. In both cases, poor initial
exploration leads to a deceptive reward, which exacerbates poor exploration.

6.5 Learning from Guided Play (LfGP)

We now introduce Learning from Guided Play (LfGP). Our primary goal is to learn a policy πTmain that
can solve the main task Tmain, with a secondary goal of also learning auxiliary task policies πT1 , . . . , πTK

that are used for improved exploration. More specifically, we derive a hierarchical learning objective
that is decomposed into three parts: (i) recovering the reward function of each task with expert demon-
strations, (ii) training all policies to achieve their respective goals, and (iii) using all policies for effective
exploration in Tmain. The complete algorithm is shown in Algorithm 3.

6.5.1 Learning the Reward Function

We first describe how to recover the reward functions from expert demonstrations. For each task
T ∈ Tall, we learn a discriminator DT (s, a) that is used to define the reward function for policy
optimization. We construct the joint discriminator loss following (Kostrikov et al., 2019) to train each

5See six state mdp.py from open source code to reproduce.

6.5. Learning from Guided Play (LfGP) 93

Algorithm 3 Learning from Guided Play (LfGP)
Input: Expert replay buffers BEmain,BE1 , . . . ,BEK , scheduler period ξ, sample batch size N
Parameters: Intentions πT with corresponding Q-functions QT and discriminators DT , and sched-
uler πS (e.g. with Q-table QS)

1: Initialize replay buffer B
2: for t = 1, . . . , do
3: # Interact with environment
4: For every ξ steps, select intention πT using πS
5: Select action at using πT
6: Execute action at and observe next state s′t
7: Store transition ⟨st, at, s′t⟩ in B
8:
9: # Update discriminator DT ′ for each task T ′

10: Sample {(si, ai)}Ni=1 ∼ B
11: for each task T ′ do
12: Sample {(s′i, a′i)}Bi=1 ∼ BEk
13: Update DT ′ following Eq. (6.1) + Gradient Penalty
14: end for
15:
16: # Update intentions πT ′ and Q-functions QT ′ for each task T ′

17: Sample {(si, ai)}Ni=1 ∼ B
18: Compute reward DT ′(si, ai) for each task T ′

19: Update π and Q following Eq. (6.4) and Eq. (6.5)
20:
21: # Optional Update learned scheduler πS
22: if at the end of effective horizon then
23: Compute main task return GTmain using reward estimate from Dmain
24: Update πS (e.g. update Q-table QS following Eq. (6.11) and recompute Boltzmann distribu-

tion)
25: end if
26: end for

discriminator in an off-policy manner:

L(D) = −
∑
T ∈Tall

EB [log (1−DT (s, a))] + EBE
T
[log (DT (s, a))] . (6.1)

Each resulting discriminator DT attempts to differentiate the occupancy measure between the distri-
butions induced by BET and B. We can use DT to define various reward functions (Kostrikov et al.,
2019); following (Fu et al., 2018a), we define the reward function for each task T to be RT (st, at) =

log (DT (st, at))− log (1−DT (st, at)).

6.5.2 Learning the Hierarchical Agent

We adapt Scheduled Auxiliary Control (SAC-X) (Riedmiller et al., 2018) to learn the hierarchical agent.
The agent includes low-level intention policies (equivalently referred to as intentions), a high-level

94 Chapter 6. Learning from Guided Play

scheduler policy, as well as the Q-functions and the discriminators. The intentions aim to solve their
corresponding tasks (i.e., the intention πT aims to maximize the task return J(πT)), whereas the
scheduler aims to maximize the expected return for Tmain by selecting a sequence of intentions to
interact with the environment. For the remainder of the paper, when we refer to a policy, we are
referring to an intention policy, as opposed to the scheduler, unless otherwise specified.

Learning the Intentions

We learn each intention using Soft Actor-Critic (SAC) (Haarnoja et al., 2018), an actor-critic algorithm
that maximizes the entropy-regularized objective, though any off-policy RL algorithm would suffice.
The objective is

J(πT) = EπT

[∞∑
t=0

γt (RT (st, at) + αH(πT (·|st)))
]
, (6.2)

where the learned temperature α determines the importance of the entropy term and H(πT (·|st)) is
the entropy of the intention πT at state st. The soft Q-function is

QT (st, at) = RT (st, at) + EπT

[∞∑
t=0

γt(RT (st+1, at+1) + αH(πT (·|st+1)))

]
. (6.3)

The intentions maximize the joint policy objective

L(πint) =
∑
T ∈Tall

Es∼Ball,a∼πT (·|s) [QT (s, a)− α log πT (a|s)] , (6.4)

where πint refers to the set of intentions {πTmain , πT1 , . . . , πTK} and Ball refers to buffer containing
every transition from interactions and demonstrations, as is done in (Vecerik et al., 2018; Kalashnikov
et al., 2018). Notice that the replay buffer B contains transitions generated using every intention. This
allows each intention πT to learn optimal actions for its respective task starting at any state visited
by any intention. In other words, other intentions πT ′ ̸=T interacting with the environment provide
exploration samples for πT .

For policy evaluation, the soft Q-functions QT for each πT minimize the joint soft Bellman residual

L(Q) =
∑
T ∈Tall

E(s,a,s′)∼Ball,a′∼πT (·|s′)
[
(QT (s, a)− δT)2

]
, (6.5)

δT = RT (s, a) + γ
(
QT (s′, a′)− α log πT (a′|s′)

)
. (6.6)

Crucially, because each task shares the common S,A,P, ρ0, and γ, and we are using off-policy learn-
ing, all tasks can learn from all data, as in (Riedmiller et al., 2018).

6.5. Learning from Guided Play (LfGP) 95

The Scheduler

SAC-X formulates learning the scheduler by maximizing the expected return of the main task (Ried-
miller et al., 2018). In particular, let H be the number of possible intention switches within an episode
and let each chosen intention execute for ξ timesteps. TheH intention choices made within the episode
are defined as T 0:H−1 =

{
T (0), . . . , T (H−1)

}
, where T (h) ∈ Tall. The return of the main task, given

chosen intentions, is then defined as

GTmain(T 0:H−1) =
H−1∑
h=0

(h+1)ξ−1∑
t=hξ

γtRTmain(st, at), (6.7)

where at ∼ πT (h)(·|st) is the action taken at timestep t, sampled from the chosen intention T (h) in
the hth scheduler period. The scheduler for the hth period P h

S aims to maximize the expected main
task return: E

[
GTmain(T h:H−1)|P h

S

]
. In this work, we consider three options for a scheduler: learned,

weighted random, and weighted random with additional handcrafted trajectories, each of which are
described in the following paragraphs.

Learned Scheduler. We define the Q-function for the scheduler as

QS(T 0:h−1, T (h)) = ET h:H−1∼Ph:H−1
S

[
GTmain(T h:H−1)|T 0:h−1

]
(6.8)

and represent the scheduler for the hth period as a softmax distribution P h
S over

{QS(T 0:h−1, Tmain), QS(T 0:h−1, T1), . . . , QS(T 0:h−1, TK)}. (6.9)

The scheduler maximizes the expected return of the main task following the scheduler:

L(S) = ET (0)∼P 0
S

[
QS(∅, T (0))

]
. (6.10)

We use Monte Carlo returns to estimate QS , estimating the expected return using the exponential
moving average:

QS(T 0:h−1, T (h)) = (1− ϕ)QS(T 0:h−1, T (h)) + ϕGTmain(T h:H), (6.11)

where ϕ ∈ [0, 1] represents the amount of discounting on older returns and GTmain(T h:H) is the cu-
mulative discounted return of the trajectory starting at timestep hξ.

Weighted Random Scheduler. The weighted random scheduler (WRS) forms a prior categorical
distribution over the set of tasks, with a higher probability mass pTmain for the main task and pTmain

K for
all other tasks. This approach is comparable to the uniform scheduler from (Riedmiller et al., 2018),
with a bias towards the main task.

96 Chapter 6. Learning from Guided Play

WRS with Handcrafted Trajectories. We add a small set of handcrafted trajectories of tasks that
are sampled some of the time, forcing the scheduler to explore trajectories that would clearly be ben-
eficial for completing the main task. For example, for a Stack task, we can provide Reach, Lift, Stack,

Open-Gripper.

6.5.3 Breaking Out of Local Maxima with LfGP

Returning to the discussion in Section 6.4, resolving the local maximum problem with LfGP is straight-
forward. Suppose we include a go-right auxiliary task with BEgo-right = {(s1, a12), (s2, a23), (s3, a34)}.
When the scheduler chooses the go-right intention, the agent does not exploit the a55 action because
the go-right discriminator learns that R(s5, a55) = −1. Since the transitions are stored in the shared
buffer that the main intention also samples from, the agent can quickly obtain the correct, optimal
value.

6.5.4 Expert Data Collection

We assume that each T ∈ Tall has, for evaluation purposes only, a binary indicator of success. In single-
task imitation learning where this assumption is valid, expert data is typically collected by allowing
the expert to control the agent until success conditions are met. At that point, the environment is reset
following ρ0 and collection is repeated for a fixed number of episodes or (s, a) pairs. We collect our
expert data in this way for each T separately. In LfGP, and more generally for multitask IL, expert
data can also be collected this way for each T separately: we refer to this strategy, which we use for
all of our main experiments, as reset-based expert data collection.

A limitation of reset-based expert data collection is that, when training LfGP, the initial state of
each individual policy can be any state thatM has been left in by a previous policy, which may include
states not in the distribution of ρ0. This “transition” initial state distribution, which we call ρ0(s|T ′),
where T ′ ∈ Tall corresponds to the previously running policy πT ′ , would be challenging to sample
from—it relies on the policies, and it may include states which are impractical to manually reset to (e.g.
objects may start off as grasped or in mid-air). Consequently, an alternative data collection strategy
exists, where we alternate between uniformly sampling the next task for an expert to complete and
having the expert execute that task until success. In our implementation, we also reset the environment
following ρ0 periodically.

6.6 Experiments

In this work, we are interested in answering the following questions about LfGP:

1. How does the performance of LfGP compare with BC and AIL in challenging manipulation tasks,
in terms of success rate and expert sample efficiency?

2. What parts of LfGP are necessary for success?

3. How do the policies and action value functions differ between AIL and LfGP?

6.6. Experiments 97

Figure 6.4: Example successful runs of our four main tasks. Top to bottom: Stack, Unstack-Stack, Bring,
Insert.

6.6.1 Experimental Setup

We complete experiments in a simulation environment containing a Franka Emika Panda manipulator,
one green and one blue block in a tray, fixed zones corresponding to the green and blue blocks, and
one slot in each zone with < 1mm tolerance for fitting the blocks (see bottom right of Fig. 6.4). The
robot is controlled via delta-position commands, and the blocks and end-effector can both be reset
anywhere above the tray. The environment is designed such that several different challenging tasks
can be completed within a common observation and action space. The main tasks that we investigate
are Stack, Unstack-Stack, Bring, and Insert (see Fig. 6.4). We also define a set of auxiliary tasks:
Open-Gripper, Close-Gripper, Reach, Lift, Move-Object, and Bring (Bring is both a main task
and an auxiliary task for Insert), all of which are reusable between main tasks.

We compare our method to several standard multitask and single-task baselines. A multitask al-
gorithm simultaneously learns to complete a main task as well as auxiliary tasks, while the single-task
algorithms only learn to complete the main task. In general, we consider a multitask algorithm to be
more useful than a single-task algorithm, given the potential to reuse expert data and trained mod-
els for learning new tasks. To ensure a fair comparison, we provide single-task algorithms with an
equivalent amount of total expert data as our multitask methods, as shown in Table 6.1.

In our main experiments, we compare LfGP to a multitask variant of behavioural cloning (BC),
single-task BC, and discriminator-actor-critic (DAC) (Kostrikov et al., 2019), a state-of-the-art approach
to AIL. We train multitask BC with a multitask mean squared error objective,

L(πint) =
∑
T ∈Tall

∑
(s,a)∈BE

T

(πT (s)− a)2 , (6.12)

while BC is trained with the corresponding single task version. Following recent trends in improving
BC performance, we train our BC baselines with the same number of gradient updates as LfGP and
DAC, evaluating the policies at the same frequency. This adjustment has been shown to dramatically

98 Chapter 6. Learning from Guided Play

Task Dataset Sizes Reuse Single Total

Multitask Stack SOCRLM: 1k/task 5k 1k 6k
U-Stack UOCRLM: 1k/task 5k 1k 6k
Bring BOCRLM: 1k/task 6k 0 6k
Insert IBOCRLM: 1k/task 6k 1k 7k

Single Stack S: 6k 0 6k 6k
Task U-Stack U: 6k 0 6k 6k

Bring B: 6k 0 6k 6k
Insert I: 6k 0 7k 7k

Table 6.1: The number of (s, a) pairs used for each main and auxiliary task. The table illustrates the reusability
of the expert data used to generate the performance results described in Section 6.6.3. Each letter under “Dataset
Sizes” is the first letter of a single (auxiliary) task, and bolded letters indicate that a dataset was reused for more
than one main task (e.g., Open-Gripper was used for all four main tasks). Multitask methods (e.g., LfGP) are able
to reuse a large portion of the expert data, while single-task methods (e.g., single-task BC) cannot.

increase the performance of BC (Mandlekar et al., 2022; Hussenot et al., 2021), particularly compared to
the more common practice of using early stopping, as is done in (Kostrikov et al., 2019; Ho and Ermon,
2016). We validate that this change significantly improves BC performance in our ablation study (see
Section 6.6.4).

We gather expert data by first training an expert policy using scheduled auxiliary control (SAC-X)
(Riedmiller et al., 2018). We then run the expert policies to collect various amounts of expert data as
described in Section 6.5.4 and Table 6.1. We also collect an extra 200 expert (sT ,0) pairs per auxiliary
task, where T refers to the final timestep of an individual episode and 0 is an action of all zeros. This
is equivalent to adding example data, as is done in example-based RL (Fu et al., 2018b). This addition
improved final task performance, likely because it biases the reward towards completing the final task.
It is worth noting that, in the real world, final states are easier to collect than full demonstrations, and
LfGP does not require any modifications to accommodate these extra examples. Finally, even without
this addition, LfGP still outperforms the baselines (see Section 6.6.4).

6.6.2 Scheduler Implementation Details

In early empirical results, we found that a weighted random scheduler combined with handcrafted
trajectories performed comparably to a learned scheduler, while being considerably easier and more
computationally efficient to implement. Our main experimental results from Section 6.6.3, therefore,
were generated using a weighted random scheduler with handcrafted trajectories, as described in Sec-
tion 6.5.2. This section provides more details about those handcrafted trajectories, which are reusable
between main tasks.

Given a chosen proportion hyperparameter (0.5 in our experiments), we randomly sampled full
trajectories from the lists below at the beginning of training episodes, and otherwise sampled from the
regular WRS. For all four tasksMain = {Stack, Unstack-Stack, Bring, Insert}, we provided the following
set of trajectories:

1. Reach, Lift, Main, Open-Gripper, Reach, Lift, Main, Open-Gripper.

6.6. Experiments 99

0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0
Stack

0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0
Unstack-Stack

0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0
Bring

1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0
Insert

0.0 0.2 0.4 0.6 0.8 1.0

Updates/steps (millions)

0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
es

s
R

at
e LfGP (multi)

BC (multi)

DAC (single)

BC (single)

Expert

Figure 6.5: Performance results for LfGP, multitask BC, single-task BC, and DAC on all four tasks considered
in this work. The x-axis corresponds to both gradient updates and environments steps for LfGP and DAC, and
gradient updates only for both versions of BC. The shaded area corresponds to standard deviation across five
seeds. LfGP significantly outperforms the baselines on all tasks, and even in Bring where it is matched by single-
task BC, it is far more expert sample efficient.

2. Reach, Lift, Move-Object, Main, Open-Gripper, Reach, Lift, Move-Object.

3. Lift, Main, Open-Gripper, Lift, Main, Open-Gripper, Lift, Main.

4. Main, Open-Gripper, Main, Open-Gripper, Main, Open-Gripper, Main, Open-Gripper.

5. Move-Object, Main, Open-Gripper, Move-Object, Main, Open-Gripper, Move-Object, Main.

For insert, in addition to the trajectories listed above, we added two more trajectories to specifically
accommodate Bring as an auxiliary task:

1. Bring, Insert, Open-Gripper, Bring, Insert, Open-Gripper, Bring, Insert.

2. Reach, Lift, Bring, Insert, Open-Gripper, Reach, Lift, Bring.

6.6.3 Performance Results

Performance results for all methods and main tasks are shown in Fig. 6.5. We freeze the policies every
100k steps and evaluate those policies for 50 randomized episodes, using only the mean action outputs
for stochastic policies. For all algorithms, we test across five seeds and report the mean and standard
deviation of all seeds.

In Stack, Unstack-Stack, and Insert, LfGP achieves expert performance, while the baselines all
perform significantly worse. In Bring, LfGP does not quite achieve expert performance, and is matched
by single-task BC. However, we note that LfGP is much more expert data efficient than single-task
BC because it reuses auxiliary task data (see Table 6.1). A more direct comparison is multitask BC,
which performs much more poorly than LfGP across all tasks, including Bring. Intriguingly, DAC also
performs very poorly on all tasks, a phenomenon that we further explore in Section 6.8.

6.6.4 Ablation Study

While the fundamental idea of LfGP is relatively straightforward, it is worth considering alternatives
to some of the specific choices made for our experiments. In this section, we complete an ablation study

100 Chapter 6. Learning from Guided Play

0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0
Stack (no ablations)

0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0
0.5|BEorig|

0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0
1.5|BEorig|

0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0
Subsampled BE

0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0
No Extra Final Examples

0.0 0.2 0.4 0.6 0.8 1.0

Updates/steps (millions)

0.0

0.2

0.4

0.6

0.8

1.0
S

u
cc

es
s

R
at

e LfGP (multi)

BC (multi)

DAC (single)

BC (single)

Expert

Figure 6.6: Various dataset ablations for LfGP and all baselines, including dataset size, subsampling of expert
dataset, and replacement of extra (sT ,0) pairs with an equivalent amount of regular trajectory (s, a) pairs. In
all cases, LfGP still significantly outperforms all baselines.

where we vary (a) the expert dataset, including size, subsampling, and inclusion of extra (sT ,0) pairs;
(b) the type of scheduler used for LfGP (see Section 6.5.2); (c) the sampling strategy used for expert
data; and (d) the method for training our baselines. To reduce the computational load of completing
these experiments, all of these variations were carried out exclusively for our Stack task.

Dataset Ablations

In Fig. 6.6, we show the results of the following dataset variations: (a) half and one and a half times
the original expert dataset size; (b) subsampling BE , taking only every 20th timestep, as is done in
(Kostrikov et al., 2019; Ho and Ermon, 2016); and (c) replacing the 200 extra (sT ,0) pairs in each
buffer with 200 regular trajectory (s, a) pairs. Notably, even in the challenging regimes of halving and
subsampling the dataset, LfGP still learns an expert-level policy (albeit more slowly).

Scheduler Ablations

Fig. 6.7a shows the results of testing the following scheduler variations: (a) Weighted Random Sched-
uler (WRS) only, removing the Handcrafted (HC) addition; (b) a learned scheduler, as is used in (Ried-
miller et al., 2018); and (c) no scheduler, in which only the main task is attempted, akin to the Intentional
Unintentional Agent (Riedmiller et al., 2018; Cabi et al., 2017). Both WRS versions learn slightly faster
than the learned scheduler, but all three methods outperform the No Scheduler ablation, replicating

1 2
0.0

0.2

0.4

0.6

0.8

1.0
LfGP Scheduler

0.0 0.5 1.0

Updates/steps (millions)

0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
es

s
R

at
e

WRS + HC

WRS only

Learned

No Sched.

Expert

(a) Scheduler ablations for training
LfGP.

1 2
0.0

0.2

0.4

0.6

0.8

1.0
Expert Sampling

0.0 0.5 1.0

Updates/steps (millions)

0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
es

s
R

at
e

LfGP

LfGP (BE
for D only)

LfGP (No

(sT ,0) bias)

DAC

DAC (BE
for D only)

DAC (No

(sT ,0) bias)

Expert

(b) Expert sampling ablations for
training LfGP/DAC.

1 2
0.0

0.2

0.4

0.6

0.8

1.0
BC/DAC Alternatives

0.0 0.5 1.0

Updates/steps (millions)

0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
es

s
R

at
e

BC (multi)

BC (multi,
early stop)

DAC

GAIL

BC

BC (early
stop)

Expert

(c) Baseline ablations for training
BC/DAC.

Figure 6.7: Scheduler, sampling, and baseline ablation results.

6.6. Experiments 101

0 1 2
0.0

0.5

1.0
Move Object to Stack

0 1 2
0.0

0.5

1.0
Stack to Unstack-Stack

0 1 2
0.0

0.5

1.0
Move Object to Bring

0 1 2
0.0

0.5

1.0
Bring to Insert

0.0 0.2 0.4 0.6 0.8 1.0

Environment Steps (millions)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

R
at

e

LfGP (from scratch) LfGP (transfer)

(a) Transfer learning results.

0 2 4
0.0

0.5

1.0
Stack

0 2 4
0.0

0.5

1.0
Unstack-Stack

0 2 4
0.0

0.5

1.0
Bring

0 2 4
0.0

0.5

1.0
Insert

0.0 0.2 0.4 0.6 0.8 1.0

Environment Steps (millions)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

R
at

e

LfGP (“reset” data) LfGP (“play” data)

(b) Play-based vs. reset-based expert data results.

Figure 6.8: Results on transfer learning and different schemes for collecting expert data.

results from (Riedmiller et al., 2018) demonstrating the importance of actually exploring all auxiliary
tasks. Perhaps surprisingly, the HC modification made little difference compared with WRS only, but
it is possible that for even more complex tasks, this could change.

Expert Sampling Ablations

For our main performance experiments, we modified standard AIL in two ways: (a) we added expert
buffer sampling to π and Q updates, in addition to the D updates, as is done in (Vecerik et al., 2018;
Kalashnikov et al., 2018); and (b) we biased the sampling ofBE when training D to be 95% final (sT ,0)
pairs. We tested both LfGP and DAC without these additions (see Fig. 6.7b). For LfGP, although these
modifications improve learning speed, they are not required to generate an expert policy. For DAC,
performance is quite poor regardless of these adjustments.

Baseline Ablations

To verify that we evaluated against fair baselines, we tested two alternatives to those used for our
main performance experiments (see Fig. 6.7c): (a) an early stopping variation of BC, in which each
expert buffer is divided into a 70%/30% train/validation split, taking the policy after validation error
has not improved for 100 epochs; and (b) the on-policy variant of DAC, also known as Generative
Adversarial Imitation Learning (GAIL) (Ho and Ermon, 2016). Notably, the early stopping variants of
BC, commonly used as baselines in other AIL work (Ho and Ermon, 2016; Kostrikov et al., 2019; Zolna
et al., 2021) perform dramatically more poorly than those used in our experiments, verifying recent
trends (Mandlekar et al., 2022; Hussenot et al., 2021).

102 Chapter 6. Learning from Guided Play

6.6.5 Transfer Learning Results

In this section, we show the results of experiments in which we attempt to reuse policies that learned to
complete one main task to complete another main task.2 Specifically, we are interested in reducing the
learning time for a main task compared with learning from scratch. To complete these experiments,
we chose a relatively simple formulation as a proof-of-concept. For each main task, we take a high-
performing existing model that uses a subset of auxiliary tasks required for the new main task and
save the parameters and the replay buffer of the existing model. We then train a new model on the
new task by loading the saved parameters and replay buffer, adding new model outputs for the new
main task. For Stack and Bring, we transfer from a model with Tmain = Move-Object and Taux =

{Open-Gripper, Close-Gripper, Reach, Lift}. For Unstack-Stack and Insert, we use Tmain = Stack
and Tmain = Bring models respectively, with the same Taux as in Section 6.6.3.

The results of these experiments are shown in Figure 6.8a. It is clear that in all cases except for
Unstack-Stack, transferring trained models from one main task to another is more sample efficient
than from scratch. This result is particularly clear in the case of Bring. For Unstack-Stack, train-
ing speed remains roughly consistent, but final performance is actually considerably lower with the
transfer model. Given that this experiment was only meant to prove that transfer learning would be
possible and could provide benefits in some cases, we leave investigating this issue for future work.

6.6.6 Expert Data Collection Schemes

As described in Section 6.5.4, there are (at least) two strategies for collecting expert data to be used
with LfGP. In this section, we compare the training performance of LfGP between reset-based and play-
based expert data. We show the comparison between the results of training LfGP with reset-based and
with play-based data in Figure 6.8b.3 For Stack, Unstack-Stack, and Bring, play-based data appears
to generally increase the learning speed of LfGP, implying that matching the transition distribution
does appear to be beneficial for learning, although there does not appear to be any significant effect
on final performance. Conversely, for Insert, play-based data appears to have only a marginal effect
on learning speed, while having fairly significant negative impact on final performance. This could be
because the Insert task is the least forgiving in terms of the required final state of the object, and reset-
based data may actually contain more transitions between near-insertions and complete insertions
than play-based data.

Compared with reset-based data, while play-based data assures that the expert distribution better
matches the learning distribution, it also has the downside of making it harder to reuse. In the case
of reset-based data, one can easily add a new dataset corresponding to a new task, while keeping
existing datasets the same. In play-based, and in our experiments, each individual main task has its
own dataset, given that the “transition” initial state distribution should contain data from Tall, which

2 These experiments were completed using an earlier version of LfGP before a variety of bug fixes and implementation
changes had improved general performance. Therefore, the overall performance on each task is lower than what we found
in our main results. Nonetheless, these results indicate that the LfGP framework allows for a degree of transfer learning.

3The same note from Footnote 2 applies to these experiments.

6.6.
Experim

ents
103

0.5 1.0 1.5 2.0
0.0

0.5

1.0

S
ta

ck

Stack

0.5 1.0 1.5 2.0
0.0

0.5

1.0

Open

0.5 1.0 1.5 2.0
0.0

0.5

1.0

Close

0.5 1.0 1.5 2.0
0.0

0.5

1.0

Lift

0.5 1.0 1.5 2.0
0.0

0.5

1.0

Reach

0.5 1.0 1.5 2.0
0.0

0.5

1.0

Move

0.5 1.0 1.5 2.0
0.0

0.5

1.0

U
n

st
ac

k
-S

ta
ck

Unstack-Stack

0.5 1.0 1.5 2.0
0.0

0.5

1.0

Open

0.5 1.0 1.5 2.0
0.0

0.5

1.0

Close

0.5 1.0 1.5 2.0
0.0

0.5

1.0

Lift

0.5 1.0 1.5 2.0
0.0

0.5

1.0

Reach

0.5 1.0 1.5 2.0
0.0

0.5

1.0

Move

0.5 1.0 1.5 2.0
0.0

0.5

1.0

B
ri

n
g

Bring

0.5 1.0 1.5 2.0
0.0

0.5

1.0

Open

0.5 1.0 1.5 2.0
0.0

0.5

1.0

Close

0.5 1.0 1.5 2.0
0.0

0.5

1.0

Lift

0.5 1.0 1.5 2.0
0.0

0.5

1.0

Reach

0.5 1.0 1.5 2.0
0.0

0.5

1.0

Move

1 2 3 4
0.0

0.5

1.0

In
se

rt

Insert

1 2 3 4
0.0

0.5

1.0

Open

1 2 3 4
0.0

0.5

1.0

Close

1 2 3 4
0.0

0.5

1.0

Bring

1 2 3 4
0.0

0.5

1.0

Lift

1 2 3 4
0.0

0.5

1.0

Reach

1 2 3 4
0.0

0.5

1.0

Move

0.0 0.2 0.4 0.6 0.8 1.0

Updates/steps (millions)

0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
es

s
R

at
e

LfGP (multi)

BC (multi)

DAC (single)

BC (single)

Figure 6.9: Performance for LfGP and the multitask baselines across all tasks, shaded area corresponds to standard deviation.

104 Chapter 6. Learning from Guided Play

Figure 6.10: LfGP and DAC trajectories of the gripper, blue block, and green block for four stack episodes with
consistent initial conditions throughout the learning process. The LfGP episodes, each including auxiliary task
sub-trajectories, demonstrate significantly more variety than the DAC trajectories.

changes depending on Tmain. One could achieve reusability in expert data by creating a separate play-
based dataset for each of the reusable tasks, and then use reset-based data for the non-reusable main
tasks, but we did not investigate this option for this work.

6.7 Performance Results for Auxiliary Tasks

The performance results for all multitask methods and all auxiliary tasks are shown in Fig. 6.9. Multi-
task BC has gradually decreasing performance on many of the auxiliary tasks as the number of updates
increases, which is consistent with mild overfitting. Intriguingly, however, multitask BC does achieve
quite reasonable performance on many of the auxiliary tasks (such as Lift) without needing any of
the extra environment interactions required by an online method such as LfGP or DAC. An interest-
ing direction for future work is to determine whether pretraining via multitask BC could provide any
improvements in environment sample efficiency. We did attempt to do this, but found that it resulted
in poorer final performance than training from scratch.

6.8 Learned Model Analysis

In this section, we further examine the learned Stack models of LfGP and DAC. We take snapshots of
the average performing models from LfGP and DAC at four points during learning: 200k, 400k, 600k,
and 800k model updates and environment steps. Although the initial gripper and block positions are

LfGP – Open-Gripper LfGP – Close-Gripper LfGP – Reach LfGP – Lift LfGP – Move-Object LfGP – Stack DAC – Stack

Figure 6.11: The policy outputs (arrows) and Q values (background) for each LfGP task and for DAC at 200k
environment steps. The arrows show velocity direction/magnitude, blue → green indicates open-gripper →
close-gripper. For Q values, red→ yellow indicates low→ high. The LfGP policies and Q functions are reason-
able for all tasks, while DAC has only learned to reach toward and above the green block.

6.9. Limitations 105

randomized between episodes during learning, for each snapshot, we reset the stacking environment
to a single set of representative initial conditions. We then run the snapshot policies for a single
exploratory trajectory, using the stochastic outputs of each policy as well as, for LfGP, the WRS+HC
scheduler. Trajectories from these runs are shown in Fig. 6.10.

DAC is unable to learn to grasp or even reach the blue block and ultimately settles on a policy
that learns to reach and hover near the green block. This is understandable—DAC learns a deceptive
reward for hovering above the green block regardless of the position of the blue block, because it has
not sufficiently explored the alternative of first grasping the blue block. Even if hovering above the
green block does not fully match the expert data, the DAC policy receives some reward for doing so,
as evidenced by the learned Q value on the right side of Fig. 6.11.

In comparison, even after only 200k environment steps, LfGP learns to reach and push the blue
block, and by 600k steps, grasp, move, and nearly stack it. By enforcing exploration of sub-tasks that
are crucial to completing the main task, LfGP ensures that the distribution of expert stacking data is
fully matched.

6.9 Limitations

Our approach is not without limitations. While we were able to use LfGP in six and seven-task settings,
the number of tasks for which this method would become intractable is unclear. LfGP needs access to
segmented expert data as well; in many cases, this is reasonable, and is also required to be able to reuse
auxiliary task data between main tasks, but it does necessitate extra care during expert data collection.
Also, LfGP requires pre-defined auxiliary tasks: while this is a common approach to hierarchical RL
(see (Pateria et al., 2021), Section 3.1, for numerous examples), choosing these tasks may sometimes
present a challenge. Finally, compared with methods that use offline data exclusively (e.g., BC), for our
tasks, LfGP requires many online environment steps to learn a high-quality policy. This data gathering
could be costly if human supervision was necessary. It is worth noting that, because LfGP is already
a multitask method, this final point could be partially resolved through the use of multitask reset-free
RL (Gupta et al., 2021).

6.10 Summary

In this chapter, we have shown how adversarial imitation learning can fail at challenging manipulation
tasks because it learns deceptive rewards. We demonstrated that this can be resolved with Learning
from Guided Play (LfGP), in which we introduce auxiliary tasks and the corresponding expert data,
guiding the agent to playfully explore parts of the state and action space that would have been avoided
otherwise. We demonstrated that our method dramatically outperforms both BC and AIL baselines,
particularly in the case of AIL. Furthermore, our method can leverage reusable expert data, making it
significantly more expert sample efficient than the highest-performing baseline, and its learned auxil-
iary task models can be applied to transfer learning. In future work, we intend to investigate transfer

106 Chapter 6. Learning from Guided Play

learning to determine if overall policy learning time can be reduced.
The practical benefit of IRL over BC, and therefore over methods presented in Chapters 3 to 5

is, generally, that performance can be continuously improved through autonomous exploration. This
can be interpreted as having the same benefit as DAgger (Ross et al., 2011), where we remove the
negative effect of distribution shift on policy performance. As stated, in this work, we found that
modern approaches to IRL actually had a dramatically reduced success rate compared with BC for
manipulation tasks. We showed that the performance of LfGP far exceeds both IRL and BC, which
ultimately realizes the promise of IRL over BC by removing the inevitable distribution shift from BC.

Chapter 7

Auxiliary Control from Examples

Until this point, we have largely ignored an important question in imitation learning: what if the expert
data is suboptimal? There are many reasons this can occur, such as the lack of a proficient expert, or due
to an inherent disconnect between the expert’s capabilities and the agent’s (such as the one discussed
in Chapter 4). In this chapter, we consider examples of success, in which only examples of completed
tasks are provided to the agent, rather than full expert trajectories.1 Examples of success are far less
susceptible to being suboptimal, and they are much easier to provide than full expert trajectories.

The exclusion of full expert trajectories completely circumvents the distribution shift problem ex-
plored in Chapters 3 to 6. The trade-off is that learning from exclusively sparse expert data is, similar to
having a sparse reward, a difficult exploration problem (see Section 2.3.3). The multitask exploration
tools developed and applied to inverse reinforcement learning in learning from guided play (LfGP,
Chapter 6) are a natural fit for improving exploration in the example-based setting. In this chapter,
we show that the direct application of LfGP to the example-based problem can result in overesti-
mated Q-values and poor performance, and we resolve the problem with a novel above-success-level
value penalty. Combining this penalty, the multitask framework for improving exploration from Chap-
ter 6, and expert data containing only examples of success, in this chapter we present VPACE: value-
penalized auxiliary control from examples. Across both simulated and real robotic environments, we
show that our approach substantially improves learning efficiency for challenging tasks, while main-
taining bounded value estimates. We compare with existing approaches to example-based learning,
inverse reinforcement learning, and an exploration bonus. Preliminary results also suggest that our
multitask example-based approach may learn more efficiently than the more common approaches of
using full trajectories or true sparse rewards.

Compared with Chapters 3 to 6, VPACE puts the lowest burden on an expert. As stated, collecting
sets of successful examples is, in general, far less laborious for a demonstrator than collecting full
trajectories, which were required for all of the previous chapters.

1Project website: https://papers.starslab.ca/vpace.

107

https://papers.starslab.ca/vpace

108 Chapter 7. Auxiliary Control from Examples

Figure 7.1: Example-based control (EBC) is inefficient due to poor exploration resulting from the inherently
sparse nature of individual examples of success as a means for feedback. Auxiliary control from examples (ACE)
remedies this by adding scheduled exploration of semantically meaningful auxiliary tasks, but can result in
poor performance due to the unbounded value error of highly exploratory data. We combine ACE with value
penalization (VP) as VPACE to efficiently learn from examples of success.

7.1 Motivation

Robotics presents a unique challenge to learning algorithms: because robotics data is costly to gather,
ensuring that algorithms have high sample efficiency is crucial. In reinforcement learning and imi-
tation learning, common approaches to improving sample efficiency incorporate a manually-defined
dense reward function or demonstration trajectories of an expert completing the task, respectively.
These additions, if they are available at all, can be highly biased or suboptimal. Sparse reward func-
tions are less biased (Ng and Jordan, 2003), but require significant exploration (Vasan et al., 2024).
Sparse reward functions may also be unavailable, because they require accurate state estimation and
the tuning of various parameters (e.g., how high must an object be lifted?).

We consider another form of feedback—example states of completed tasks, sometimes referred to
as example-based control (EBC) (Eysenbach et al., 2021). Obtaining example states can be far less labo-
rious than designing a reward function or gathering trajectories; practitioners can gather states from
a distribution that represents a completed task without consideration of how the states are reached.
However, just as in the case of sparse rewards, excluding information on how goal states are reached
can lead to highly inefficient learning (e.g., an example of a loaded dishwasher provides no information
about the long sequence of actions required to complete the task). In this work, our primary goal is to
improve the sample efficiency of example-based control.

To answer this question, we propose a new example-based control method, value-penalized aux-
iliary control from examples (VPACE). Since hierarchical RL (HRL) has shown success in improving
exploration in robotics domains (Nachum et al., 2019), we leverage an HRL approach known as sched-

7.2. Related Work 109

0 2 4

Env. Steps (×100k)

0.00

0.25

0.50

0.75

1.00

R
et

u
rn

(n
or

m
al

iz
ed

)

All Envs/Tasks (Average)
VPACE

SQIL

RCE

DAC

SQIL+RND

Figure 7.2: Average performance across all environments and tasks studied in this work. Results are shown as
an interquartile mean with five seeds per algorithm and task, and shaded regions show 95% stratified bootstrap
confidence intervals (Agarwal et al., 2021).

uled auxiliary control (SAC-X) (Riedmiller et al., 2018) to improve exploration in EBC. The SAC-X
framework enables practitioners to introduce a set of simple and often reusable auxiliary tasks, in ad-
dition to the main task, that help the agent to explore the environment. In this work, the full set of
auxiliary tasks that we use across all main tasks are reach, grasp, lift, and release. Instead of defining
main and auxiliary tasks with sparse rewards (Riedmiller et al., 2018) or full expert trajectories (Ablett
et al., 2023), we define tasks with examples. For each auxiliary task there is a corresponding auxiliary
policy that learns to match the set of examples. A scheduler periodically chooses and executes the
different auxiliary policies, in addition to the main policy, generating a more diverse set of data to
learn from.

We find that the naı̈ve application of SAC-X to EBC can result in overestimated values, leading to
sample inefficiency and poor performance. To remedy this, and show how SAC-X can be effectively
applied to EBC, this work makes the following contributions:

1. We demonstrate that the introduction of the SAC-X framework significantly improves explo-
ration and learning efficiency in EBC.

2. We remedy this overestimation problem by introducing a value-penalization method that is
based on the expected value of the examples.

3. We conduct experiments across four environments with 19 simulated and two real tasks to show
the improved sample efficiency and final performance of VPACE over EBC, inverse reinforce-
ment learning, and an exploration bonus.

4. We compare to the use of full trajectories and true sparse rewards, and observe that VPACE has
higher sample efficiency than both.

7.2 Related Work

Sparse rewards are a desirable form of feedback for learning unbiased, optimal policies in reinforce-
ment learning (RL), but they are not always obtainable, and present an immense exploration challenge
on long-horizon tasks (Gupta et al., 2022). Reward shaping (Ng et al., 1999) and dense rewards can help
alleviate the exploration problem in robotics (Popov et al., 2017; Yu et al., 2019), but designing dense

110 Chapter 7. Auxiliary Control from Examples

rewards is difficult for practitioners (Andrychowicz et al., 2017). An alternative to manually-defined
rewards is to perform inverse RL (IRL), in which a reward function is recovered from demonstrations,
and a policy is learned either subsequently (Ng and Russell, 2000) or simultaneously via adversarial
imitation learning (AIL) (Kostrikov et al., 2019; Reddy et al., 2020; Ho and Ermon, 2016; Fu et al., 2018a).

Like dense rewards, full trajectory demonstrations can be hard to acquire, suboptimal, or biased.
Unlike IRL/AIL, in example-based control (EBC), a learning agent is only provided distributions of
single successful example states. Previous EBC approaches include using generative AIL (GAIL, (Ho
and Ermon, 2016)) directly (VICE, (Fu et al., 2018b)), soft actor critic (SAC, (Haarnoja et al., 2018))
with an additional mechanism for generating extra success examples (VICE-RAQ, (Singh et al., 2019)),
performing offline RL with conservative Q-learning (CQL, (Kumar et al., 2020)) and a learned reward
function (Hatch et al., 2023), and using SAC with a classifier-based reward (RCE, (Eysenbach et al.,
2021)).

All EBC methods can naturally suffer from poor exploration, given that success examples are akin
to sparse rewards. Hierarchical reinforcement learning (HRL) aims to leverage multiple levels of ab-
straction in long-horizon tasks (Sutton et al., 1999), improving exploration in RL (Robert et al., 2023;
Nachum et al., 2019; Nair et al., 2018). Scheduled auxiliary control (SAC-X, (Riedmiller et al., 2018))
combines a scheduler with semantically meaningful and simple auxiliary sparse rewards or auxiliary
full expert trajectories (LfGP, (Ablett et al., 2023, 2021a; Xiang et al., 2024)). Like us, (Wu et al., 2021)
combined EBC with hierarchical learning, but their approach required a symbolic planner at test time,
and generated very slow policies: our policies are fast and reactive, and don’t require high-level plan-
ning at test time.

Learning value functions in the off-policy setting can be challenging due to the deadly triad (Sutton
and Barto, 2018). Regularization and clipping techniques have been applied to address various prob-
lems such as stabilizing the bootstrapping target (Andrychowicz et al., 2017; Adamczyk et al., 2024)
and preventing overfitting and out-of-distribution samples (Kumar et al., 2020; James et al., 2022). Our
proposed value-penalization technique specifically targets overestimation in EBC.

7.3 Example-Based Control with Value-Penalization and Auxiliary
Tasks

Our goal is to generate an agent that can complete a task given, as opposed to rewards or demonstra-
tions, only final-state examples of a successfully completed task, with as few environment interactions
as possible. We also assume access to final state examples of a small set of reusable auxiliary tasks.
We begin by formally describing the problem setting for example-based control in Section 7.3.1. In
Section 7.3.2, we describe how scheduled auxiliary tasks can be applied to example-based control.
Finally, motivated by the increased exploration diversity of the multitask framework, we propose a
new Q-estimation objective in Section 7.3.3 that leverages value penalization for improved learning
stability.

7.3. Example-Based Control with Value-Penalization and Auxiliary Tasks 111

7.3.1 Problem Setting

For a background on Markov decision processes (MDPs) and the notation used in this section, see
Section 2.2. For any variables xt, xt+1, we may drop the subscripts and use x, x′ instead when the
context is clear.

In this work, we focus on example-based control (EBC), a more difficult form of imitation learning
where we have no access to rewards or demonstrations, but instead are given a set of example states of
a completed task: s∗ ∈ B∗, where B∗ ⊆ S and |B∗| <∞. The goal is to (i) leverage B∗ and B to learn
or define a state-conditional reward function R̂ : S → R that satisfies R̂(s∗) ≥ R̂(s) for all (s∗, s) ∈
B∗×B, and (ii) learn a policy π̂ that maximizes the expected return π̂ = argmaxπ Eπ

[∑∞
t=0 γ

tR̂(st)
]
.

For any policy π, we can define the value function and Q-function respectively to be V π(s) =

Eπ [Q
π(s, a)] and Qπ(s, a) = R̂(s) + γEP [V π(s′)], corresponding to the return-to-go from state s

(and action a). Temporal difference (TD) algorithms aim to estimate V π or Qπ to evaluate a policy
(Sutton and Barto, 2018). Given a reward model R̂(·), we can say R̂(s∗), s∗ ∈ B∗, indicates reward for
successful states and R̂(s), s ∈ B, for all other states. Assuming that s∗ transitions to itself, then for
policy evaluation with mean-squared error (MSE), we can write the TD targets for non-successful and
successful states, y : S × S → R, of Q-updates as

y(s, s′) = R̂(s) + γEπ

[
Q(s′, a′)

]
, (7.1)

y(s∗, s∗) = R̂(s∗) + γEπ

[
Q(s∗, a′)

]
, (7.2)

where (s, ·, s′) ∼ B and s∗ ∼ B∗. The reward function R̂ can be based on a learned discriminator
that differentiates between s ∼ B and s∗ ∼ B∗, akin to a state-only version of adversarial imitation
learning (Kostrikov et al., 2019; Ho and Ermon, 2016; Fu et al., 2018a), or defined directly, such as
R̂(s∗) = 1 and R̂(s) = 0 (Eysenbach et al., 2021; Reddy et al., 2020).

7.3.2 Learning a Multitask Agent from Examples

We alleviate the challenging exploration problem of EBC by introducing auxiliary control from exam-
ples (ACE), an application of the scheduled auxiliary control framework (Riedmiller et al., 2018; Ablett
et al., 2023). This hierarchical approach aims to improve exploration by learning from examples of
simpler auxiliary tasks, in addition to a main task, to impose a curriculum where the completion of
easier tasks provides guidance on how to complete harder ones (Bengio et al., 2009). Auxiliary tasks
can be selected to have semantic meaning: in this work, the auxiliary tasks used are reach, grasp,
lift, and release. The task definitions, and sometimes the examples themselves, can also be reusable
between main tasks. Each task has a corresponding intention that learns from the given task-specific
examples. ACE leverages a scheduler to sequentially choose and execute individual intention policies
allowing for more diverse state coverage to facilitate faster learning of the main task. Crucially, be-
cause the method is off-policy, each intention can learn from data generated by any other intention,
and all policy interaction data, regardless of which intention generated it, is stored in B.

112 Chapter 7. Auxiliary Control from Examples

Figure 7.3: An example of fixed-period scheduler choices throughout an Unstack-Stack exploratory episode.

Formally, given an MDPM, a task T is defined by a task-specific example bufferB∗T . EBC methods
such as RCE (Eysenbach et al., 2021) aim to exclusively complete the main task Tmain, while ACE
adds auxiliary tasks Taux = {T1, . . . , TK} during learning. We refer the set of all tasks as Tall =

Taux ∪ {Tmain}. ACE agents are composed of two types of policies—intentions for each task and a
scheduler.

Intentions

For each task T ∈ Tall, the corresponding intention consists of a task-specific policy πT , Q-function
QT , and state-conditioned reward R̂T . ACE optimizes the task-specific policies by maximizing the
policy optimization objective

L(π; T) = EB,πT [QT (s, a)] . (7.3)

The task-specific Q-functions are optimized via minimization of the Bellman residual

L(Q; T) = EB,πT

[
(QT (s, a)− yT (s, s′))2

]
+ EB∗

T ,πT

[
(QT (s∗, a)− yT (s∗, s∗))2

]
, (7.4)

where yT are TD targets defined based on Eqs. (7.1) and (7.2) with task-specific reward R̂T . Intuitively,
each πT aims to maximize the estimated task-specific value QT .

Scheduler

Given the K +1 intentions, a scheduler periodically selects a policy πT to execute within an episode.
Since each πT aims to solve its own task, one can expect the transitions gathered composing by dif-
ferent πT within the same episode to be diverse. In practice, we implement the scheduler to have a
fixed period, guaranteeing a specific number of policy switches within each episode, depending on the
episode horizon. We use a weighted random scheduler (WRS) with hyperparameter pTmain where the
probability of choosing the main task or an auxiliary task is pTmain and pTk = (1 − pTmain)/K , respec-
tively. We combine a WRS with a small set of simple handcrafted high-level trajectories (e.g., reach
then grasp then lift). The handcrafted trajectory definitions are reusable between main tasks, and are
not required to use our framework. Ablett et al. (2023) demonstrated that this approach performed
better than a more complex learned scheduler. At test time, the scheduler is unused, and only πmain is
evaluated.

7.4. Experiments 113

7.3.3 Value Penalization in Example-Based Control

A scheduled multitask agent exhibits far more diverse behaviour than a single-task agent (Riedmiller
et al., 2018; Ablett et al., 2023). We show in Figs. 7.8 and 7.9 that the buffer generated by this behavior,
consisting of transitions resulting from multiple policies, can result in highly overestimated Q-values
in EBC. This overestimation leads the policy to maximize an incorrect objective. In this section, we pro-
pose a novel penalty for TD algorithms that encourages Q-estimates to stay within the range of valid
returns with respect to the reward model. This penalty applies to both the single-task and multitask
regime. For simplicity, we describe value penalization for the former.

Notice that regressing to TD targets Eqs. (7.1) and (7.2) will eventually satisfy the Bellman equation,
but in the short term the TD targets do not satisfy y(s, s′) ≤ y(s∗, s∗). This is because the TD targets
are computed by bootstrapping from a Q-estimate that may not satisfy the Bellman equation and can
exceed the bounds of valid Q-values, implying that approximation error of Q updated via MSE can be
uncontrollable. We resolve this issue with a penalty for our TD updates for s ∈ B. We add a minimum
and a maximum Qπ(s, a) as Qπ

min = R̂min/(1− γ) and Qπ
max = EB∗ [V π(s∗)], where R̂min ≤ R̂(s) for

all s ∈ B. Then, the value penalty is defined to be

Lπpen(Q) = λEB[(max(Q(s, a)−Qπ
max, 0))

2 + (max(Qπ
min −Q(s, a), 0))2], (7.5)

where λ ≥ 0 is a hyperparameter. When λ→∞, Eq. (7.5) becomes a hard constraint. It immediately
follows that y(s, s′) ≤ y(s∗, s∗) holds with TD updates Eqs. (7.1) and (7.2). We add value penalization
Lπpen(Q) to the MSE loss as a regularization term for learning the Q-function.

7.4 Experiments

We aim to answer the following questions through our experiments:

1. (RQ1) How does the sample efficiency of VPACE compare to EBC, inverse RL, and exploration-
bonus baselines?

2. (RQ2) How important is it to include value penalization (VP) with ACE?

3. (RQ3) How does our value penalty compare to existing Q regularizers?

4. (RQ4) How does VPACE compare to algorithms that use full trajectories and true sparse re-
wards?

7.4.1 Experimental Setup

Environments

We conduct experiments in a large variety of tasks and environments, including those originally used
in LfGP (Ablett et al., 2023) and RCE (Eysenbach et al., 2021). Specifically, the tasks in (Ablett et al.,
2023) involve a simulated Franka Emika Panda arm, a blue and green block, a fixed “bring” area for

114
C
hapter

7.
A
uxiliary

C
ontrol

from
Exam

ples

Figure 7.4: Samples from initial-state distribution ρ0, auxiliary task examples B∗aux, and main task examples B∗main for all tasks. The simulated Panda tasks
additionally share B∗release and B∗lift, while the Adroit original and dp environments share data since S does not change.

7.4. Experiments 115

Table 7.1: Environment details.

Obs. Space Act Space Aux. Tasks

Sim. Panda (Ablett et al., 2023,
2021a)

pos, vel, grip pos, prev. grip pos, obj. pos,
obj. vel

XYZ delta-pos, binary
grip

reach, grasp, lift,
release

Sawyer (Eysenbach et al., 2021; Yu
et al., 2019)

pos, obj. pos, grip pos, 3 frame stack XYZ delta-pos, binary
grip

reach, grasp

Adroit (Eysenbach et al., 2021; Ra-
jeswaran et al., 2018)

pos, vel, obj. pos, finger pos (up to) 6-DOF abs. / delta-
pos, finger pos

reach, grasp

Real Panda pos, obj. pos (ArUco (Garrido-Jurado et al.,
2014)), grip pos, 2 frame stack

X / XY delta-pos, binary
grip

reach, grasp

each block, and a small slot with <1 mm tolerance for inserting each block. This environment provides
various manipulation tasks that share the same state-action space. The tasks in (Eysenbach et al., 2021)
are a modified subset of those from (Yu et al., 2019), involving a simulated Sawyer arm, and three of the
Adroit hand tasks originally presented in (Rajeswaran et al., 2018). We also generate three modified
delta-position (dp) Adroit hand environments, because we found that policies learned in the original
absolute-position environments lack finesse and exploit simulator bugs. Finally, we study drawer and
door opening tasks with a real Franka Emika Panda.

Baselines

We consider many baselines, including an approach based on recursively classifying examples (RCE,
(Eysenbach et al., 2021)), a learned reward model for off-policy RL (DAC, (Kostrikov et al., 2019)), a
defined reward model for off-policy RL (SQIL, (Reddy et al., 2020)), and a combination of the best per-
forming baseline (SQIL) with a method that provides an exploration bonus to unseen data (SQIL+RND,
(Burda et al., 2019; Balloch et al., 2024)). Finding that SQIL significantly outperformed the baselines,
we use it as the default reward model for our main experiments, although VP and ACE can be added
to any of the approaches described above. Specifically, in our results, VPACE refers to SQIL with both
VP and ACE applied, while ACE refers to SQIL with ACE and without VP applied.

Implementation

Observation space, action space, and auxiliary task details are shown in Table 7.1. All simulated tasks
use 200 examples per task, while the real world tasks use 50 examples per task. All implementations are
built on LfGP (Ablett et al., 2023; Chan, 2020) and SAC (Haarnoja et al., 2018). For more environment
and implementation details, see our open-source code.

7.4.2 Performance Results

Main Task VP and ACE Benefits

To answer RQ1, we compare VPACE with existing EBC, inverse RL, and exploration-bonus approaches
on all tasks and evaluate their success rates. Since the Sawyer and Adroit tasks do not evaluate success,
we only report returns. Policies are evaluated at 25k (environment step) intervals for 50 episodes for the
simulated Panda tasks, 10k intervals for 30 episodes for the Sawyer and Adroit tasks, and 5k intervals

116
C
hapter

7.
A
uxiliary

C
ontrol

from
Exam

ples

Figure 7.5: Sample efficiency performance plots for main task only for all main tasks. Performance is an interquartile mean (IQM) across 5 timesteps and 5
seeds with shaded regions showing 95% stratified bootstrap confidence intervals (Agarwal et al., 2021). Other baselines (RCE, DAC, SQIL+RND) are shown
only in Fig. 7.6 for clarity. The use of ACE significantly improves upon SQIL, and the addition of VP (VPACE) resolves instability issues that occur in Stack,
Unstack-Stack, Bring, Insert, and hammer-human-v0-dp.

7.4. Experiments 117

0 2 4 6 8 10
0.0

0.5

1.0
Panda (Avg)

0 1 2 3 4 5
0.0

0.5

1.0

R
et

u
rn

(n
or

m
) Sawyer (Avg)

0 3 6 9 12 15
0.0

0.5

1.0
Adroit (Avg)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Env. Steps (×100k)

S
u

cc
es

s
R

at
e

VPACE

ACE

SQIL

RCE

DAC

SQIL+RND

Figure 7.6: Average performance across all simulated main tasks, separated by environment, including baselines
not shown in Fig. 7.5.

for 10 episodes for the real Panda tasks. Fig. 7.5 shows that VPACE has significant improvement over
other approaches in both sample efficiency and final performance, particularly for the most difficult
tasks, such as Unstack-Stack and Insert. We can observe that VPACE can consistently solve all
tasks, while other EBC methods have significantly wider confidence intervals, especially in the Panda
environment. Another notable observation is that SQIL+RND is unable to improve upon SQIL. We
speculate that the exploration bonus term actually diverts the policy from solving the main task in
order to maximize the intrinsic return.

ACE without VP

We also include ACE in Fig. 7.5 to address RQ2. In the simulated Panda environment, ACE performance
significantly degrades as training continues. As elaborated on in Section 7.4.3, we hypothesize that this
is correlated to value overestimation being exacerbated by executing multiple policies. For Sawyer and
Adroit environments, VP does not provide benefit (i.e., VPACE and ACE have similar performance),
which might be due to the tasks being simpler and having smaller observation spaces than the Panda
tasks. Nonetheless, VP does not harm performance and including auxiliary tasks provides a clear
benefit.

Real Robot Performance

The sample-efficiency improvement gained via VPACE allowed us to test it on real-life tasks (two right
columns of Fig. 7.4), where the bottom right plots in Fig. 7.5 demonstrate that VPACE can solve real-
world tasks in only a few hours of real execution time, whereas SQIL does not solve either task. Our real
robot tasks execute at 5 Hz, and, with a small amount of time to allow for environment resetting, 1000
environment steps corresponds to roughly 4 real minutes, meaning RealDrawer is learned by VPACE
in about 100 minutes, while RealDoor is learned in about 200 minutes. The real world examples of
success, for both main tasks and auxiliary tasks, are collected in less than a minute. Our open-source
code contains further implementation details for our real world setup.

118 Chapter 7. Auxiliary Control from Examples

0 1 2 3 4 5

0

100

Unstack-Stack

0 2 4 6 8 10

0

50

100

Insert

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Env. Steps (×100k)

E
p

is
od

e
R

et
u

rn

VP

CQL

C2F

Figure 7.7: Results for different example-based approaches to regularizing Q estimates. We measure perfor-
mance using return instead of success rate as the alternatives achieved no success at all.

Figure 7.8: Difference between Q-values and expected value for example states for partially trained agents
(snapshot from 300k environment steps) for a single episode rollout. The dashed lines show the maximum
output across the seeds, and the shaded regions show the standard deviation between seeds. VP ensures that
the maximum stays below 0, verifying that y(s, s′) ≤ y(s∗, s∗).

7.4.3 Analysis and Additional Results

Q-Value Overestimation and Value Penalization

To verify that VP enforces y(s, s′) ≤ y(s∗, s∗), we took snapshots of each learned Unstack-Stack

and Insert agent, for both VPACE and ACE, at 300k steps and ran each policy for a single episode,
recording per-timestep Q-values. Instead of showing Q-values directly, in Figs. 7.8 and 7.9, we show
Q(st, at) − Es∗∼B∗ [V (s∗)], which should be at most 0 for y(s, s′) ≤ y(s∗, s∗) to hold. ACE clearly
violates y(s, s′) ≤ y(s∗, s∗), while VPACE does not. Furthermore, Fig. 7.9 shows examples of the
consequences of overestimated Q-values: for (st, at) pairs that appear to be out-of-distribution (OOD),
Q(st, at)− Es∗∼B∗ [V (s∗)] > 0, and the resulting policy reaches these states instead of the true goal.

To understand the importance of the y(s, s′) ≤ y(s∗, s∗) constraint, we investigate other choices
of regularization techniques (RQ3), in particular a L2 regularizer on Q-values (C2F, (James et al., 2022))
and a regularizer that penalizes the Q-values of out-of-distribution actions (CQL, (Kumar et al., 2020)).
Fig. 7.7 indicates that using other existing regularization techniques does not enable ACE to perform
well. We suspect that the L2 regularizer may be too harsh of a penalty on all learning, while (Kumar
et al., 2020) does not have any penalization on the magnitudes of Q-values in general, meaning that
they can potentially still have uncontrollable bootstrapping error.

Comparison to Full Demonstrations and True Rewards

A practitioner may ask how our method compares to using traditional forms of feedback, such as using
full-expert trajectories and inverse reinforcement learning (IRL), or using RL with true sparse rewards

7.4. Experiments 119

Figure 7.9: Q(st, at)− EB∗ [V π(s∗)] for parts of episodes used to generate the results from Fig. 7.8. It appears
that the use of ACE without VP results in overestimated Q-values for out-of-distribution (OOD) (st, at) pairs
(e.g., grasping both blocks simultaneously, or nearly inserting the incorrect block), resulting in highly suboptimal
policies. VPACE, on the other hand, correctly learns to label a potentially OOD state with low value.

0 1 2 3 4 5
0.0

0.5

1.0
Unstack-Stack

0 2 4 6 8 10
0.0

0.5

1.0
Insert

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Env. Steps (×100k)

S
u

cc
es

s
R

at
e

VPACE

+Trajs

+Trajs
& Acts

SAC-X

Figure 7.10: Results for changes in the form of feedback. SAC-X indicates the use of true environment sparse
rewards only.

(RQ4). To test the former, we include two variants: a buffer containing both 200 examples and 200
(s, a) pairs from expert trajectories of states only (+Trajs), and the same for both states and actions
(+Trajs & Acts), resulting in two variants of LfGP (Ablett et al., 2023) with VP. For sparse rewards, we
use the provided sparse-reward function from the task (SAC-X), which is scheduled auxiliary control
(Riedmiller et al., 2018) with VP, although VP is based on the maximum theoretical return in these
experiments, rather than y(s, s′) ≤ y(s∗, s∗) since s∗ are not available to SAC-X.

Fig. 7.10 shows that the peak performance is reduced when learning with expert trajectories. We
hypothesize that the divergence minimization objective leads to an effect, commonly seen with dense
reward functions, known as reward hacking (Skalse et al., 2022). This effect was also previously shown
to occur in inverse RL (Ablett et al., 2023). In short, the agent receives the same positive reward for
reaching intermediate states in the demonstration as it does for reaching final states, despite the fact
that intermediate states may not lead to the optimal final states. This result suggests that inverse
RL/adversarial IL can be significantly improved by switching to example-based control. Learning with
a sparse-reward function only does not accomplish the main task at all in either Unstack-Stack nor
Insert, exhibiting substantially poorer performance than all other baselines. This result matches

120 Chapter 7. Auxiliary Control from Examples

0 1 2 3 4 5
0.0

0.5

1.0
Unstack-Stack

0 2 4 6 8 10
0.0

0.5

1.0
Insert

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Env. Steps (×100k)

S
u

cc
es

s
R

at
e

200 Ex.,
λ = 10
λ = 1

λ = 100

10 Ex.

100 Ex.

Figure 7.11: Variations of success example quantity and λ value.

previous research in which it has been shown that a demonstration buffer can significantly improve
sample efficiency in RL (Nair et al., 2018; Kalashnikov et al., 2018). Our results show that an exam-
ple buffer may provide a similar effect, and may even be a more optimal form of guidance than full
demonstrations.

Expert DataQuantity and λ Value

Finally, to examine the robustness of our approach, we also compare various values for the quantity
of examples of success (200 / task for main experiments) as well as the value of λ, which controls the
strength of value penalization (10.0 for main experiments). Fig. 7.11 shows that changing the value of
λ to 1 and 100 has no effect on performance. Dropping from 200 to 100 examples has only a minor
negative impact on performance in Insert, while the drop to 10 examples has a significant negative
effect. However, even with only 10 examples, performance on Unstack-Stack still far exceeds all
other baselines.

7.5 Limitations

VPACE suffers from several limitations, though many of them are inherited from the use of reinforce-
ment learning and learning from guided play. For an expansion of this section, including these inher-
ited limitations, see Section B.5. In this work, we exclusively learn from numerical state data, rather
than raw images. Numerical state data is not always available, since it requires an external system for
state estimation, and it may allow for poorer transferability between tasks where the components of
the state change. Finally, raw images may be required for tasks involving objects that are not rigid.
As well, we claim that example distributions are easier to generate than full expert trajectories, but
for certain tasks, generating these example distributions may also be challenging. Finally, tasks we
investigate in this work have roughly unimodal example success state distributions, and our method
may not gracefully handle multimodality.

7.6 Summary

In this chapter, we presented VPACE—value-penalized auxiliary control from examples, where we cou-
pled scheduled auxiliary control with value penalization in the example-based setting to significantly
improve learning efficiency. We showed that VPACE resolves Q overestimation, greatly improves the

7.6. Summary 121

sample efficiency of example-based control against a wide set of baselines, and shows improved perfor-
mance compared with with other forms of feedback, including true sparse rewards and full trajectories.
In fact, VPACE had improved performance over its counterpart that uses full trajectories of expert data,
LfGP, from Chapter 6.

Unlike the methods presented in Chapters 3 to 6, VPACE does not directly solve the distribution
shift problem presented in Section 2.4.2, because the example-only expert data provided to VPACE can-
not be used to train a policy via supervised learning. VPACE, and other approaches to example-based
control (EBC), can be interpreted as a way of abstracting away the distribution shift problem alto-
gether; the policy finds its own way, possibly more optimally than a human would, to manipulate the
environment and ultimately generate a distribution that matches the expert example distribution. An-
alyzing the theoretical efficiency and worst-case total cost of such an approach would therefore require
different tools than those presented in Section 2.4.3, and is a possible direction for future work. Other
opportunities for future work include the further investigation of learned approaches to scheduling,
as well as the autonomous generation of auxiliary task definitions.

Chapter 8

Conclusion

This dissertation showed how we can modify imitation learning (IL) algorithms to make them both
less susceptible to distribution shift and more sample efficient. Chapters 3 and 4 were applied to of-
fline, supervised learning, Chapter 5 was applied to a hybrid between online and offline learning, and
Chapters 6 and 7 were applied to online, inverse reinforcement learning (IRL). In Chapters 3 and 4, we
showed that leveraging prior knowledge about a potential distribution shift can significantly improve
policy performance. In Chapter 5, we showed that an interactive approach to supervised IL, which
inherently resolves distribution shift, can be made less costly to an expert with a learned approach to
predicting failures. In Chapter 6, we identified a deceptive reward problem in IRL, and resolved the
problem with the addition of demonstrations of auxiliary tasks, in addition to the main task. Finally,
in Chapter 7, we replaced full expert demonstrations in IRL with examples of success, fully resolving
distribution shift but introducing a challenging exploration problem, which we resolve through the
application of auxiliary examples and value-penalization.

The methods presented in Chapters 3 to 7 can be thought of as being on a continuum from the
highest expert burden to the lowest. To apply a method similar to Chapter 3, the expert must have
knowledge of the expected test distribution in order to deliberately widen the training distribution to
match. In Chapter 4, the number of demonstrations required to be collected is significantly reduced
(on the order of hundreds in Chapter 3 to the order of tens), because we are able to directly modify the
demonstrations to improve their quality.

Since Chapter 3 and Chapter 4 both deal exclusively with behavioural cloning, they are still sus-
ceptible to inevitable distribution shift. In real applications, a practitioner applying Chapters 3 and 4
could alternately collect more demonstrations, evaluate the policy, and then collect more demonstra-
tions to attempt to improve performance. As stated in Section 2.4.3, there is no theoretical guarantee in
BC for the number of expert demonstrations that will be required to achieve expert-like performance,
and much work has shown that simply scaling the number of demonstrations provides exponentially
smaller gains in performance (Chapter 3, (Mandlekar et al., 2023; Ankile et al., 2024)). Naturally, DAg-
ger (Ross et al., 2011) (see Sections 2.4.2 and 2.4.3) is the ideal choice for resolving this inevitable
distribution shift, resulting in a worst-case error reduction from O(T 2ϵ) to O(Tϵ), but DAgger is not
directly applicable to scenarios where the expert is a human being. In FIRE, presented in Chapter 5, we

122

8.1. Summary of Contributions 123

create a single algorithm for unifying data collection and evaluation. This is combined with a scheme
for providing corrective data, while simultaneously reducing the burden to the expert by predicting
failures. The scheme is meant to be an alternative to DAgger for human experts, providing a similar
benefit by ultimately resolving distribution shift.

Unfortunately, FIRE still provides no guarantees on how long the algorithm must run to achieve
expert-like performance. While DAgger has a potential upper bound of O(T log(T)) iterations to
achieve expert-like performance, FIRE introduces many suboptimalities that make it challenging to
provide a theoretical upper bound on the number of iterations needed. Inverse reinforcement learning
(IRL) provides a framework that enables a policy to autonomously explore and match the original
expert distribution, theoretically resolving distribution shift with fully online learning. The expert
only needs to provide a small number of demonstrations at the start of training. Our results and
analysis in Chapter 6 show that IRL can be susceptible to finding a local optimum, where the policy
distribution only partially matches expert distribution. LfGP, also presented in Chapter 6, resolves this
susceptibility to local optimums by introducing exploration of semantically meaningful auxiliary tasks.
Results in Chapter 6 even show that with decreasing amounts of expert data, we can still achieve expert-
like performance, clearly demonstrating the reduction of expert burden compared with Chapters 3 to 5.

In Chapters 3 to 6, expert demonstrations are all assumed to be full trajectories, which introduces
a variety of potential issues: full-trajectory demonstrations (i) require a means of teleoperation or
kinesthetic teaching, which is not always possible, (ii) can be suboptimal, and (iii) can potentially be
time-consuming to collect. VPACE, presented in Chapter 7, shows that the LfGP framework can be
applied to the setting where we only have examples of success, which are far easier to collect and
guaranteed to be optimal. The application of LfGP to the example-based setting does not work out of
the box. VPACE requires a value penalty to resolve overestimated value functions, along with many
algorithmic improvements, detailed in both Chapter 7 and Chapter B. Altogether, VPACE is the culmi-
nation of our efforts to produce an imitation learning method that achieves our two overarching goals:
(i) it resolves distribution shift through autonomous distribution matching via fully online learning,
and (ii) it puts minimal burden on the expert, requiring examples of success only and no further inter-
action by the expert.1

Our hope is that our approaches will help reduce the distribution shift and sample inefficiency that
limit the applicability of IL and IRL to real world robotics. The remainder of this section includes a
summary of the novel contributions associated with each chapter, a note on experimental task selection
in this thesis, a short description of potential directions for future work, and a few general thoughts
regarding the value of imitation learning in real world robotics.

8.1 Summary of Contributions

This dissertation’s main novel contributions, summarized by chapter, are described in this section.
1For example, part of this dissertation was written while the policies for our real robot RealDoor and RealDrawer tasks

were obtained through completely autonomous exploration, with no interaction from the author. The expert data for each
of these tasks were obtained in less than a minute.

124 Chapter 8. Conclusion

8.1.1 Multiview Manipulation from Demonstrations

We proposed an approach to modifying the initial state distribution of a mobile manipulator for ma-
nipulation tasks to increase robustness. Our contributions were:

1. a demonstration of how supervised imitation learning fails in a series of challenging contact-rich
tasks in the multiview domain;

2. experimental validation that our approach allows a multiview policy to learn a far more robust
policy with an equivalent quantity of data, on both simulated and real mobile manipulators, and
is not penalized in the fixed-view versions of tasks;

3. experiments showing that multiview policies can succeed on out-of-distribution data;

4. an analysis of the features learned by a multiview policy, showing increased spatial correlation
between views compared with fixed-view policies; and

5. open source data and code to reproduce our results.

8.1.2 Force-Matched Demonstrations

We presented approaches for generating force-matched demonstration data, in addition to a learned
approach to multimodal visuotactile sensor mode switching. Our contributions were:

1. a method for tactile force matching: using the readings from a visuotactile sensor, we modify
recorded kinesthetic teaching poses so that a new, replayed trajectory recovers the recorded
forces and poses to generate a force-matched replay;

2. a novel method for switching between visual and tactile modes with a multimodal visuotactile
sensor;

3. an extensive experimental evaluation of the benefits of including STS visual and tactile data as
inputs to a multimodal control policy on a real robotic manipulator, especially when compared
to a more standard eye-in-hand camera; and

4. open source code to encourage reproduction of our results.

8.1.3 Failure Identification for Interventions

We introduced failure identification to reduce expert burden (FIRE), a method for identifying failures
in interactive IL. Our contributions were:

1. a novel method for predicting failures in interactive learning based on the output from a dis-
criminator and a threshold that is updated automatically based on human preferences;

2. a statistically grounded improvement to our failure prediction approach based on Gaussian dis-
criminant analysis (GDA);

8.1. Summary of Contributions 125

3. experimental validation of the improvement of our approach over standard behavioural cloning
in a variety of simulated robotic domains, including multiview ones introduced in Chapter 3;
and

4. a comparison of our methods for failure prediction with existing approaches.

8.1.4 Learning from Guided Play

We proposed learning from guided play (LfGP), an application of the scheduled auxiliary control
(Riedmiller et al., 2018) framework to adversarial imitation learning (AIL), a popular form of inverse
reinforcement learning. Our contributions were:

1. a novel application of the scheduled auxiliary control framework to AIL that learns a reward and
policy for a challenging main task by simultaneously learning rewards and policies for auxiliary
tasks;

2. manipulation experiments in which we demonstrate that AIL fails, while LfGP significantly out-
performs both AIL and behavioural cloning;

3. an extension of our method to transfer learning;

4. empirical analysis, including a simplified representative example and visualization of the learned
models of LfGP and AIL, to better understand why AIL fails and how LfGP improves upon it;
and

5. open source code, models, and data to encourage reproduction of our results.

8.1.5 Auxiliary Control from Examples

We introduced value-penalized auxiliary control from examples (VPACE), an extension of LfGP to
example-based control (EBC). Our contributions were:

1. a demonstration showing that the introduction of the scheduled auxiliary control framework
significantly improves exploration and learning efficiency in EBC;

2. a novel value-penalization method based on the expected value of the provided examples to
resolve an overestimation problem that occurs as a result of naı̈vely applying the scheduled
auxiliary control framework to EBC;

3. experimental results across four environments with 19 simulated and two real robot tasks show-
ing improved sample efficiency and final performance of VPACE over EBC, inverse reinforce-
ment learning, and an exploration bonus;

4. a comparison of VPACE to the use of full trajectories and true sparse rewards as feedback, ob-
serving that VPACE has higher sample efficiency than both; and

5. open source code and data to encourage reproduction of our results.

126 Chapter 8. Conclusion

8.2 On Task Selection, Data-Driven Robotics, and Inductive Biases

Unfortunately, most of the tasks that are of practical interest (e.g., loading a dishwasher) are both
challenging to model and challenging to collect sufficient data to learn, making them bad candidates for
an academic research setting. Instead, we are forced to choose easier tasks that clearly have inductive
biases that would make them easier to complete. If we were trying to, for example, generate policies
with optimal performance in door opening (which is used as an example task in Chapters 3, 4 and 7),
we should add further inductive biases such as knowledge about hinges or the difference between a
knob and a handle. Generally, the more inductive biases one adds, the better performance one is likely
to get with less data, but also the less likely that those assumptions will generalize to multiple tasks
or domains. We avoid using inductive biases as much as possible, with the hope that our methods
will generalize to more complicated tasks (where inductive biases may not be as obvious) given larger
resources and the ability to collect more data.

8.3 Future Research Directions

The approaches to mitigating distribution shift in Chapters 3 and 4 are based on leveraging prior knowl-
edge about how a testing distribution will differ from a training distribution. While the approach in
Chapter 5 resolves the same problem without requiring prior knowledge, it can be extremely costly in
practice, and it cannot easily be safely applied to many systems (e.g., with fast-moving robots). Instead,
the ideal system might be to use a test regime that detects OOD data, recovers from it autonomously
(but likely suboptimally), and then provides some kind of later feedback to the operator on what new
data they should add to a system to improve the agent.

The approaches described in this dissertation are fairly clearly divided between behavioural cloning
(BC) in Chapters 3 to 5 and inverse reinforcement learning (IRL) in Chapters 6 and 7. There have been
attempts to combine these two ideas together (Peters and Kober, 2009; Nair et al., 2021; Lu et al., 2021),
but it is far from a solved problem. BC has the large advantage of requiring no environmental explo-
ration to learn a policy, while IRL is capable of potentially resolving distribution shift. The obvious
solution would be to train a policy with BC and then gradually improve the policy with (I)RL (Ra-
jeswaran et al., 2018), but in the off-policy setting, this continues to be an unsolved problem.

The problem becomes even more challenging if you would like to learn from an offline dataset of
nonoptimal data (i.e., not necessarily from an expert, or not from an expert completing a single specific
task). Learning policies from large batches of offline data is a very active research area (Fujimoto et al.,
2019; Lynch and Sermanet, 2021; Levine et al., 2020), and its solution is arguably is the true promise of
approaches to learning agents directly from data. Approaches explored in Chapters 6 and 7, in which
multiple policies are learned to maximize similarity to different expert datasets, may have value in the
fully offline regime.

8.4. On the Value of Imitation Learning to Robotics 127

8.4 On the Value of Imitation Learning to Robotics

Apart from a few sentences in the introduction and individual chapter motivation sections, this dis-
sertation is written under the assumption that imitation learning (IL) provides a viable path for future
work in robotics, and spends little time addressing questions of whether IL should be used at all. Prac-
titioners are often focused on whether to use more traditional forms of perception and control or
learning-based approaches, but in reality, all learning-based approaches typically use some degree of
traditional perception or control. An often overlooked, but extremely crucial, part of IL (and RL) is
the design of the observation and action space. This dissertation spent little time describing how and
why observation and action spaces were chosen for each robotic platform, but a very large amount of
experimental trial-and-error went into these choices. With the goal of creating a self-driving car or
autonomous mobile manipulation robot, excluding the use of well-developed navigation tools for de-
termining one’s place in the world, for example, would be nonsensical. One could expect similarly poor
results from excluding well-developed controls tools and modelling for converting motion commands
to motor commands.

The true value of IL, then, is likely not in its ability to (partially) circumvent the need for highly ac-
curate modelling, but rather in its ability to learn things that we do not currently understand. Consider
a robot designed exclusively to open doors: it should be able to open any type of door, with the infinite
possible configurations of door sizes, weights, appearances, handle types, hinge types, preferred door
opening speeds, and other considerations. A single hand-crafted control policy with, correspondingly,
infinite conditional statements, seems destined to fail. Is there a way to model our understanding of
door opening in a way that covers every single one of these cases? Of course, there very well may
be, but we certainly do not have that understanding now. In the meantime, we can collect as much
data as possible of doors being opened, and train policies leverage this data, with the hope that the
learned policies may generalize to new door poses and configurations. Any one of the techniques in-
vestigated in this dissertation could be directly applied in the case of a significantly increased dataset
size, covering a much wider range of possible initial configurations. Many groups are, in fact, dramat-
ically scaling up dataset sizes in robotics (not exclusively for door-opening, obviously), and the level
of success of doing so remains to be seen. In any case, the principles of IL clearly have a place in the
future of our autonomous systems, but its combination with our best work in traditional approaches
to perception, navigation, planning, and control are likely where the ripest fruits lie.

Appendices

128

Appendix A

Learning from Guided Play –
Additional Details

A.1 Simulated Panda Play Environment Details

A screenshot of our environment, simulated in PyBullet (Coumans and Bai, 2019), is shown in Fig. A.1.
We chose this environment because we desired tasks that a) have a large distribution of possible initial
states, representative of manipulation in the real world, b) have a shared observation/action space
with several other tasks, allowing the use of auxiliary tasks and transfer learning, and c) require a
reasonably long horizon and significant use of contact to solve. The environment contains a tray with
sloped edges (to keep the blocks within the reachable workspace of the end-effector), as well as a green
and a blue block, each of which is 4 cm × 4 cm × 4 cm and has a mass of 100 g. The dimensions of
the lower part of the tray, before reaching the sloped edges, are 30 cm × 30 cm. The dimensions of
the ‘bring’ boundaries (shaded blue and green regions) are 8 cm × 8 cm, while the dimensions of the
insertion slots, which are directly in the center of each shaded region, are 4.1 cm × 4.1 cm × 1 cm.
The boundaries for end-effector movement, relative to the tool center point that is directly between
the gripper fingers, are a 30 cm × 30 cm × 14.5 cm box, where the bottom boundary is low enough to
allow the gripper to interact with objects, but not to collide with the bottom of the tray.

See Table A.1 for a summary of our environment observations. In this work, we use privileged
state information (e.g., block poses), but adapting our method to exclusively use image-based data is
straightforward since we do not use hand-crafted reward functions as in (Riedmiller et al., 2018).

The environment movement actions are 3-DOF translational position changes, where the position
change is relative to the current end-effector position. We leverage PyBullet’s built-in position-based
inverse kinematics function to generate joint commands. Our actions also contain a fourth dimension
that corresponds to actuating the gripper. To allow for the use of policy models with exclusively con-
tinuous outputs, this dimension accepts any real number, with any value greater than 0 commanding
the gripper to open, and any number less than 0 commanding it to close. Actions are supplied at a
rate of 20 Hz, and each training episode is limited to 18 seconds, corresponding to 360 time steps per

129

130 Appendix A. Learning from Guided Play – Additional Details

Figure A.1: An image of our multitask environment immediately after a reset has been carried out.

Table A.1: The components used in our environment observations, common to all tasks. Grip finger position is
a continuous value from 0 (closed) to 1 (open).

Component Dim Unit Privileged? Extra info

EE pos. 3 m No rel. to base
EE velocity 3 m/s No rel. to base
Grip finger pos. 6 [0, 1] No current, last 2
Block pos. 6 m Yes both blocks
Block rot. 8 quat Yes both blocks
Block trans vel. 6 m/s Yes rel. to base
Block rot vel. 6 rad/s Yes rel. to base
Block rel to EE 6 m Yes both blocks
Block rel to block 3 m Yes in base frame
Block rel to slot 6 m Yes both blocks
Force-torque 6 N,Nm No at wrist

Total 59

episode. For play-based expert data collection, we also reset the environment manually every 360 time
steps. Between episodes, block positions are randomized to any pose within the tray, and the end-
effector is randomized to any position between 5 and 14.5 cm above the tray, within the earlier stated
end-effector bounds, with the gripper fully opened. The only exception to these initial conditions is
during expert data collection and agent training of the Unstack-Stack task: in this case, the green block
is manually set to be on top of the blue block at the start of the episode.

A.2 Reinforcement Learning Implementation Details

Our implementation builds on RL Sandbox (Chan, 2020), an open-source PyTorch (Paszke et al., 2019)
framework for RL algorithms. For learning the discriminators, we follow DAC and apply a gradient
penalty for regularization (Gulrajani et al., 2017; Kostrikov et al., 2019). We optimize the intentions via
the reparameterization trick (Kingma and Welling, 2013), which allows for taking gradients through

A.3. Procedure for Obtaining Experts 131

the policy distributions. As is commonly done in deep RL, we use the clipped double Q-learning trick
(Fujimoto et al., 2018) to mitigate overestimation bias (van Hasselt et al., 2016) and use a target network
to mitigate learning instability (Mnih et al., 2015) when training the policies and Q-functions. We also
learn the temperature parameter αT separately for each task T (see Section 5 of (Haarnoja et al.,
2019) for more details on learning α). For Generative Adversarial Imitation Learning (GAIL), we use a
common open-source PyTorch implementation (Kostrikov, 2018).

A.3 Procedure for Obtaining Experts

As stated, we used SAC-X (Riedmiller et al., 2018) to train models that we used for generating expert
data. We used the same hyperparameters that we used for LfGP (see Table A.2), apart from the dis-
criminator, which, of course, does not exist in SAC-X. See Section A.4 for details on the hand-crafted
rewards that we used for training these models. For an example of gathering play-based expert data,
please see our attached video.

We made two modifications to regular SAC-X to speed up learning. First, we pre-trained a Move-
Object model before transferring this model to each of our main tasks, as we did in Section 5.3 of our
main paper, since we found that SAC-X would plateau when we tried to learn the more challenging
tasks from scratch. The need for this modification demonstrates another noteworthy benefit of LfGP—
when training LfGP, main tasks could be learned from scratch, and generally in fewer time steps,
than it took to train our experts. Second, during transfer to the main tasks, we used what we called
a conditional weighted scheduler instead of a Q-Table: we defined weights for every combination
of tasks, so that the scheduler would pick each task with probability P (T (h)|T (h−1)), ensuring that
∀T ′ ∈ Tall,

∑
T ∈Tall

P (T |T ′) = 1. The weights that we used were fairly consistent between main
tasks, and can be found in our packaged code. The conditional weighted scheduler ensured that every
task was still explored throughout the learning process, so that we would have high-quality experts for
every auxiliary task in addition to the main task. This scheduler can be considered as a more complex
alternative to the weighted random scheduler or the addition with handcrafted trajectories from our
main paper, and again shows the flexibility of using a semantically-meaningful multitask policy with
a common observation and action space.

A.4 Evaluation

As stated in our paper, we evaluated all algorithms by testing the mean output of the main task policy
head in our environment and determining a success rate based on 50 randomly selected resets. These
evaluation episodes were run for 360 time steps to match our training process, and if a condition for
success was met within that time, they were recorded as a success. The rest of this section describes
in detail how we evaluated ‘success’ for each of our main and auxiliary tasks.

As previously stated, we trained experts using a modified SAC-X (Riedmiller et al., 2018) that
required us to define a set of reward functions for each task, which we include in this section. The

132 Appendix A. Learning from Guided Play – Additional Details

authors of (Riedmiller et al., 2018) focused on sparse rewards but also showed a few experiments in
which dense rewards reduced the time to learn adequate policies, so we chose to use dense rewards.
We note that many of these reward functions are particularly complex and required significant manual
shaping effort, further motivating the use of an imitation learning scheme like the one presented in our
paper. It is possible that we could have made do with sparse rewards, such as those used in (Riedmiller
et al., 2018), but our compute resources made this impractical—for example, in (Riedmiller et al., 2018),
their agent took 5000 episodes× 36 actors× 360 time steps = 64.8 M time steps to learn their stacking
task, which would have taken over a month of wall clock time on our fastest machine. To see the
specific values used for the rewards and success conditions described in these sections, please review
our code.

Unless otherwise stated, each of the success conditions in this section had to be held for 10 time
steps, or 0.5 seconds, before being registered as a success. This choice was made to prevent registering
a success when, for example, the blue block slipped off the green block during the Stack task.

A.4.1 Common

For each of these functions, we use the following common labels:

• pb: blue block position,

• vb: blue block velocity,

• ab: blue block acceleration,

• pg : green block position,

• pe: end-effector tool center point position (TCP),

• ps: center of a block pushed into one of the slots,

• g1: (scalar) gripper finger 1 position,

• g2: (scalar) gripper finger 2 position, and

• ag : (scalar) gripper open/close action.

A block is flat on the tray when pb,z = 0 or pg,z = 0. To further reduce training time for SAC-X
experts, all rewards were set to 0 if ∥pb− pe∥ > 0.1 and ∥pg − pe∥ > 0.1 (i.e., the TCP must be within
10 cm of either block). During training while using the Unstack-Stack variation of our environment,
a penalty of -0.1 was added to each reward if ∥pg,z∥ > 0.001 (i.e., there was a penalty to all rewards if
the green block was not flat on the tray).

A.4.2 Stack and Unstack-Stack

The evaluation conditions for Stack and Unstack-Stack are identical, but in our Unstack-Stack experi-
ments, the environment is manually set to have the green block start on top of the blue block.

A.4. Evaluation 133

Success

Using internal PyBullet commands, we check to see whether the blue block is in contact with the green
block and is not in contact with either the tray or the gripper.

Reward

We include a term for checking the distance between the blue block and the spot above the the green
block, a term for rewarding increasing distance between the block and the TCP once the block is
stacked, a term for shaping lifting behaviour, a term to reward closing the gripper when the block is
within a tight reaching tolerance, and a term for rewarding the opening the gripper once the block is
stacked.

A.4.3 Bring/Insert

We use the same success and reward calculations for Bring and Insert, but for Bring the threshold for
success is 3 cm, and for insert, it is 2.5 mm.

Success

We check that the distance between pb and ps is less than the defined threshold, that the blue block is
touching the tray, and that the end-effector is not touching the block. For Insert, the block can only be
within 2.5 mm of the insertion target if it is correctly inserted.

Reward

We include a term for checking the distance between the pb and ps and a term for rewarding increasing
distance between pb and pe once the blue block is brought/inserted.

A.4.4 Open-Gripper/Close-Gripper

We use the same success and reward calculations for Open-Gripper and Close-Gripper, apart from
inverting the condition.

Success

For Open-Gripper and Close-Gripper, we check to see if ag < 0 or ag > 0 respectively.

Reward

We include a term for checking the action, as we do in the success condition, and also include a shaping
term that discourages high magnitudes of the movement action.

134 Appendix A. Learning from Guided Play – Additional Details

0.5 1.0 1.5 2.0

0

200

400

600

Stack

0.5 1.0 1.5 2.0

0

200

400

600

800

1000

Unstack-Stack

0.5 1.0 1.5 2.0

0

100

200

300

400

500

Bring

1 2 3 4

100

200

300

400

500
Insert

0.0 0.2 0.4 0.6 0.8 1.0

Updates/steps (millions)

0.0

0.2

0.4

0.6

0.8

1.0
E

p
is

o
d

e
R

et
u

rn LfGP (multi)

BC (multi)

DAC (single)

BC (single)

Expert

Figure A.2: Episode return for LfGP compared with all baselines. Shaded area corresponds to standard devia-
tion.

A.4.5 Lift

Success

We check to see if pb,z > 0.06.

Reward

We add a dense reward for checking the height of the block, but specifically also check that the gripper
positions correspond to being closed around the block, so that the block does not simply get pushed
up the edges of the tray. We also include a shaping term for encouraging the gripper to close when
the block is reached.

A.4.6 Reach

Success

We check to see if ∥pe − pb∥ < 0.015.

Reward

We have a single dense term to check the distance between pe and pb.

A.4.7 Move-Object

For Move-Object, we changed the required holding time for success to 1 second, or 20 time steps.

Success

We check to see if the vb > 0.05 and ab < 5. The acceleration condition ensures that the arm has
learned to move the block by following a smooth trajectory, rather than vigorously shaking it or con-
tinuously picking up and dropping it.

A.5. Return Plots 135

Reward

We include a velocity term and an acceleration penalty, as in the success condition, but also include a
dense bonus for lifting the block.

A.5 Return Plots

As previously stated, we generated hand-crafted reward functions for each of our tasks for the purpose
of training our SAC-X experts. Given that we have these rewards, we can also generate return plots
corresponding to our results to add extra insight (see Fig. A.2 and Fig. A.3). The patterns displayed in
these plots are, for the most part, quite similar to the success rate plots. One notable exception is that
there is an eventual increase in performance when training DAC on Insert, indicating that, perhaps for
certain tasks, DAC alone can eventually make progress. Nevertheless, it is clear that LfGP improves
learning efficiency, and it is unclear whether DAC would plateau even if it was trained for a longer
period.

A.6 Model Architectures and Hyperparameters

All the single-task models share the same network architectures and all the multitask models share
the same network architectures. All layers are initialized using the PyTorch default methods (Paszke
et al., 2019).

For the single-task variant, the policy is a fully-connected network with two hidden layers followed
by ReLU activation. Each hidden layer consists of 256 hidden units. The output of the policy for LfGP
and DAC is split into two vectors, mean µ̂ and variance σ̂2. For both variants of BC, only the mean
µ̂ output is used. The vectors define a Gaussian distribution (i.e. N(µ̂, σ̂2I), where I is the identity
matrix). When computing actions, we squash the samples using the tanh function and bound the
actions to be in range [−1, 1], as done in SAC (Haarnoja et al., 2019). The variance σ̂2 is computed
by applying a softplus function followed by a sum with an epsilon ϵ = 10−7 to prevent underflow:
σ̂i = softplus(x̂i)+ ϵ. The Q-functions are fully-connected networks with two hidden layers followed
by ReLU activations. Each hidden layer consists of 256 units. The output of the Q-function is a scalar
corresponding to the value estimate given the current state-action pair. Finally, the discriminator is
a fully-connected network with two hidden layers followed by tanh activations. Each hidden layer
consists of 256 units. The output of the discriminator is a scalar logit to be used as an input to the
sigmoid function. The sigmoid function output can be viewed as the probability of the current state-
action pair coming from the expert distribution.

For the multitask variant, the policies and the Q-functions share their initial layers. There are
two shared, fully-connected layers followed by ReLU activations. Each layer consists of 256 units.
The output of the last shared layer is then fed into the policies and Q-functions. Each policy head
and Q-function head corresponds to one task and has the same architecture: a two-layered fully-
connected network followed by ReLU activations. The output of the policy head corresponds to the

136
A
ppendix

A
.
Learning

from
G
uided

Play
–
A
dditional

D
etails

0.5 1.0 1.5 2.0

0

200

400

600

S
ta

ck

Stack

0.5 1.0 1.5 2.0

200

250

300

Open

0.5 1.0 1.5 2.0
100

150

200

250

300

Close

0.5 1.0 1.5 2.0

0

200

400

Lift

0.5 1.0 1.5 2.0

100

150

200

250

300

Reach

0.5 1.0 1.5 2.0

0

200

400

Move

0.5 1.0 1.5 2.0

0

200

400

600

800

U
n

st
ac

k
-S

ta
ck

Unstack-Stack

0.5 1.0 1.5 2.0

200

250

300

Open

0.5 1.0 1.5 2.0

150

200

250

300

Close

0.5 1.0 1.5 2.0

0

200

400

Lift

0.5 1.0 1.5 2.0

0

100

200

Reach

0.5 1.0 1.5 2.0

0

200

400

Move

0.5 1.0 1.5 2.0
0

100

200

300

400

B
ri

n
g

Bring

0.5 1.0 1.5 2.0

200

250

300

Open

0.5 1.0 1.5 2.0

100

200

300

Close

0.5 1.0 1.5 2.0

0

200

400

Lift

0.5 1.0 1.5 2.0

100

200

300

Reach

0.5 1.0 1.5 2.0

0

200

400

Move

1 2 3 4

200

400

In
se

rt

Insert

1 2 3 4

250

275

300

325

Open

1 2 3 4

100

200

300

Close

1 2 3 4

100

200

300

400

500
Bring

1 2 3 4

0

200

400

Lift

1 2 3 4

0

100

200

300

Reach

1 2 3 4

0

200

400

Move

0.0 0.2 0.4 0.6 0.8 1.0

Updates/steps (millions)

0.0

0.2

0.4

0.6

0.8

1.0

E
p

is
od

e
R

et
u

rn

LfGP (multi)

BC (multi)

DAC (single)

BC (single)

Figure A.3: Episode return for LfGP compared with multitask baselines on all tasks. Shaded area corresponds to standard deviation.

A.7. Open-Action and Close-Action Distribution Matching 137

parameters of a Gaussian distribution, as described previously. Similarly, the output of the Q-function
head corresponds to the value estimate. Finally, the discriminator is a fully-connected network with
two hidden layers followed by tanh activations. Each hidden layer consists of 256 units. The output of
the discriminator is a vector, where the ith entry corresponds to the logit input to the sigmoid function
for task Ti. The ith sigmoid function output corresponds to the probability of the current state-action
pair coming from the expert distribution in task Ti.

The hyperparameters for our experiments are listed in Table A.2 and Table A.4. In the early-
stopping variant of BC, overfit tolerance refers to the number of full dataset training epochs without
an improvement in validation error before we stop training. All models are optimized using Adam
Optimizer (Kingma and Ba, 2015) with PyTorch default values, unless specified otherwise.

A.7 Open-Action and Close-Action Distribution Matching

There was one exception to the method we used for collecting our expert data. Specifically, our Open-
Gripper and Close-Gripper tasks required additional considerations. It is worth reminding the reader
that our Open-Gripper and Close-Gripper tasks were meant to simply open or close the gripper, re-
spectively, while remaining reasonably close to either block. If we were to use the approach described
above verbatim, the Open-Gripper and Close-Gripper data would contain no (s, a) pairs where the
gripper actually released or grasped the block, instead immediately opening or closing the gripper
while simply hovering near the blocks. Perhaps unsurprisingly, this was detrimental to our algorithm’s
performance: as one example, an agent attempting to learn Stack would, if Open-Gripper was selected
while the blue block was held above the green block, move the grasped blue block away from the green
block before dropping it on the tray. This behaviour, of course, is not what we would want, but it better
matches an expert distribution when the environment is reset in between each task execution.

To mitigate this, our Open-Gripper data actually contain a mix of each of the other sub-tasks called
for the first 45 time steps, followed by a switch to Open-Gripper, ensuring that the expert dataset
contains some degree of block-releasing, with the trade-off being that 50% of the Open-Gripper expert
data is specific to whatever the main task happens to be. We left this additional detail out of our main
paper for clarity, since it corresponds to only a small portion of the expert data (every other auxiliary
task was fully reused). Similarly, the Close-Gripper data calls Lift for 15 time steps before switching to
Close-Gripper, ensuring that the Close-gripper dataset will contain a large proportion of data where
the block is actually grasped. For the Closer-gripper data, however, this modification did still allow
data to be reused between main tasks.

A.8 Attempted and Failed Experiments

In this section, we provide a list of experiments and modifications that did not improve performance,
in addition to the alternatives that did.

1. Pretrainingwith BC:We attempted to pretrain LfGP using multitask BC, and then to transition

138 Appendix A. Learning from Guided Play – Additional Details

Table A.2: Hyperparameters for AIL algorithms across all tasks. Parameters that do not appear in the original
version of DAC are shown in blue.

Algorithm LfGP & DAC

Total Interactions 2M (4M for Insert)
Buffer Size 2M (4M for Insert)
Buffer Warmup 25k
Initial Exploration 50k
Evaluations per task 50
Evaluation frequency 100k interactions

Intention
γ 0.99
Batch Size 256
Q Update Freq. 1
Target Q Update Freq. 1
π Update Freq. 1
Polyak Averaging 1e-4
Q Learning Rate 3e-4
π Learning Rate 1e-5
α Learning Rate 3e-4
Initial α 1e-2
Target Entropy −dim(a) = −4
Max. Gradient Norm 10
π Weight Decay 1e-2
Q Weight Decay 1e-2
BE sampling proportion 0.1
BE sampling decay 0.99999

Discriminator
Learning Rate 3e-4
Batch Size 256
Gradient Penalty λ 10
Weight Decay 1e-2
(sT ,0) sampling bias 0.95

to online learning with LfGP, but we found that this tended to produce significantly poorer final
performance. Some existing work (Rajeswaran et al., 2018; Wu et al., 2020) has investigated
transitioning from BC to online RL, but achieving this consistently, especially with off-policy
RL, remains an open research problem.

2. Handcrafted Open-Gripper/Close-Gripper policies: Given the simplicity of designing a re-
ward function in these two cases, a natural question is whether Open-Gripper and Close-Gripper
could use hand-crafted reward functions, or even hand-crafted policies, instead of these special-
ized datasets. In our experiments, both of these alternatives proved to be quite detrimental to
our algorithm.

3. Penalizing Q values: In our early experiments, we found that LfGP training progress was
harmed by exploding Q values. This problem was particularly exacerbated when we added BE

A.8. Attempted and Failed Experiments 139

Table A.3: Hyperparameters for LfGP schedulers.

Scheduler Learned WRS WRS + HC

ξ 45 N/A N/A
ϕ 0.6 N/A N/A
Initial Temp. 360 N/A N/A
Temp. Decay 0.9995 N/A N/A
Min. Temp. 0.1 N/A N/A
Main Task Rate N/A 0.5 0.5
Handcraft Rate N/A N/A 0.5

Table A.4: Hyperparameters for BC algorithms (both single-task and multitask) across all tasks.

Version Main Results Early Stopping

Batch Size 256
Learning Rate 1e-5
Weight Decay 1e-2
Total Updates 2M (4M for Insert) N/A
Overfit Tolerance N/A 100

sampling to our Q and π updates. It appears that this occurs because, at the beginning of train-
ing, the differences between discriminator outputs for expert data and non-expert data are so
large that the bootstrap Q updates quickly jump to unrealistic values. We attempted to use var-
ious forms of Q penalties to resolve this, akin to Conservative Q Learning (CQL) (Kumar et al.,
2020), but found that all of our modifications ultimately harmed final performance. Some of the
things we tried, in addition to the CQL loss, were reducing γ (.95, .9), clipping Q losses to -5,
+5, smooth L1 loss, huber loss, increased gradient penalty λ for D (50, 100), decreased reward
scaling (.1), more discriminator updates per π/Q update (10), and weight decay in D only (as is
done in (Orsini et al., 2021)). We ultimately resolved exploding Q values by (i) decreasing polyak
averaging to a significantly lower value than is used in much other work (1e-4 as opposed to
the SAC default of 5e-3), and (ii) adding in weight decay (with a significantly higher value used
than is used in other work) to π, Q, and D training (which was required to not overfit with
the reduced polyak averaging value). Without the added weight decay, performance started to
plateau and eventually to decrease.

4. Higher Update-to-Data (UTD) Ratio: Recent work in RL has started increasing the UTD ratio
(i.e., increasing the number of policy/Q updates per environment interaction), with the goal of
improving environment sample efficiency (Chen et al., 2021). We were actually able to increase
this from 1 to 2 and achieve a marginal improvement in environment sample efficiency, but
this also nearly doubled the running time of our experiments, so we opted not to include this
modification in our final results. Higher values of the UTD ratio also caused our Q values to
explode.

Appendix B

Auxiliary Control from Examples –
Additional Details

B.1 Reward Model Formulations

In this section, we investigate approaches to off-policy reinforcement learning (RL) studied in this
work, modified to accommodate an unknown R and the existence of an example state buffer B∗.

B.1.1 Learning a Reward Function

The most popular approach to reward modelling, known as inverse RL, tackles an unknown R by
explicitly learning a reward model. Modern approaches under the class of adversarial imitation learn-
ing (AIL) algorithm aim to learn both the reward function and the policy simultaneously. In AIL, the
learned reward function, also known as the discriminator, aims to differentiate the occupancy measure
between the state-action distributions induced by expert and the learner. The learned reward function
R̂ is derived from the minimax objective (Kostrikov et al., 2019; Ho and Ermon, 2016; Fu et al., 2018a):

L(D) = EB [log (1−D(s))] + EB∗ [log (D(s∗))] , (B.1)

where D attempts to differentiate the occupancy measure between the state distributions induced by
B∗ and B. The output of D(s) is used to define R̂(s), which is then used for updating the Q-function.

In example-based control, the discriminator D provides a smoothed label of success for states, thus
its corresponding reward function can provide more density than a typical sparse reward function,
making this approach an appealing choice. Unfortunately, a learned discriminator can suffer from
the deceptive reward problem, as previously identified in (Ablett et al., 2023), and this problem is
exacerbated in the example-based setting. In the following sections, we describe options to remove
the reliance on separately learned discriminators.

140

B.1. Reward Model Formulations 141

B.1.2 Discriminator-Free Reward Labels with Mean Squared Error TD Updates

A simple alternative to using a discriminator as a reward model was initially introduced as soft-Q
imitation learning (SQIL) in (Reddy et al., 2020). In standard AIL algorithms, D is trained separately
from π and Qπ , where D is trained using data from both B and B∗, whereas π and Qπ are trained
using data exclusively from B. However, most off-policy algorithms do not require this choice, and
approaches such as (Ablett et al., 2023) and (Vecerik et al., 2018) train Q, and possibly π, using data
from both B and B∗. It is unclear why this choice is often avoided in AIL, but it might be because it
can introduce instability due to large discrepancy in magnitudes for Q targets given data from B and
B∗. Sampling from both buffers, we can define R̂(st, at) to be labels corresponding to whether the
data is sampled from B or B∗—in SQIL, the labels are respectively 0 and 1. The full training objective
resembles the minimax objective in Eq. (B.1) where we set D(s∗) = 1 and D(s) = 0.

The resulting reward function is the expected label R̂(s, a) = EB̂∼Categoricals({B,B∗})

[
1(B̂ = B∗)

]
,

where Categoricals is a categorical distribution corresponding to the probability that s belongs to
buffers B,B∗. Consequently, only successful states s∗ yields positive reward and the corresponding
optimal policy will aim to reach a successful state as soon as possible. If we further assume that
s∗ transitions to itself, then for policy evaluation with mean-squared error (MSE), we can write the
temporal difference (TD) target, y, of Q-updates with:

y(s, s′) = γEa′
[
Q(s′, a′)

]
, (B.2)

y(s∗, s∗) = 1 + γEa′
[
Q(s∗, a′)

]
, (B.3)

where (s, ·, s′) ∼ B, a′ ∼ π(a′|s′), and s∗ ∼ B∗. This approach reduces complexity as we no longer
explicitly train a reward model, and also guarantees discrimination between data from B and B∗.

B.1.3 Discriminator-Free Reward Labels with Binary Cross Entropy TD Updates

Eysenbach et al. (2021) introduced recursive classification of examples (RCE), a method for learning
from examples of success. RCE mostly follows the approach outlined above in Section B.1.2 but uses
a weighted binary cross-entropy (BCE) loss with weights 1 + γw for data from B and 1 − γ for data
from B∗. The TD targets are also changed from Eq. (B.2) and Eq. (B.3) to

y(s, s′) = γw(s′)/(1 + γw(s′)), (B.4)

y(s∗, s∗) = 1, (B.5)

where w(s′) = V π(s′)/(1− V π(s′)).
This approach can also be made closer to SQIL by removing the change in weights and by leav-

ing Eq. (B.4) as Eq. (B.2). This makes it equivalent to SQIL, apart from removing bootstrapping from
Eq. (B.3), and using a BCE instead of MSE for TD updates.

A major benefit of this approach, compared with the MSE TD updates in Section B.1.2, is that

142 Appendix B. Auxiliary Control from Examples – Additional Details

y(s, s′) ≤ y(s∗, s∗) is always enforced at every update, meaning that our approach to value penaliza-
tion would provide no extra benefit. Nonetheless, our results from Section B.4 show that SQIL, even
without value-penalization, almost always outperforms both RCE and SQIL with BCE loss (referred to
SQIL-BCE here).

B.2 Additional Environment, Algorithm, and ImplementationDetails

The following sections contain further details of the environments, tasks, auxiliary tasks, algorithms,
and implementations used in our experiments.

B.2.1 Additional Environment Details

Compared with the original Panda tasks from LfGP (Ablett et al., 2023), we switch from 20Hz to 5Hz
control (finding major improvements in performance for doing so), improve handling of rotation sym-
metries in the observations, and remove the force-torque sensor since it turned out to have errors at
low magnitudes. Crucially, these modifications did not require training new expert policies, since the
same final observation states from the full trajectory expert data from (Ablett et al., 2023) remained
valid. Compared with the original LfGP tasks, we also remove Move-block as an auxiliary task from
Stack, Unstack-Stack, Bring and Insert, since we found a slight performance improvement for
doing so, and add Reach, Lift, and Move-block as main tasks. The environment was otherwise
identical to how it was implemented in LfGP, including allowing randomization of the block and end-
effector positions anywhere above the tray, using delta-position actions, and using end-effector pose,
end-effector velocity, object pose, object velocity, and relative positions in the observations. For even
further details of the original environment, see (Ablett et al., 2023).

Since the Sawyer tasks from (Eysenbach et al., 2021; Yu et al., 2019) only contain end-effector
position and object position by default, they do not follow the Markov property. To mitigate this, we
train all algorithms in the Sawyer tasks with frame-stacking of 3 and add in gripper position to the
observations, since we found that this, at best, improved performance for all algorithms, and at worst,
kept performance the same. We validate that this is true by also performing experiments using the
original code and environments from (Eysenbach et al., 2021), unmodified, where the results of RCE
without these modifications are presented in Fig. B.7, with results comparable to or poorer than our
own RCE results.

B.2.2 Delta-Position Adroit Hand Environments

The Adroit hand tasks from (Rajeswaran et al., 2018) use absolute positions for actions. This choice
allows even very coarse policies, with actions that would be unlikely to be successful in the real world,
to learn to complete door-human-v0 and hammer-human-v0, and also makes the intricate exploration
required to solve relocate-human-v0 very difficult. Specifically, VPACE-SQIL and several other
baselines achieve high return in door-human-v0 and hammer-human-v0, but the learned policies use

B.2. Additional Environment, Algorithm, and Implementation Details 143

Figure B.1: Learned VPACE-SQIL policies at the final training step for, from top to bottom, door-human-v0,
door-human-v0-dp, hammer-human-v0, and hammer-human-v0-dp. Although the original versions of the
environments are solved, the absolute position action space allows policies to execute very coarse actions that
exploit the simulator (above, hitting the handle without grasping it and throwing the hammer, respectively), and
would almost certainly cause damage to a real environment.

Figure B.2: Experimental setup for our real environment and our RealDrawer and RealDoor tasks. The robot
has a force-torque sensor attached, but it is not used for our experiments.

unrealistic actions that exploit simulator bugs. As well, no methods are able to achieve any return in
relocate-human-v0 in 1.5M environment steps.

In the interest of solving relocate-human-v0 and learning more skillful policies, we gener-
ated modified versions of these environments with delta-position action spaces. Furthermore, in
relocate-human-v0-najp-dp, the action space rotation frame was changed to be in the palm, rather
than at the elbow, and, since relative positions between the palm, ball, and relocate goal are included as
part of the state, we removed the joint positions from the state. In our experiments, these modified en-
vironments were called door-human-v0-dp, hammer-human-v0-dp, and relocate-human-v0-najp-dp.
See Fig. B.1 for a comparison of learned policies in each version of these environments.

144 Appendix B. Auxiliary Control from Examples – Additional Details

B.2.3 Real World Environment Details

Fig. B.2 shows our experimental platform and setup for our two real world tasks. In both RealDrawer

and RealDoor, the observation space contains the end-effector position, an ArUco tag (Garrido-Jurado
et al., 2014) to provide drawer or door position (in the frame of the RGB camera; we do not perform
extrinsic calibration between the robot and the camera), and the gripper finger position. Observations
also include two stacked frames, in lieu of including velocity, to better follow the Markov property. The
action space in both contains delta-positions and a binary gripper command for opening and closing.
The action space for RealDrawer is one-dimensional (allowing motion in a line), while the action
space for RealDoor is two-dimensional (allowing motion in a plane). The initial state distribution for
RealDrawer allows for initializing the end-effector anywhere within a 10 cm line approximately 25
cm away from the drawer handle when closed. For RealDoor, the initial state distribution is a 20 cm
× 20 cm square, approximately 20cm away from the door handle when closed. Actions are supplied
at 5 Hz.

For both environments, for evaluation only, success is determined by whether the drawer or door is
fully opened, as detected by the absolute position of the ArUco tag in the frame of the RGB camera. Our
robot environment code is built on Polymetis (Lin et al., 2021), and uses the default hybrid impedance
controller that comes with the library. To reduce environmental damage from excessive forces and
torques, we reduced Cartesian translational stiffness in all dimensions from 750 N/m to 250 N/m, and
the force and torque limits in all dimensions from 40 N and 40 Nm to 20 N and 20 Nm.

B.2.4 Additional Task Details

Success examples for the Panda environments were gathered by taking sT from the existing datasets
provided by (Ablett et al., 2023). Success examples for main tasks from the Sawyer environments were
generated using the same code from (Eysenbach et al., 2021), in which the success examples were
generated manually given knowledge of the task. Auxiliary task data was generated with a similar
approach. Success examples for the Adroit hand environments were generated from the original hu-
man datasets provided by (Rajeswaran et al., 2018). Success examples for our real world tasks were
generated by manually moving the robot to a small set of successful positions for each auxiliary task
and main task. All Panda main tasks use the the auxiliary tasks release, reach, grasp, and lift.

There are two specific nuances that were left out of the main text for clarity and brevity: (i) the
Reach main task only uses release as an auxiliary task (since it also acts as a “coarse” reach), and (ii)
half of the release dataset for each task is specific to that task (e.g., containing insert or stack data), as
was the case in the original datasets from (Ablett et al., 2023). For the Sawyer, Hand, and real Panda
environments, because the observation spaces are not shared, each task has its own separate reach and
grasp data.

B.2. Additional Environment, Algorithm, and Implementation Details 145

B.2.5 Additional Algorithm Details

Algorithm 4 Value-Penalized Auxiliary Control from Examples (VPACE)
Input: Example state buffers B∗main,B∗1, . . . ,B∗K , scheduler period ξ, sample batch size N and N∗, and
discount factor γ
Parameters: Intentions πT with corresponding Q-functions QT (and optionally discriminators DT),
and scheduler πS (e.g. with Q-table QS)

1: Initialize replay buffer B
2: for t = 1, . . . , do
3: # Interact with environment
4: For every ξ steps, select intention πT using πS
5: Select action at using πT
6: Execute action at and observe next state s′t
7: Store transition ⟨st, at, s′t⟩ in B
8:
9: # Optionally update discriminator DT ′ for each task T ′

10: Sample {si}Ni=1 ∼ B
11: for each task T ′ do
12: Sample {s∗i }N

∗

i=1 ∼ B∗k
13: Update DT ′ following Eq. (B.1) using GAN + Gradient Penalty
14: end for
15:
16: # Update intentions πT ′ and Q-functions QT ′ for each task T ′

17: Sample {(si, ai)}Ni=1 ∼ B
18: for each task T ′ do
19: Sample {s∗i }N

∗

i=1 ∼ B∗T ′

20: Sample a∗i ∼ πT ′(s∗i) for i = 1, . . . , N∗

21: Compute rewards R̂T ′(si) and R̂T ′(s∗j) for i = 1, . . . , N and j = 1, . . . , N∗

22: # Compute value penalization terms, see Section B.2.6
23: Compute Q

πT ′
max = 1

N∗
∑N∗

j=1Q(s∗j , a
∗
j)

24: Compute Q
πT ′
min = min(∧Ni=1R̂T ′(si),∧N∗

j=1R̂T ′(s∗j))/(1− γ)
25: end for
26: Update π following Eq. (B.6)
27: Update Q following Eq. (B.7) with value penalization Eq. (B.8)
28:
29: # Optional Update learned scheduler πS
30: if at the end of effective horizon then
31: Compute main task return GTmain using reward estimate from Dmain
32: Update πS (e.g. update Q-table QS using EMA and recompute Boltzmann distribution)
33: end if
34: end for

Algorithm 4 shows a summary of VPACE, built on LfGP (Ablett et al., 2023) and SAC-X (Riedmiller
et al., 2018). As a reminder, our multi-policy objective function is

L(π; T) = EB,πT [QT (s, a)] , (B.6)

146 Appendix B. Auxiliary Control from Examples – Additional Details

Algorithm Value
Penalization

Sched. Aux.
Tasks

Reward Model TD Error Loss Source

VPACE ✓ ✓ SQIL MSE Ours
ACE ✗ ✓ SQIL MSE Ours
VPACE-DAC ✓ ✓ DAC MSE Ours
ACE-RCE ✗ ✓ RCE BCE Ours
VP-SQIL ✓ ✗ SQIL MSE Ours
DAC ✗ ✗ DAC MSE Ours
SQIL ✗ ✗ SQIL MSE Ours
RCE ✗ ✗ RCE BCE Ours
SQIL+RND ✗ ✗ SQIL MSE Ours
RCE (theirs) ✗ ✗ RCE BCE (Eysenbach

et al., 2021)
SQIL-BCE ✗ ✗ SQIL BCE (Eysenbach

et al., 2021)

Table B.1: Major differences between algorithms studied in this work. MSE refers to mean squared error, while
BCE refers to binary cross entropy.

our multi-Q objective function is

L(Q; T) = EB,πT

[
(QT (s, a)− yT (s, s′))2

]
+ EB∗

T ,πT

[
(QT (s∗, a)− yT (s∗, s∗))2

]
, (B.7)

and our value-penalized update is

Lπpen(Q) = λEB[(max(Q(s, a)−Qπ
max, 0))

2 + (max(Qπ
min −Q(s, a), 0))2], (B.8)

where
Qπ

min = R̂min/(1− γ), (B.9)

and
Qπ

max = EB∗ [V π(s∗)] . (B.10)

Table B.1 shows a breakdown of some of the major differences between all of the algorithms studied
in this work.

B.2.6 Additional Implementation Details

In this section, we list some specific implementation details of our algorithms. We only list parameters
or choices that may be considered unique to this work, but a full list of all parameter choices can
be found in our code. We also provide the VPACE pseudocode in Algorithm 4, with blue text only
applying to learned discriminator-based reward functions (see Section B.1 for various reward models).

Whenever possible, all algorithms and baselines use the same modifications. Table B.2 also shows
our choices for common off-policy RL hyperparameters as well as choices for those introduced by this
work.

DAC reward function: for VPACE-DAC and VP-DAC, although there are many options for re-

B.2. Additional Environment, Algorithm, and Implementation Details 147

Table B.2: Hyperparameters shared between all algorithms, unless otherwise noted.

General
Total Interactions Task-specific (see Section B.3)
Buffer Size Same as total interactions
Buffer Warmup 5k
Initial Exploration 10k
Evaluations per task 50 (Panda), 30 (Sawyer/Adroit)
Evaluation frequency 25k (Panda), 10k (Sawyer/Adroit)

Learning
γ 0.99
B Batch Size 128
B∗ Batch Size 128
Q Update Freq. 1 (sim), 4 (real)
Target Q Update Freq. 1 (sim), 4 (real)
π Update Freq. 1 (sim), 4 (real)
Polyak Averaging 1e-3
Q Learning Rate 3e-4
π Learning Rate 3e-4
D Learning Rate 3e-4
α Learning Rate 3e-4
Initial α 1e-2
Target Entropy −dim(a)
Max. Gradient Norm 10
Weight Decay (π,Q,D) 1e-2
D Gradient Penalty 10
Reward Scaling 0.1
SQIL Labels (Section B.2.6 (−1, 1)
Expert Aug. Factor (Section B.2.6) 0.1

Value Penalization (VP)
λ 10
Qπ

max, Qπ
min num. filter points (Section B.2.6) 50

Auxiliary Control (ACE) Scheduler (Section B.2.6)
Num. Periods 8 (Panda), 5 (Sawyer/Adroit)
Main Task Rate 0.5 (Panda), 0.0 (Sawyer/Adroit)
Handcraft Rate 0.5 (Panda), 1.0 (Sawyer/Adroit)

148 Appendix B. Auxiliary Control from Examples – Additional Details

ward functions that map D to R̂ (Ghasemipour et al., 2019), following (Ablett et al., 2023; Kostrikov
et al., 2019; Fu et al., 2018a), we set the reward to R̂T (s) = log (DT (s))− log (1−DT (s)).

n-step returns and entropy in TD error: following results from (Eysenbach et al., 2021), we also
add n-step returns and remove the entropy bonus in the calculation of the TD error for all algorithms
in all Sawyer and Adroit environments, finding a significant performance gain for doing so.

Absorbing states and terminal states: for all algorithms, we do not include absorbing states
(introduced in (Kostrikov et al., 2019)) or terminal markers (sometimes referred to as “done”), since
we found that both of these additions cause major bootstrapping problems when environments only
terminate on timeouts, and timeouts do not necessarily indicate failure. Previous work supports boot-
strapping on terminal states when they are caused by non-failure timeouts (Pardo et al., 2018).

SQIL labels for policy data: The original implementation of SQIL uses labels of 0 and 1 TD
updates in Eq. (B.2) and Eq. (B.3), respectively. We found that changing the label for Eq. (B.2) from 0
to -1 improved performance.

Reward Scaling of .1: we use a reward scaling parameter of .1 for all implementations. Coupled
with a discount rate γ = 0.99 (common for much work in RL), this sets the expected minimum and
maximum Q values for SQIL to −.1

1−γ = −10 and .1
1−γ = 10.

Nomultitaskweight sharing: intuitively, one may expect weight sharing to be helpful for multi-
task implementations. We found that it substantially hurt performance, so all of our multitask methods
do not share weights between tasks or between actor and critic. However, the multitask discriminator
in VPACE-DAC does have an initial set of shared weights due to its significantly poorer performance
without this choice.
B∗ sampling for Q: in SQIL, DAC and RCE, we sample from both B and B∗ for Q updates, but

not for π updates (which only samples from B). The original DAC implementation in (Kostrikov et al.,
2019) only samples B∗ for updating D, sampling only from B for updating Q.

All other architecture details, including neural network parameters, are the same as (Ablett et al.,
2023), which our own implementations are built on top of. Our code is built on top of the code from
(Ablett et al., 2023), which was originally built using (Chan, 2020).

Maintaining Qπ
max, Qπ

min Estimates for Value Penalization

Our approach to value penalization requires maintaining estimates for or choosing Qπ
max and Qπ

min. In
both DAC and SQIL, the estimate of Qπ

max comes from taking the mini-batch of data from B∗, passing
it through the Q function, taking the mean, and then using a median moving average filter to maintain
an estimate. The “Qπ

max, Qπ
min num. filter points” value from Table B.2 refers to the size of this filter.

We chose 50 and used it for all of our experiments. We set Qπ
min to

Qπ
min =

rew. scale×min(R̂(s))

1− γ
, (B.11)

where in SQIL, min(R̂(s)) = R̂(s) is set to 0 or -1, and in DAC, we maintain an estimate of the
minimum learned reward min(R̂) using a median moving average filter with the same length as the

B.2. Additional Environment, Algorithm, and Implementation Details 149

0 1 2 3 4 5
0.00

0.25

0.50

0.75

1.00
Unstack-Stack

0.0 0.2 0.4 0.6 0.8 1.0

Env. Steps (×100k)

0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
es

s
R

at
e VPACE

No Ex. Aug.

10 Examples

10 Ex., No EA

Figure B.3: Variations of example augmentation. Our example augmentation scheme provides a small but
noticeable bump in performance, which is magnified with when fewer expert examples are used.

one used for Qπ
max .

Scheduler Choices

Our ACE algorithms use the same approach to scheduling from (Ablett et al., 2023). Specifically, we
use a weighted random scheduler (WRS) combined a small set of handcrafted high-level trajectories.
The WRS forms a prior categorical distribution over the set of tasks, with a higher probability mass
pTmain (Main Task Rate in Table B.2) for the main task and pTmain

K for all other tasks. Additionally, we
choose whether to uniformly sample from a small set of handcrafted high-level trajectories, instead of
from the WRS, at the Handcraft Rate from Table B.2.

Our selections for handcrafted trajectories are quite simple, and reusable between main tasks
within each environment. In the Panda tasks, there are eight scheduler periods per episode and four
auxiliary tasks (reach, grasp, lift, release), and the handcrafted trajectory options are:

1. reach, lift, main, release, reach, lift, main, release

2. lift, main, release, lift, main, release, lift, main

3. main, release, main, release, main, release, main, release

In the Sawyer and Adroit environments, we actually found that the WRS was unnecessary to
efficiently learn the main task, and simply used two handcrafted high-level trajectories. In these envi-
ronments, there are five scheduler periods per episode and two auxiliary tasks (reach, grasp), and the
handcrafted trajectory options are:

1. reach, grasp, main, main, main

2. main, main, main, main, main

Expert Data Augmentation

We added a method for augmenting our expert data to artificially increase dataset size. The approach
is similar to other approaches that simply add Gaussian or uniform noise to data in the buffer (Yarats
et al., 2022; Sinha et al., 2021). In our case, we go one step further than the approach from (Sinha et al.,

150 Appendix B. Auxiliary Control from Examples – Additional Details

2021), and first calculate the per-dimension standard deviation of each observation in B∗, scaling the
Gaussian noise added to each dimension of each example based on the dimension’s standard deviation.
For example, if a dimension in B∗ has zero standard deviation (e.g., in Insert, the pose of the blue
block is always the same), it will have no noise added by our augmentation approach. The parameter
“Expert Aug. Factor” from Table B.2 controls the magnitude of this noise, after our per-dimension
normalization scheme.

In Fig. B.3, we show the results of excluding expert augmentation, where there is a clear, if slight,
performance decrease when it is excluded, which is even more pronounced with a smaller B∗T size. All
methods and baselines from our own implementation use expert data augmentation.

Other Ablation Details

In our ablation experiments from, we included three baselines with full trajectory data, in addition to
success examples. We added 200 (s, a) pairs from full expert trajectories to make datasets comparable
to the datasets from (Ablett et al., 2023), where they used 800 expert (s, a) pairs, but their environment
was run at 20Hz instead of 5Hz, meaning they needed four times more data to have roughly the same
total number of expert trajectories. We generated these trajectories using high-performing policies
from our main experiments, since the raw trajectory data from (Ablett et al., 2023) would not apply
given that we changed the control rate from 20Hz to 5Hz.

Real Panda Implementation Details

While most of the design choices in Section B.2.6 apply to all environments tested, our real Panda
environment had some small specific differences, mostly due to the complications of running rein-
forcement learning in the real world. We list the differences here, but for an exhaustive list, our open
source code contains further details.

Maximum episode length: The maximum episode length for both RealDrawer and RealDoor

is 1000 steps, or 200 seconds in real time. This was selected to reduce how often the environment had
to be reset, which is time consuming. Running episodes for this long, and executing actions at 5 Hz,
our environments complete 5000 environment steps in roughly 20 minutes. The extra time is due to
the time to reset the environment after 1000 steps or after a collision. VPACE took approximately 100
minutes to learn to complete RealDrawer consistently, and about 200 minutes to learn to complete
the more difficult RealDoor.

Shorter initial exploration: To attempt to learn the tasks with fewer environment samples, we
reduce buffer warmup to 500 steps, and initial random exploration to 1000 steps.

Frame stack: For training, we stacked two regular observations to avoid state aliasing.
Ending on success: We ended episodes early if they were determined to be successful at the

main task only. Although this is not necessary for tasks to be learned (and this information was not
provided to the learning algorithm), it gave us a way to evaluate training progress.

Extra gradient steps: To add efficiency during execution and training, we completed training
steps during the gap in time between an action being executed and an observation being gathered. In-

B.3. Additional Performance Results 151

0 1 2 3 4 5

0

50

100

Unstack-Stack

0 2 4 6 8 10

0

50

100

Insert

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Env. Steps (×100k)

E
p

is
od

e
R

et
u

rn

SQIL

RCE

DAC

EMBER

RCE-CQL

Figure B.4: Results for different reward models for EBC, excluding the use of both value penalization (VP) and
auxiliary control from examples (ACE).

stead of completing a single gradient step at this time, as is the case for standard SAC (and VPACE), we
completed four gradient steps, finding in simulated tasks that this gave a benefit to learning efficiency
without harming performance. Previous work (Ablett et al., 2023), (Chen et al., 2021) has found that
increasing this update rate can reduce performance, but we hypothesize that our value penalization
scheme helps mitigate this issue.

Collisions: If the robot is detected to have exceeded force or torque limits (20 N and 20 Nm
in our case, respectively), the final observation prior to collision is recorded, and the environment
is immediately reset. There are likely more efficient ways to handle such behaviour, but we did not
investigate any in this work.

B.3 Additional Performance Results

In this section, we expand upon our performance results and our Q-value overestimation analysis.

B.3.1 Expanded Main Task Performance Results

Fig. B.5 shows expanded results for our simulated environments, with each baseline shown for each
individual environment.

B.3.2 ACE Reward Model Comparison

The SAC-X framework, which we describe as ACE when used with example states only, is agnostic to
the choice of reward model (see Section B.1). Therefore, we also completed experiments in each of our
simulated environments with DAC and with RCE as the base reward model, instead of SQIL, which
was used for all of our main VPACE results. The results are shown in Fig. B.6, where it is clear that
VPACE with SQIL learns more efficiently than VPACE with DAC and with higher final performance
than ACE with RCE. We do not use value penalization (VP) for RCE, since RCE uses a classification
loss for training Q that would not benefit from the use of value penalization.

152
A
ppendix

B.
A
uxiliary

C
ontrol

from
Exam

ples
–
A
dditional

D
etails

Figure B.5: Sample efficiency performance plots for main task only for all simulated main tasks, including baselines not shown in the main text. Methods
introduced in this work have solid lines, while baselines are shown with dashed lines. Performance is an interquartile mean (IQM) across 5 timesteps and 5 seeds
with shaded regions showing 95% stratified bootstrap confidence intervals (Agarwal et al., 2021).

B.3.
A
dditional

Perform
ance

Results
153

Figure B.6: Comparison of underlying reward models when used with ACE. Our main results (VPACE) used SQIL as the reward model. VPACE-DAC eventually
reaches similar performance to VPACE-SQIL, but tends to take longer, and ACE-RCE often has far poorer performance than both.

154 Appendix B. Auxiliary Control from Examples – Additional Details

B.3.3 Single-task Reward Model Comparison

We compare SQIL, DAC, and RCE , without adding value penalization (VP) or auxiliary control from
examples (ACE) in Fig. B.4, with two additional, more recent EBC baselines: EMBER (Wu et al., 2021)
and RCE combined with conservative Q-learning (RCE-CQL)(Kumar et al., 2020), (Hatch et al., 2021)).
We find that both EMBER and RCE-CQL perform quite poorly, and much more poorly than SQIL, DAC,
and RCE, further justifying their use as our primary reward models in our main experiments.

B.3.4 Single-task Value Penalization

Our scheme for value penalization, while initially motivated by the use of ACE, can be used in the single
task regime. In Fig. B.8, we compare the performance of VPACE, SQIL, and SQIL with value penaliza-
tion, but without auxiliary tasks (VP-SQIL). VP-SQIL either has no effect on performance or results in
an improvement over SQIL, as expected, but is still strongly outperformed by VPACE on the more com-
plicated tasks, such as Stack, Unstack-Stack, Insert, sawyer box close, sawyer bin picking,
and the dp variant of relocate-human-v0.

B.3.5 Q-Value Overestimation and Penalization – All Environments

Fig. B.9 shows the same value overestimation analysis plots shown in the original paper for all tasks
in. The results for other difficult tasks also show clear violations of y(s, a) ≤ y(s∗, a∗), and tasks
in which this rule is violated also often have poorer performance. Intriguingly, although the rule is
severely violated for many Adroit hand tasks, ACE without VP still has reasonable performance in
some cases. This shows that highly uncalibrated Q estimates can still, sometimes, lead to adequate
performance. We hypothesize that this occurs because these tasks do not necessarily need sT ∼ B to
match s∗ ∼ B∗main to achieve high return, but we leave investigating this point to future work.

B.4 Why Does SQIL Outperform RCE?

Our results show that VPACE-SQIL outperforms ACE-RCE, and that VP-SQIL and SQIL outperform
RCE in almost all cases. This result is in conflict with results from (Eysenbach et al., 2021), which
showed SQIL strongly outperformed by RCE. In this section, we show results that help explain our
findings.

(Eysenbach et al., 2021) claimed that the highest performing baseline against RCE was SQIL, but
it is worth noting that their implementation1 is a departure from the original SQIL implementation,
which uses MSE for TD updates, described in Section B.1.2. Furthermore, (Eysenbach et al., 2021) also
noted that it was necessary to add n-step returns to off-policy learning to get reasonable performance.
In their experiments, however, this adjustment was not included for their version of SQIL with BCE
loss. We complete the experiments using their implementation and show the average results across all

1Available at https://github.com/google-research/google-research/tree/master/rce at time of writing.

https://github.com/google-research/google-research/tree/master/rce

B.4. Why Does SQIL Outperform RCE? 155

0.0 0.6 1.2 1.8 2.4 3.0

0.00

0.05

0.10

sawyer drawer open

0.0 0.6 1.2 1.8 2.4 3.0

0.00

0.05

0.10

0.15

0.20
sawyer drawer close

0 1 2 3 4 5

0.0

0.1

0.2

sawyer push

0 1 2 3 4 5

0.00

0.02

0.04

0.06

sawyer lift

0 1 2 3 4 5

0.0

0.1

0.2

sawyer box close

0.0 0.6 1.2 1.8 2.4 3.0

0.00

0.05

0.10

0.15

0.20

sawyer bin picking

0.0 0.6 1.2 1.8 2.4 3.0

0

1000

2000

3000

door-human-v0

0 1 2 3 4 5

0

2500

5000

7500

10000
hammer-human-v0

0.0 0.2 0.4 0.6 0.8 1.0

Environment Steps (×100k)

0.0

0.2

0.4

0.6

0.8

1.0

E
p

is
od

e
R

et
u

rn

SQIL RCE (theirs) SQIL-BCE (theirs) SQIL-BCE-no-nstep (theirs)

Figure B.7: Performance results on the Sawyer and Adroit tasks considered in (Eysenbach et al., 2021), using
their own implementations based on binary cross entropy (BCE) loss, but with an additional SQIL-BCE (including
n-step) baseline. We also show our implementation of SQIL (without value penalization or auxiliary tasks), with
Mean Squared Error TD updates, which outperforms all of the BCE-based methods on average.

156
A
ppendix

B.
A
uxiliary

C
ontrol

from
Exam

ples
–
A
dditional

D
etails

Figure B.8: Comparison of different variants of SQIL: both VP and ACE (VPACE), VP-only (VP-SQIL), or SQIL alone. VP-SQIL generally either results in an
improvement or has no effect on performance, compared with SQIL, but the exclusion of ACE results in far poorer performance than VPACE, especially for the
most complex tasks.

B.4.
W
hy

D
oes

SQ
IL

O
utperform

RC
E?

157

M

Figure B.9: Comparison of different variants of SQIL: both VP and ACE (VPACE), VP-only (VP-SQIL), or SQIL alone. VP-SQIL generally either results in an
improvement or has no effect on performance, compared with SQIL, but the exclusion of ACE results in far poorer performance than VPACE, especially for the
most complex tasks.

158 Appendix B. Auxiliary Control from Examples – Additional Details

RCE environments in Fig. B.7, and also compare to using SQIL with MSE (without value penalization
or auxiliary tasks) for TD updates.

These results empirically show that RCE and SQIL with BCE loss perform nearly identically, in-
dicating that benefits of the changed TD targets and weights described in Section B.1.3 may not be
as clear as previously described. SQIL with MSE clearly performs better on average, although it still
performs worse than VPACE (see Section B.3).

B.5 Expanded Limitations

In this section, we expand on some of the limitations originally discussed in Section 7.5, where we
previously skipped limitations that are inherent to reinforcement learning and to learning from guided
play (LfGP, (Ablett et al., 2023)), both of which are core parts of our approach.

Experimental limitation—Numerical state data only All of our tests are done with numerical
data, instead of image-based data. Other work (Riedmiller et al., 2018), (Yarats et al., 2022) has shown
that for some environments, image-based learning just results in slowing learning compared with
numerical state data, and we assume that the same would be true for our method as well.

Assumption—Generating example success states is easier We claim that success example
distributions are easier to generate than full trajectory expert data, and while we expect this to be true
in almost all cases, there may still be tasks or environments where accomplishing this is not trivial.
As well, similar to other imitation learning methods, knowing how much data is required to generate
an effective policy is unknown, but adding a way to append to the existing success state distribution
(e.g., (Singh et al., 2019)) would presumably help mitigate this.

Assumption/failure mode—Unimodal example distributions Although we do not explicitly
claim that unimodal example state distributions are required for VPACE to work, all of our tested
tasks have roughly unimodal example state distributions. It is not clear whether our method would
gracefully extend to the multimodal case, and investigating this is an interesting direction for future
work.

Experimental limitation—Some environment-specific hyperparametersWhile the vast ma-
jority of hyperparameters were transferable between all environments and algorithms, the scheduler
period, the inclusion of n-step targets, and the use of entropy in TD updates, were different between
environments to maximize performance. Scheduler periods will be different for all environments, but
future work should further investigate why n-step targets and the inclusion of entropy in TD updates
makes environment-specific differences.

B.5.1 VPACE and LfGP Limitations

VPACE shares the following limitations with LfGP (Ablett et al., 2023).
Assumption—Existence of auxiliary task datasets VPACE and LfGP require the existence of

auxiliary task example datasets B∗aux, in addition to a main task dataset B∗main. This places higher initial

B.5. Expanded Limitations 159

burden on the practitioner. In future, choosing environments where this data can be reused as much
as possible will reduce this burden.

Assumption—Clear auxiliary task definitions VPACE and LfGP require a practitioner to man-
ually define auxiliary tasks. We expect this to be comparatively easier than generating a similar dense
reward function, since it does not require evaluating the relative contribution of individual auxiliary
tasks. As well, all tasks studied in this work share task definitions, and the Panda environment even
shares task data itself, leading us to assume that these task definitions will extend to other manipula-
tion tasks as well.

Assumption—Clear choices for handcrafted scheduler trajectories VPACE and LfGP use a
combination of a weighted random scheduler with a handcrafted scheduler, randomly sampling from
predefined trajectories of high level tasks. (Ablett et al., 2023) found that the handcrafted scheduler
added little benefit compared with a weighted random scheduler, and further work should investigate
this claim, or perhaps attempt to use a learned scheduler, as in (Riedmiller et al., 2018).

B.5.2 Reinforcement Learning Limitations

Experimental limitation—Free environment exploration As is common in reinforcement learn-
ing methods, our method requires exploration of environments for a considerable amount of time (on
the order of hours), which may be unacceptable for tasks with, e.g., delicate objects.

Bibliography

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean,
J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R.,
Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster,
M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas,
F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X. (2015). TensorFlow:
Large-scale machine learning on heterogeneous systems. https://www.tensorflow.org/.

Abbeel, P. and Ng, A. Y. (2004). Apprenticeship learning via inverse reinforcement learning. In Inter-

national Conference on Machine Learning (ICML’04), Banff, Alberta, Canada. ACM Press.

Ablett, T., Chan, B., and Kelly, J. (2021a). Learning from Guided Play: A Scheduled Hierarchical Ap-
proach for Improving Exploration in Adversarial Imitation Learning. In Proceedings of the Neural

Information Processing Systems (NeurIPS’21) Deep Reinforcement Learning Workshop, Online.

Ablett, T., Chan, B., and Kelly, J. (2023). Learning From Guided Play: Improving Exploration for Ad-
versarial Imitation Learning With Simple Auxiliary Tasks. IEEE Robotics and Automation Letters,
8(3):1263–1270.

Ablett, T., Chan, B., Wang, J. H., and Kelly, J. (2024a). Fast Reinforcement Learning without Rewards
or Demonstrations via Auxiliary Task Examples. In CoRL 2024 Workshop on Mastering Robot Manip-

ulation in a World of Abundant Data, Munich, Germany.

Ablett, T., Chan, B., Wang, J. H., and Kelly, J. (2025). Efficient Imitation Without Demonstrations via
Value-Penalized Auxiliary Control from Examples. In IEEE International Conference on Robotics and

Automation (ICRA’25), Atlanta, GA, USA.

Ablett, T., Limoyo, O., Sigal, A., Jilani, A., Kelly, J., Siddiqi, K., Hogan, F., and Dudek, G. (2024b).
Multimodal and Force-Matched Imitation Learning With a See-Through Visuotactile Sensor. IEEE

Transactions on Robotics, 41:946–959.

Ablett, T., Marić, F., and Kelly, J. (2020). Fighting Failures with FIRE: Failure Identification to Reduce
Expert Burden in Intervention-Based Learning. Technical Report STARS-2020-001, University of
Toronto.

160

BIBLIOGRAPHY 161

Ablett, T., Zhai, Y., and Kelly, J. (2021b). Seeing All the Angles: Learning Multiview Manipulation
Policies for Contact-Rich Tasks from Demonstrations. In Proceedings of the IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS’21), pages 7843–7850, Prague, Czech Republic.

Abu-Dakka, F. J., Rozo, L., and Caldwell, D. G. (2018). Force-based variable impedance learning for
robotic manipulation. Robotics and Autonomous Systems, 109:156–167.

Achiam, J. (2018). Spinning Up in Deep Reinforcement Learning.
https://spinningup.openai.com/en/latest/index.html.

Adamczyk, J., Makarenko, V., Tiomkin, S., and Kulkarni, R. V. (2024). Boosting Soft Q-Learning by
Bounding. Reinforcement Learning Journal, 1(1).

Agarwal, R., Schwarzer, M., Castro, P. S., Courville, A. C., and Bellemare, M. (2021). Deep Reinforce-
ment Learning at the Edge of the Statistical Precipice. In Advances in Neural Information Processing

Systems (Neurips’21), volume 34.

Akgun, B. and Subramanian, K. (2011). Robot Learning from Demonstration: Kinesthetic Teaching vs.
Teleoperation. Technical Report.

Amini, A., Gilitschenski, I., Phillips, J., Moseyko, J., Banerjee, R., Karaman, S., and Rus, D. (2020).
Learning Robust Control Policies for End-to-End Autonomous Driving From Data-Driven Simula-
tion. IEEE Robotics and Automation Letters, 5(2):1143–1150.

Andrychowicz, M., Crow, D., Ray, A., Schneider, J., Fong, R., Welinder, P., McGrew, B., Tobin, J., Abbeel,
P., and Zaremba, W. (2017). Hindsight Experience Replay. In Advances in Neural Information Pro-

cessing Systems (NIPS’17), Long Beach, CA, USA.

Ankile, L., Simeonov, A., Shenfeld, I., Torne, M., and Agrawal, P. (2024). From Imitation to Refinement
– Residual RL for Precise Assembly.

Bagnell, J. A. (2005). Robust Supervised Learning. In AAAI Conference on Artificial Intelligence

(AAAI’05).

Bain, M. and Sammut, C. (1996). A Framework for Behavioural Cloning. In Machine Intelligence 15,
pages 103–129. Oxford University Press.

Bajracharya, M., Borders, J., Helmick, D., Kollar, T., Laskey, M., Leichty, J., Ma, J., Nagarajan, U., Ochiai,
A., Petersen, J., Shankar, K., Stone, K., and Takaoka, Y. (2020). A Mobile Manipulation System for
One-Shot Teaching of Complex Tasks in Homes. In Proceedings of the IEEE International Conference

on Robotics and Automation (ICRA’20), pages 11039–11045.

Balloch, J. C., Bhagat, R., Zollicoffer, G., Jia, R., Kim, J., and Riedl, M. O. (2024). Is Exploration
All You Need? Effective Exploration Characteristics for Transfer in Reinforcement Learning.
arXiv:2404.02235.

162 BIBLIOGRAPHY

Bellemare, M., Srinivasan, S., Ostrovski, G., Schaul, T., Saxton, D., and Munos, R. (2016). Unifying
Count-Based Exploration and Intrinsic Motivation. In Conference on Neural Information Processing

Systems, volume 29.

Bellman, R. (1957). Dynamic Programming. Dover Books on Computer Science Series. Princeton Uni-
versity Press.

Bengio, Y., Louradour, J., Collobert, R., and Weston, J. (2009). Curriculum learning. In Proceedings

of the 26th Annual International Conference on Machine Learning - ICML ’09, pages 1–8, Montreal,
Quebec, Canada. ACM Press.

Billard, A. G., Calinon, S., and Dillmann, R. (2016). Learning from Humans. In Siciliano, B. and
Khatib, O., editors, Springer Handbook of Robotics, pages 1995–2014. Springer International Pub-
lishing, Cham.

Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel, L. D., Monfort, M.,
Muller, U., Zhang, J., Zhang, X., Zhao, J., and Zieba, K. (2016). End to End Learning for Self-Driving
Cars. arXiv:1604.07316 [cs].

Bradski, G. (2000). The OpenCV library. Dr. Dobb’s Journal of Software Tools.

Breiman, L. (1996). Bagging Predictors. Machine Learning, 24(2):123–140.

Burda, Y., Edwards, H., Storkey, A., and Klimov, O. (2019). Exploration by Random Network Distillation.
In International Conference on Learning Representations (ICLR’19), New Orleans, LA, USA. arXiv.

Cabi, S., Gómez, S., Matthew, C., Hoffman, W., Denil, M., Wang, Z., De, N., and Deepmind, F. (2017).
The Intentional Unintentional Agent: Learning to Solve Many Continuous Control Tasks Simulta-
neously. In Conference on Robot Learning (CoRL’17), Mountain View, USA.

Cabi, S., Gómez Colmenarejo, S., Novikov, A., Konyushova, K., Reed, S., Jeong, R., Zolna, K., Aytar, Y.,
Budden, D., Vecerik, M., Sushkov, O., Barker, D., Scholz, J., Denil, M., de Freitas, N., and Wang, Z.
(2020). Scaling Data-Driven Robotics with Reward Sketching and Batch Reinforcement Learning.
In Proceedings of Robotics: Science and Systems (RSS’20). Robotics: Science and Systems Foundation.

Celemin, C., Pérez-Dattari, R., Chisari, E., Franzese, G., Rosa, L. d. S., Prakash, R., Ajanović, Z., Ferraz,
M., Valada, A., and Kober, J. (2022). Interactive Imitation Learning in Robotics: A Survey. Foundations
and Trends® in Robotics, 10(1-2):1–197.

Chan, B. (2020). RL sandbox. https://github.com/chanb/rl sandbox public.

Chang, W.-D., Fujimoto, S., Meger, D., and Dudek, G. (2024). Imitation learning from observation
through optimal transport. Reinforcement Learning Journal, 4:1911–1923.

Chebotar, Y., Kroemer, O., and Peters, J. (2014). Learning robot tactile sensing for object manipulation.
In 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 3368–3375.

BIBLIOGRAPHY 163

Chen, X., Wang, C., Zhou, Z., and Ross, K. (2021). Randomized Ensembled Double Q-Learning: Learn-
ing Fast Without a Model. arXiv:2101.05982 [cs].

Chi, C., Sun, X., Xue, N., Li, T., and Liu, C. (2018). Recent Progress in Technologies for Tactile Sensors.
Sensors, 18(4):948.

Codevilla, F., Müller, M., López, A., Koltun, V., and Dosovitskiy, A. (2018). End-to-End Driving Via
Conditional Imitation Learning. In Proceedings of the IEEE International Conference on Robotics and

Automation (ICRA’18), pages 4693–4700, Brisbane, Australia.

Coumans, E. and Bai, Y. (2016–2019). PyBullet, a Python module for physics simulation for games,
robotics and machine learning. http://pybullet.org.

Cui, Y., Isele, D., Niekum, S., and Fujimura, K. (2019). Uncertainty-aware data aggregation for deep
imitation learning. In Proceedings of the IEEE International Conference on Robotics and Automation

(ICRA’19), pages 761–767, Montreal, QC, Canada.

Dasari, S., Wang, J., Hong, J., Bahl, S., Lin, Y., Wang, A. S., Thankaraj, A., Chahal, K. S., Calli, B., Gupta,
S., Held, D., Pinto, L., Pathak, D., Kumar, V., and Gupta, A. (2021). RB2: Robotic Manipulation
Benchmarking with a Twist. In Thirty-Fifth Conference on Neural Information Processing Systems

Datasets and Benchmarks Track (Round 2).

de Haan, P., Jayaraman, D., and Levine, S. (2019). Causal Confusion in Imitation Learning. In Advances

in Neural Information Processing Systems (Neurips’19), pages 11693–11704.

Dwibedi, D., Tompson, J., Lynch, C., and Sermanet, P. (2018). Learning Actionable Representations
from Visual Observations. In The IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS’18), pages 1577–1584, Madrid, Spain.

Ecoffet, A., Huizinga, J., Lehman, J., Stanley, K. O., and Clune, J. (2021). First return, then explore.
Nature, 590(7847):580–586.

Eslami, S. M. A., Jimenez Rezende, D., Besse, F., Viola, F., Morcos, A. S., Garnelo, M., Ruderman, A.,
Rusu, A. A., Danihelka, I., Gregor, K., Reichert, D. P., Buesing, L., Weber, T., Vinyals, O., Rosenbaum,
D., Rabinowitz, N., King, H., Hillier, C., Botvinick, M., Wierstra, D., Kavukcuoglu, K., and Hassabis,
D. (2018). Neural scene representation and rendering. Science, 360(6394):1204–1210.

Eysenbach, B., Levine, S., and Salakhutdinov, R. (2021). Replacing Rewards with Examples: Example-
Based Policy Search via Recursive Classification. In Advances in Neural Information Processing Sys-

tems (NeurIPS’21), Virtual.

Figueroa, N. (2023). Easy-kinesthetic-recording. https://github.com/nbfigueroa/easy-kinesthetic-
recording.

164 BIBLIOGRAPHY

Finn, C., Levine, S., and Abbeel, P. (2016). Guided cost learning: Deep inverse optimal control via policy
optimization. In Proceedings of the 33rd International Conference on Machine Learning (ICML’16),
ICML’16, pages 49–58, New York, NY, USA. JMLR.org.

Fischer, K., Kirstein, F., Jensen, L. C., Krüger, N., Kukliński, K., aus der Wieschen, M. V., and
Savarimuthu, T. R. (2016). A comparison of types of robot control for programming by Demon-
stration. In 2016 11th ACM/IEEE International Conference on Human-Robot Interaction (HRI), pages
213–220.

Florence, P., Manuelli, L., and Tedrake, R. (2020). Self-Supervised Correspondence in Visuomotor
Policy Learning. IEEE Robotics and Automation Letters, 5(2):492–499.

Florence, P. R., Manuelli, L., and Tedrake, R. (2018). Dense Object Nets: Learning Dense Visual Object
Descriptors By and For Robotic Manipulation. In The 2nd Annual Conference on Robot Learning

(CoRL’18), pages 373–385, Zurich, Switzerland.

Fu, J., Luo, K., and Levine, S. (2018a). Learning Robust Rewards with Adverserial inverse Reinforce-
ment Learning. In Proceedings of the International Conference on Learning Representations (ICLR’18),
Vancouver, BC, Canada.

Fu, J., Singh, A., Ghosh, D., Yang, L., and Levine, S. (2018b). Variational Inverse Control with Events:
A General Framework for Data-Driven Reward Definition. In Advances in Neural Information Pro-

cessing Systems (NeurIPS’18), Montreal, Canada.

Fujimoto, S., Meger, D., and Precup, D. (2019). Off-Policy Deep Reinforcement Learning without Ex-
ploration. In International Conference on Machine Learning (ICML’19), Long Beach, CA, USA.

Fujimoto, S., van Hoof, H., and Meger, D. (2018). Addressing Function Approximation Error in Actor-
Critic Methods. In Proceedings of the 35th International Conference on Machine Learning (ICML’18),
pages 1582–1591, Stockholm, Sweden.

Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F., and Marı́n-Jiménez, M. (2014). Automatic
generation and detection of highly reliable fiducial markers under occlusion. Pattern Recognition,
47(6):2280–2292.

Ghasemipour, S. K. S., Zemel, R. S., and Gu, S. S. (2019). A Divergence Minimization Perspective on
Imitation Learning Methods. In Conference on Robot Learning (CoRL’19).

Giusti, A., Guzzi, J., Ciresan, D. C., He, F.-L., Rodriguez, J. P., Fontana, F., Faessler, M., Forster, C.,
Schmidhuber, J., Caro, G. D., Scaramuzza, D., and Gambardella, L. M. (2016). A Machine Learning
Approach to Visual Perception of Forest Trails for Mobile Robots. IEEE Robotics and Automation

Letters, 1(2):661–667.

Goecks, V. G., Gremillion, G. M., Lawhern, V. J., Valasek, J., and Waytowich, N. R. (2019). Efficiently
Combining Human Demonstrations and Interventions for Safe Training of Autonomous Systems

BIBLIOGRAPHY 165

in Real-Time. In Proceedings of the 33rd AAAI Conference on Artificial Intelligence (AAAI’19), pages
2462–2470.

Goecks, V. G., Gremillion, G. M., Lawhern, V. J., Valasek, J., and Waytowich, N. R. (2020). Integrat-
ing Behavior Cloning and Reinforcement Learning for Improved Performance in Dense and Sparse
Reward Environments. In Proceedings of the 19th International Conference on Autonomous Agents

and Multiagent Systems (AAMS’20), AAMAS ’20, pages 465–473, Richland, SC, USA. International
Foundation for Autonomous Agents and Multiagent Systems.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT press.

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and
Bengio, Y. (2014). Generative Adversarial Nets. In Proceedings of the 27th International Conference on

Neural Information Processing Systems (NIPS’14), NIPS’14, pages 2672–2680, Montreal, QC, Canada.
MIT Press.

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and Courville, A. C. (2017). Improved Training of
Wasserstein GANs. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan,
S., and Garnett, R., editors, Conference on Neural Information Processing Systems, pages 5767–5777,
Long Beach, CA, USA. Curran Associates, Inc.

Gupta, A., Kumar, V., Lynch, C., Levine, S., and Hausman, K. (2019). Relay Policy Learning: Solving
Long Horizon Tasks Via Imitation and Reinforcement Learning. In Conference on Robot Learning

(CoRL’19).

Gupta, A., Pacchiano, A., Zhai, Y., Kakade, S. M., and Levine, S. (2022). Unpacking Reward Shaping:
Understanding the Benefits of Reward Engineering on Sample Complexity. In Advances in Neural

Information Processing Systems (Neurips’22), New Orleans, LA, USA.

Gupta, A., Yu, J., Zhao, T. Z., Kumar, V., Rovinsky, A., Xu, K., Devlin, T., and Levine, S. (2021). Reset-
Free Reinforcement Learning via Multi-Task Learning: Learning Dexterous Manipulation Behaviors
without Human Intervention. In Proceedings of the 2021 IEEE International Conference on Robotics

and Automation (ICRA’21).

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018). Soft Actor-Critic: Off-Policy Maximum En-
tropy Deep Reinforcement Learning with a Stochastic Actor. In Proceedings of the 35th International

Conference on Machine Learning (ICML’18), pages 1861–1870, Stockholm, Sweden.

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., Kumar, V., Zhu, H., Gupta, A., Abbeel,
P., and Levine, S. (2019). Soft Actor-Critic Algorithms and Applications. arXiv:1812.05905 [cs, stat].

Hansen, J., Hogan, F., Rivkin, D., Meger, D., Jenkin, M., and Dudek, G. (2022). Visuotactile-RL: Learn-
ing Multimodal Manipulation Policies with Deep Reinforcement Learning. In 2022 International

Conference on Robotics and Automation (ICRA), pages 8298–8304.

166 BIBLIOGRAPHY

Hardt, M. and Recht, B. (2022). Patterns, Predictions, and Actions: Foundations of Machine Learning.
Princeton University Press.

Hatch, K., Yu, T., Rafailov, R., and Finn, C. (2021). Example-Based Offline Reinforcement Learning
without Rewards. In Advances in Neural Information Processing Systems (NeurIPS’21) Offline Rein-

forcement Learning Workshop.

Hatch, K. B., Eysenbach, B., Rafailov, R., Yu, T., Salakhutdinov, R., Levine, S., and Finn, C. (2023).
Contrastive Example-Based Control. In Matni, N., Morari, M., and Pappas, G. J., editors, Learning
for Dynamics and Control (L4DC’23), volume 211 of Proceedings of Machine Learning Research, pages
155–169, Philadelphia, PA, USA. PMLR.

Hausman, K., Chebotar, Y., Schaal, S., Sukhatme, G., and Lim, J. (2017). Multi-Modal Imitation Learning
from Unstructured Demonstrations using Generative Adversarial Nets. In Conference on Neural

Information Processing Systems.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep Residual Learning for Image Recognition. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’16), pages
770–778, Las Vegas, NV, USA. IEEE.

Henderson, P., Chang, W.-D., Bacon, P.-L., Meger, D., Pineau, J., and Precup, D. (2018). OptionGAN:
Learning Joint Reward-Policy Options Using Generative Adversarial Inverse Reinforcement Learn-
ing. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI’18).

Ho, J. and Ermon, S. (2016). Generative Adversarial Imitation Learning. In Advances in Neural Infor-

mation Processing Systems (NIPS’16), Barcelona, Spain.

Hogan, F. R., Jenkin, M., Rezaei-Shoshtari, S., Girdhar, Y., Meger, D., and Dudek, G. (2021). Seeing
Through your Skin: Recognizing Objects with a Novel Visuotactile Sensor. In 2021 IEEE Winter

Conference on Applications of Computer Vision (WACV), pages 1217–1226.

Hogan, F. R., Tremblay, J.-F., Baghi, B. H., Jenkin, M., Siddiqi, K., and Dudek, G. (2022). Finger-STS:
Combined Proximity and Tactile Sensing for Robotic Manipulation. IEEE Robotics and Automation

Letters, 7(4):10865–10872.

Hogan, N. (1984). Impedance Control: An Approach to Manipulation. In 1984 American Control Con-

ference, pages 304–313.

Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforward networks are universal
approximators. Neural Networks, 2(5):359–366.

Huang, I. and Bajcsy, R. (2020). Robot Learning from Demonstration with Tactile Signals for Geometry-
Dependent Tasks. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 8323–8328, Las Vegas, NV, USA. IEEE.

BIBLIOGRAPHY 167

Hussenot, L., Andrychowicz, M., Vincent, D., Dadashi, R., Raichuk, A., Ramos, S., Momchev, N., Girgin,
S., Marinier, R., Stafiniak, L., Orsini, M., Bachem, O., Geist, M., and Pietquin, O. (2021). Hyperparam-
eter Selection for Imitation Learning. In Proceedings of the 38th International Conference on Machine

Learning (ICML’21), pages 4511–4522.

Iriondo, A., Lazkano, E., Susperregi, L., Urain, J., Fernandez, A., and Molina, J. (2019). Pick and Place
Operations in Logistics Using a Mobile Manipulator Controlled with Deep Reinforcement Learning.
Applied Sciences, 9(2):348.

James, S., Wada, K., Laidlow, T., and Davison, A. J. (2022). Coarse-to-Fine Q-Attention: Efficient Learn-
ing for Visual Robotic Manipulation Via Discretisation. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 13739–13748.

Jena, R., Liu, C., and Sycara, K. (2020). Augmenting GAIL with BC for sample efficient imitation
learning. In Proceedings of Robotics: Science and Systems (RSS’20)Workshop on Advances & Challenges

in Imitation Learning for Robotics.

Jilani, A. (2024). Tactile recovery of shape from texture deformation. Master’s thesis, McGill University.

Jing, M., Huang, W., Sun, F., Ma, X., Kong, T., Gan, C., and Li, L. (2021). Adversarial Option-Aware
Hierarchical Imitation Learning. In Proceedings of the 38th International Conference on Machine

Learning (ICML’21), pages 5097–5106.

Johns, E. (2021). Coarse-to-Fine Imitation Learning: Robot Manipulation from a Single Demonstration.
arXiv:2105.06411 [cs].

Kalashnikov, D., Irpan, A., Pastor, P., Ibarz, J., Herzog, A., Jang, E., Quillen, D., Holly, E., Kalakrishnan,
M., Vanhoucke, V., and Levine, S. (2018). QT-Opt: Scalable Deep Reinforcement Learning for Vision-
Based Robotic Manipulation. In Conference on Robot Learning (CoRL’18), Zurich, Switzerland.

Kelly, M., Sidrane, C., Driggs-Campbell, K., and Kochenderfer, M. J. (2019). HG-DAgger: Interactive
Imitation Learning with Human Experts. In Proceedings of the IEEE International Conference on

Robotics and Automation (ICRA’19), pages 8077–8083, Montreal, QC, Canada.

Kim, B. and Pineau, J. (2013). Maximum Mean Discrepancy Imitation Learning. In Proceedings of

Robotics: Science and Systems (RSS’13), Berlin, Germany. Robotics: Science and Systems Foundation.

Kim, W., Kim, W. D., Kim, J.-J., Kim, C.-H., and Kim, J. (2022). UVtac: Switchable UV Marker-Based
Tactile Sensing Finger for Effective Force Estimation and Object Localization. IEEE Robotics and

Automation Letters, 7(3):6036–6043.

Kindle, J., Furrer, F., Novkovic, T., Chung, J. J., Siegwart, R., and Nieto, J. (2020). Whole-Body Control
of a Mobile Manipulator using End-to-End Reinforcement Learning. arXiv:2003.02637 [cs].

Kingma, D. P. and Ba, J. (2015). Adam: A Method for Stochastic Optimization. In Proceedings of the

International Conference on Learning Representations (ICLR’15), San Diego, CA, USA.

168 BIBLIOGRAPHY

Kingma, D. P., Salimans, T., and Welling, M. (2015). Variational Dropout and the Local Reparameteri-
zation Trick. In Advances in Neural Information Processing Systems, volume 28. Curran Associates,
Inc.

Kingma, D. P. and Welling, M. (2013). Auto-Encoding Variational Bayes. arXiv:1312.6114 [cs, stat].

Kormushev, P., Calinon, S., and Caldwell, D. G. (2011). Imitation Learning of Positional and Force Skills
Demonstrated via Kinesthetic Teaching and Haptic Input. Advanced Robotics, 25(5):581–603.

Kostrikov, I. (2018). PyTorch Implementations of Reinforcement Learning Algorithms.
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail.

Kostrikov, I., Agrawal, K. K., Dwibedi, D., Levine, S., and Tompson, J. (2019). Discriminator-Actor-
Critic: Addressing Sample Inefficiency and Reward Bias in Adversarial Imitation Learning. In Pro-

ceedings of the International Conference on Learning Representations (ICLR’19), New Orleans, LA,
USA.

Kumar, A., Zhou, A., Tucker, G., and Levine, S. (2020). Conservative Q-Learning for Offline Reinforce-
ment Learning. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.-F., and Lin, H.-T., editors,
Advances in Neural Information Processing Systems (Neurips’20).

Laskey, M., Lee, J., Fox, R., Dragan, A. D., and Goldberg, K. (2017a). DART: Noise Injection for Robust
Imitation Learning. In Proceedings of the 1st Annual Conference on Robot Learning (CoRL’17), pages
143–156, Mountain View, CA, USA.

Laskey, M., Powers, C., Joshi, R., Poursohi, A., and Goldberg, K. (2017b). Learning Robust Bed Making
using Deep Imitation Learning with DART. arXiv:1711.02525 [cs].

Laskey, M., Staszak, S., Hsieh, W. Y., Mahler, J., Pokorny, F. T., Dragan, A. D., and Goldberg, K. (2016).
SHIV: Reducing supervisor burden in DAgger using support vectors for efficient learning from
demonstrations in high dimensional state spaces. In Proceedings of the IEEE International Conference

on Robotics and Automation (ICRA’16), pages 462–469, Stockholm, Sweden.

Lee, A. X., Lu, H., Gupta, A., Levine, S., and Abbeel, P. (2015). Learning force-based manipulation of
deformable objects from multiple demonstrations. In 2015 IEEE International Conference on Robotics

and Automation (ICRA), pages 177–184.

Levine, S., Finn, C., Darrell, T., and Abbeel, P. (2016). End-to-end training of deep visuomotor policies.
Journal of Machine Learning Research, 17(39):1–40.

Levine, S., Kumar, A., Tucker, G., and Fu, J. (2020). Offline Reinforcement Learning: Tutorial, Review,
and Perspectives on Open Problems. arXiv:2005.01643 [cs, stat].

Li, H., Zhang, Y., Zhu, J., Wang, S., Lee, M. A., Xu, H., Adelson, E., Fei-Fei, L., Gao, R., and Wu, J.
(2023a). See, hear, and feel: Smart sensory fusion for robotic manipulation. In Liu, K., Kulic, D., and

BIBLIOGRAPHY 169

Ichnowski, J., editors, Proceedings of the 6th Conference on Robot Learning, volume 205 of Proceedings
of Machine Learning Research, pages 1368–1378. PMLR.

Li, K., Chappell, D., and Rojas, N. (2023b). Immersive Demonstrations are the Key to Imitation Learning.
In 2023 IEEE International Conference on Robotics and Automation (ICRA), pages 5071–5077.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., and Wierstra, D. (2016).
Continuous control with deep reinforcement learning. In Bengio, Y. and LeCun, Y., editors, Interna-
tional Conference on Learning Representations (ICLR’16), San Juan, Puerto Rico.

Limoyo, O., Ablett, T., and Kelly, J. (2023). Learning Sequential Latent Variable Models from Multimodal
Time Series Data. In Petrovic, I., Menegatti, E., and Marković, I., editors, Intelligent Autonomous Sys-

tems 17, Lecture Notes in Networks and Systems, pages 511–528, Cham. Springer Nature Switzer-
land.

Limoyo, O., Ablett, T., Marić, F., Volpatti, L., and Kelly, J. (2018). Self-Calibration of Mobile Manipu-
lator Kinematic and Sensor Extrinsic Parameters Through Contact-Based Interaction. In 2018 IEEE

International Conference on Robotics and Automation (ICRA), pages 1–8.

Limoyo, O., Chan, B., Marić, F., Wagstaff, B., Mahmood, A. R., and Kelly, J. (2020). Heteroscedastic Un-
certainty for Robust Generative Latent Dynamics. IEEE Robotics and Automation Letters, 5(4):6654–
6661.

Lin, Y., Wang, A. S., Sutanto, G., Rai, A., and Meier, F. (2021). Polymetis.
https://facebookresearch.github.io/fairo/polymetis/.

Lu, Y., Hausman, K., Chebotar, Y., Yan, M., Jang, E., Herzog, A., Xiao, T., Irpan, A., Khansari, M., Kalash-
nikov, D., and Levine, S. (2021). AW-Opt: Learning Robotic Skills with Imitation and Reinforcement
at Scale. arXiv:2111.05424 [cs].

Lynch, C., Khansari, M., Xiao, T., Kumar, V., Tompson, J., Levine, S., and Sermanet, P. (2019). Learning
Latent Plans from Play. In Conference on Robot Learning (CoRL’19).

Lynch, C. and Sermanet, P. (2021). Language Conditioned Imitation Learning over Unstructured Data.

Ma, D., Donlon, E., Dong, S., and Rodriguez, A. (2019). Dense Tactile Force Estimation using GelSlim
and inverse FEM. In 2019 International Conference on Robotics and Automation (ICRA), pages 5418–
5424.

Maeda, G., Väätäinen, J., and Yoshida, H. (2020). Visual Task Progress Estimation with Appearance
Invariant Embeddings for Robot Control and Planning. In The IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS’20), pages 7941–7948, Las Vegas, NV, USA.

Mandlekar, A., Nasiriany, S., Wen, B., Akinola, I., Narang, Y., Fan, L., Zhu, Y., and Fox, D. (2023).
MimicGen: A data generation system for scalable robot learning using human demonstrations. In
7th Annual Conference on Robot Learning.

170 BIBLIOGRAPHY

Mandlekar, A., Xu, D., Wong, J., Nasiriany, S., Wang, C., Kulkarni, R., Fei-Fei, L., Savarese, S., Zhu, Y.,
and Martı́n-Martı́n, R. (2022). What matters in learning from offline human demonstrations for robot
manipulation. In Faust, A., Hsu, D., and Neumann, G., editors, Proceedings of the 5th Conference on

Robot Learning, volume 164 of Proceedings of Machine Learning Research, pages 1678–1690. PMLR.

Menda, K., Driggs-Campbell, K., and Kochenderfer, M. J. (2019). EnsembleDAgger: A bayesian ap-
proach to safe imitation learning. In Proceedings of the IEEE/RSJ International Conference on Intelli-

gent Robots and Systems (IROS’19), pages 5041–5048, Macau, China.

Minsky, M. (1961). Steps toward Artificial Intelligence. Proceedings of the IRE, 49(1):8–30.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Riedmiller, M.,
Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran,
D., Wierstra, D., Legg, S., and Hassabis, D. (2015). Human-level control through deep reinforcement
learning. Nature, 518(7540):529–533.

Murphy, K. P. (2022). Probabilistic Machine Learning: An Introduction. MIT Press.

Nachum, O., Tang, H., Lu, X., Gu, S., Lee, H., and Levine, S. (2019). Why Does Hierarchy (Sometimes)
Work So Well in Reinforcement Learning? In Proceedings of the Neural Information Processing Sys-

tems (NeurIPS’19) Deep Reinforcement Learning Workshop.

Nair, A., Gupta, A., Dalal, M., and Levine, S. (2021). AWAC: Accelerating Online Reinforcement Learn-
ing with Offline Datasets. arXiv:2006.09359 [cs, stat].

Nair, A., McGrew, B., Andrychowicz, M., Zaremba, W., and Abbeel, P. (2018). Overcoming Exploration
in Reinforcement Learning with Demonstrations. In Proceedings of the 2018 IEEE International Con-

ference on Robotics and Automation (ICRA’18), pages 6292–6299, Brisbane, Australia.

Ng, A. and Russell, S. (2000). Algorithms for inverse reinforcement learning. In International Conference

on Machine Learning (ICML’00), pages 663–670.

Ng, A. Y., Harada, D., and Russell, S. J. (1999). Policy Invariance Under Reward Transformations:
Theory and Application to Reward Shaping. In Proceedings of the Sixteenth International Conference

on Machine Learning (ICML’99), ICML ’99, pages 278–287, San Francisco, CA, USA.

Ng, A. Y. and Jordan, M. I. (2003). Shaping and Policy Search in Reinforcement Learning. PhD thesis,
University of California, Berkeley.

Orsini, M., Raichuk, A., Hussenot, L., Vincent, D., Dadashi, R., Girgin, S., Geist, M., Bachem, O.,
Pietquin, O., and Andrychowicz, M. (2021). What Matters for Adversarial Imitation Learning? In
Conference on Neural Information Processing Systems.

Osa, T., Pajarinen, J., Neumann, G., Bagnell, J. A., Abbeel, P., and Peters, J. (2018). An Algorithmic
Perspective on Imitation Learning. Foundations and Trends in Robotics, 7(1-2):1–179.

BIBLIOGRAPHY 171

Padmanabha, A., Ebert, F., Tian, S., Calandra, R., Finn, C., and Levine, S. (2020). OmniTact: A Multi-
Directional High-Resolution Touch Sensor. In 2020 IEEE International Conference on Robotics and

Automation (ICRA), pages 618–624.

Pan, Y., Cheng, C.-A., Saigol, K., Lee, K., Yan, X., Theodorou, E. A., and Boots, B. (2018). Agile Au-
tonomous Driving using End-to-End Deep Imitation Learning. In Kress-Gazit, H., Srinivasa, S. S.,
Howard, T., and Atanasov, N., editors, Proceedings of Robotics: Science and Systems (RSS’18), Pitts-
burgh, PA, USA.

Pardo, F., Tavakoli, A., Levdik, V., and Kormushev, P. (2018). Time Limits in Reinforcement Learning.
In Dy, J. G. and Krause, A., editors, Proceedings of the 35th International Conference onMachine Learn-

ing, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of
Machine Learning Research, pages 4042–4051. PMLR.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N.,
Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S.,
Steiner, B., Fang, L., Bai, J., and Chintala, S. (2019). PyTorch: An imperative style, high-performance
deep learning library. In Wallach, H., Larochelle, H., Beygelzimer, A., dAlché-Buc, F., Fox, E., and
Garnett, R., editors, Advances in Neural Information Processing Systems 32, pages 8024–8035. Curran
Associates, Inc.

Pateria, S., Subagdja, B., Tan, A.-h., and Quek, C. (2021). Hierarchical Reinforcement Learning: A
Comprehensive Survey. ACM Computing Surveys, 54(5):109:1–109:35.

Pervez, A., Ali, A., Ryu, J.-H., and Lee, D. (2017). Novel learning from demonstration approach for
repetitive teleoperation tasks. In 2017 IEEE World Haptics Conference (WHC), pages 60–65, Munich,
Germany. IEEE.

Peters, J. and Kober, J. (2009). Using reward-weighted imitation for robot Reinforcement Learning. In
2009 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning, pages 226–
232, Nashville, TN, USA. IEEE.

Plappert, M., Andrychowicz, M., Ray, A., McGrew, B., Baker, B., Powell, G., Schneider, J., Tobin, J.,
Chociej, M., Welinder, P., Kumar, V., and Zaremba, W. (2018). Multi-Goal Reinforcement Learning:
Challenging Robotics Environments and Request for Research. arXiv:1802.09464 [cs].

Pomerleau, D. A. (1989). ALVINN: An Autonomous Land Vehicle in a Neural Network. In Touretzky,
D. S., editor, Proceedings of the Annual Conference on Neural Information Processing Systems (NIPS’89),
pages 305–313, Denver, CO, USA. Morgan-Kaufmann.

Popov, I., Heess, N., Lillicrap, T., Hafner, R., Barth-Maron, G., Vecerik, M., Lampe, T., Tassa, Y., Erez, T.,
and Riedmiller, M. (2017). Data-efficient Deep Reinforcement Learning for Dexterous Manipulation.
arXiv:1704.03073 [cs].

172 BIBLIOGRAPHY

Quionero-Candela, J., Sugiyama, M., Schwaighofer, A., and Lawrence, N. D. (2009). Dataset Shift in

Machine Learning. The MIT Press.

Raibert, M. H. and Craig, J. J. (1981). Hybrid Position/Force Control of Manipulators. Journal of

Dynamic Systems, Measurement, and Control, 103(2):126–133.

Rajeswaran, A., Kumar, A., Gupta, A., Vezzani, G., Schulman, J., Todorov, E., and Levine, S. (2018).
Learning Complex Dexterous Manipulation with Deep Reinforcement Learning and Demonstra-
tions. In Proceedings of Robotics: Science and Systems (RSS’18), Pittsburgh, PA, USA.

Reddy, S., Dragan, A. D., and Levine, S. (2020). SQIL: Imitation Learning Via Reinforcement Learning
with Sparse Rewards. In International Conference on Learning Representations (ICLR’20).

Riedmiller, M., Hafner, R., Lampe, T., Neunert, M., Degrave, J., Wiele, T., Mnih, V., Heess, N., and
Springenberg, J. T. (2018). Learning by Playing Solving Sparse Reward Tasks from Scratch. In
Proceedings of the 35th International Conference on Machine Learning (ICML’18), pages 4344–4353,
Stockholm, Sweden.

Robert, A., Pike-Burke, C., and Faisal, A. A. (2023). Sample Complexity of Goal-Conditioned Hierar-
chical Reinforcement Learning. In Advances in Neural Information Processing Systems (NeurIPS’23),
New Orleans, LA, USA.

Ross, S. (2013). Interactive Learning for Sequential Decisions and Predictions. PhD thesis, Carnegie
Mellon University.

Ross, S. and Bagnell, D. (2010). Efficient Reductions for Imitation Learning. In Proceedings of the

Thirteenth International Conference on Artificial Intelligence and Statistics (AISTATS’10), pages 661–
668. JMLR Workshop and Conference Proceedings.

Ross, S., Gordon, G. J., and Bagnell, D. (2011). A Reduction of Imitation Learning and Structured
Prediction to No-Regret Online Learning. In Proceedings of the 14th International Conference on

Artificial Intelligence and Statistics (AISTATS’11), pages 627–635, Fort Lauderdale, FL, USA.

Ross, S., Melik-Barkhudarov, N., Shankar, K. S., Wendel, A., Dey, D., Bagnell, J. A., and Hebert, M.
(2013). Learning monocular reactive UAV control in cluttered natural environments. In Proceedings of

the IEEE International Conference on Robotics and Automation (ICRA’13), pages 1765–1772, Karlsruhe,
Germany.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning representations by back-
propagating errors. Nature, 323(6088):533–536.

Rummery, G. and Niranjan, M. (1994). On-Line Q-Learning Using Connectionist Systems. Technical

Report CUED/F-INFENG/TR 166.

BIBLIOGRAPHY 173

Sadeghi, F., Toshev, A., Jang, E., and Levine, S. (2018). Sim2Real Viewpoint Invariant Visual Servoing
by Recurrent Control. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR’18), pages 4691–4699, Salt Lake City, UT, USA. IEEE.

Sermanet, P., Lynch, C., Chebotar, Y., Hsu, J., Jang, E., Schaal, S., Levine, S., and Brain, G. (2018). Time-
Contrastive Networks: Self-Supervised Learning from Video. In IEEE International Conference on

Robotics and Automation (ICRA’18), pages 1134–1141, Brisbane, QLD, Australia.

Shannon, C. E. (1948). A Mathematical Theory of Communication. The Bell System Technical Journal,
27(1):379–423.

Sharma, M., Sharma, A., Rhinehart, N., and Kitani, K. M. (2019). Directed-Info GAIL: Learning Hier-
archical Policies from Unsegmented Demonstrations using Directed Information. In International

Conference on Learning Representations (ICLR’19).

Siciliano, B. (2009). Force Control. In Sciavicco, L., Villani, L., and Oriolo, G., editors, Robotics: Mod-

elling, Planning and Control, Advanced Textbooks in Control and Signal Processing, pages 363–405.
Springer, London.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., Schrittwieser, J.,
Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbren-
ner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., and Hassabis, D. (2016).
Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587):484–489.

Singh, A., Yang, L., Hartikainen, K., Finn, C., and Levine, S. (2019). End-to-End Robotic Reinforce-
ment Learning without Reward Engineering. In Robotics: Science and Systems (RSS’19), Freiburg im
Breisgau, Germany.

Sinha, S., Mandlekar, A., and Garg, A. (2021). S4RL: Surprisingly Simple Self-Supervision for Offline
Reinforcement Learning. In Conference on Robot Learning (CoRL’21), London, UK.

Skalse, J., Howe, N., Krasheninnikov, D., and Krueger, D. (2022). Defining and characterizing reward
gaming. In Advances in Neural Information Processing Systems (NeurIPS’22), New Orleans, LA, USA.

Skinner, B. F. (1953). Science and Human Behavior. Science and Human Behavior. Macmillan, Oxford,
England.

Sun, W., Venkatraman, A., Gordon, G. J., Boots, B., and Bagnell, J. A. (2017). Deeply AggreVaTeD:
Differentiable Imitation Learning for Sequential Prediction. In Precup, D. and Teh, Y. W., editors,
Proceedings of the 34th International Conference on Machine Learning (ICML’17), volume 70 of Pro-
ceedings of Machine Learning Research, pages 3309–3318, International Convention Centre, Sydney,
Australia.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement Learning: An Introduction. MIT press, 2 edition.

174 BIBLIOGRAPHY

Sutton, R. S., Precup, D., and Singh, S. (1999). Between MDPs and Semi-MDPs: A Framework for
Temporal Abstraction in Reinforcement Learning. Artificial Intelligence, 112(1-2):181–211.

Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., and Abbeel, P. (2017). Domain randomization for
transferring deep neural networks from simulation to the real world. In Proceedings of the IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS’17), pages 23–30, Vancouver, BC,
Canada.

Tsai, R. and Lenz, R. (1989). A new technique for fully autonomous and efficient 3D robotics hand/eye
calibration. IEEE Transactions on Robotics and Automation, 5(3):345–358.

van Hasselt, H., Guez, A., and Silver, D. (2016). Deep Reinforcement Learning with Double Q-learning.
In AAAI Conference on Artificial Intelligence, Pheonix, USA.

Vasan, G., Wang, Y., Shahriar, F., Bergstra, J., Jägersand, M., and Mahmood, A. R. (2024). Revisiting
Sparse Rewards for Goal-Reaching Reinforcement Learning. Reinforcement Learning Journal, 1(1).

Vecerik, M., Hester, T., Scholz, J., Wang, F., Pietquin, O., Piot, B., Heess, N., Rothörl, T., Lampe, T., and
Riedmiller, M. (2018). Leveraging Demonstrations for Deep Reinforcement Learning on Robotics
Problems with Sparse Rewards.

Villani, L. and De Schutter, J. (2016). Force Control. In Siciliano, B. and Khatib, O., editors,
Springer Handbook of Robotics, Springer Handbooks, pages 195–220. Springer International Pub-
lishing, Cham.

Wang, C., Zhang, Q., Tian, Q., Li, S., Wang, X., Lane, D., Petillot, Y., and Wang, S. (2020). Learning
Mobile Manipulation through Deep Reinforcement Learning. Sensors (Basel, Switzerland), 20(3).

Watkins, C. J. C. H. and Dayan, P. (1992). Q-learning. Machine Learning, 8(3):279–292.

Welschehold, T., Dornhege, C., and Burgard, W. (2017). Learning Mobile Manipulation Actions from
Human Demonstrations. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS’17), pages 3196–3201, Vancouver, BC, Canada.

Williams, R. J. and Peng, J. (1991). Function Optimization using Connectionist Reinforcement Learning
Algorithms. Connection Science, 3(3):241–268.

Wu, B., Nair, S., Fei-Fei, L., and Finn, C. (2021). Example-Driven Model-Based Reinforcement Learning
for Solving Long-Horizon Visuomotor Tasks. arXiv:2109.10312 [cs].

Wu, Y., Mozifian, M., and Shkurti, F. (2020). Shaping Rewards for Reinforcement Learning with Im-
perfect Demonstrations using Generative Models. arXiv:2011.01298 [cs].

Xiang, G., Li, S., Shuang, F., Gao, F., and Yuan, X. (2024). SC-AIRL: Share-Critic in Adversarial Inverse
Reinforcement Learning for Long-Horizon Task. IEEE Robotics and Automation Letters, 9(4):3179–
3186.

BIBLIOGRAPHY 175

Yamaguchi, A. and Atkeson, C. G. (2017). Implementing tactile behaviors using FingerVision. In 2017

IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids), pages 241–248.

Yarats, D., Fergus, R., Lazaric, A., and Pinto, L. (2022). Mastering Visual Continuous Control: Improved
Data-Augmented Reinforcement Learning. In The Tenth International Conference on Learning Repre-

sentations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net.

Yu, T., Quillen, D., He, Z., Julian, R., Hausman, K., Finn, C., and Levine, S. (2019). Meta-World: A
Benchmark and Evaluation for Multi-Task and Meta Reinforcement Learning. In Conference on

Robot Learning (CoRL’19), volume 100 of Proceedings of Machine Learning Research, pages 1094–1100,
Osaka, Japan. PMLR.

Yuan, W. (2014). Tactile Measurement with a GelSight Sensor. Master’s thesis, Massachusetts Institute
of Technology.

Yuan, W., Dong, S., and Adelson, E. H. (2017). GelSight: High-Resolution Robot Tactile Sensors for
Estimating Geometry and Force. Sensors, 17(12):2762.

Zeng, A., Song, S., Yu, K.-T., Donlon, E., Hogan, F. R., Bauza, M., Ma, D., Taylor, O., Liu, M., Romo, E.,
Fazeli, N., Alet, F., Chavan Dafle, N., Holladay, R., Morona, I., Nair, P. Q., Green, D., Taylor, I., Liu,
W., Funkhouser, T., and Rodriguez, A. (2022). Robotic pick-and-place of novel objects in clutter with
multi-affordance grasping and cross-domain image matching. The International Journal of Robotics

Research, 41(7):690–705.

Zhang, A., Lipton, Z. C., Li, M., and Smola, A. J. (2023). Dive into Deep Learning. Cambridge University
Press.

Zhang, J. and Cho, K. (2017). Query-Efficient Imitation Learning for End-to-End Simulated Driving. In
Proceedings of the 31st AAAI Conference on Artificial Intelligence (AAAI’17), pages 2891–2897, New
York, NY, USA.

Zhang, T., McCarthy, Z., Jowl, O., Lee, D., Chen, X., Goldberg, K., and Abbeel, P. (2018). Deep Imitation
Learning for Complex Manipulation Tasks from Virtual Reality Teleoperation. In Proceedings of

the IEEE International Conference on Robotics and Automation (ICRA’18), pages 5628–5635, Brisbane,
QLD, Australia. IEEE.

Ziebart, B. D., Maas, A. L., Bagnell, J. A., and Dey, A. K. (2008). Maximum Entropy Inverse Reinforce-
ment Learning. In Fox, D. and Gomes, C. P., editors, Proceedings of the Twenty-Third AAAI Conference

on Artificial Intelligence, AAAI 2008, Chicago, Illinois, USA, July 13-17, 2008, pages 1433–1438. AAAI
Press.

Zolna, K., Reed, S., Novikov, A., Colmenarejo, S. G., Budden, D., Cabi, S., Denil, M., de Freitas, N., and
Wang, Z. (2021). Task-Relevant Adversarial Imitation Learning. In Proceedings of the 2020 Conference

on Robot Learning, pages 247–263.

	Introduction
	Structure and Contributions
	Applications Beyond Manipulation
	Associated Publications

	Background
	Supervised Learning
	Sequential Decision Making and Markov Decision Processes
	Reinforcement Learning
	Imitation Learning

	Multiview Manipulation from Demonstrations
	Motivation
	Related Work
	Problem Formulation
	Multiview Training and Shared Information
	Methodology
	Experimental Setup
	Experiments
	Limitations
	Summary

	Force-Matched Demonstrations
	Motivation
	Related Work
	Methodology
	Experiments
	Limitations
	Summary

	Failure Identification for Interventions
	Motivation
	Related Work
	Failure Identification to Reduce Expert Burden (FIRE)
	Fixed-Base Experiments
	Multiview Experiments with GDA-FIRE
	Limitations
	Summary

	Learning from Guided Play
	Motivation
	Related Work
	Problem Formulation
	Local Maximum with Off-Policy AIL
	Learning from Guided Play (LfGP)
	Experiments
	Performance Results for Auxiliary Tasks
	Learned Model Analysis
	Limitations
	Summary

	Auxiliary Control from Examples
	Motivation
	Related Work
	Example-Based Control with Value-Penalization and Auxiliary Tasks
	Experiments
	Limitations
	Summary

	Conclusion
	Summary of Contributions
	On Task Selection, Data-Driven Robotics, and Inductive Biases
	Future Research Directions
	On the Value of Imitation Learning to Robotics

	Appendices
	Learning from Guided Play – Additional Details
	Simulated Panda Play Environment Details
	Reinforcement Learning Implementation Details
	Procedure for Obtaining Experts
	Evaluation
	Return Plots
	Model Architectures and Hyperparameters
	Open-Action and Close-Action Distribution Matching
	Attempted and Failed Experiments

	Auxiliary Control from Examples – Additional Details
	Reward Model Formulations
	Additional Environment, Algorithm, and Implementation Details
	Additional Performance Results
	Why Does SQIL Outperform RCE?
	Expanded Limitations

	Bibliography

