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Autonomous Long-range Mobility: Science & Efficiency

Kilometer-scale mobility increases science return:

• Explore regions of interest unreachable with 

landing systems alone

• Diversify close-up observations in a cost-effective 

manner
[Robinson et al., 2020; Keane et al., 2022; Matthies et al., 2022]
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Endurance mission concept notional traverses

[Keane et al., 2022]



Autonomous Long-range Mobility: Science & Efficiency

Autonomy reduces operational inefficiencies:

• 40-50% of sols during Mars Science Laboratory 

(MSL) & Mars 2020 (M2020) campaigns 

considered unproductive
[Gaines et al., 2016; Sun et al., 2024]

• M2020 record-breaking autonomous drives

mostly occurred in low-complexity terrain
[Rankin et al., 2023; Verma et al., 2023]

• More autonomy does not replace operators, but 

refocuses their responsibilities
[Nesnas et al., 2021]
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M2020 “Rapid Traverse” Campaign:

approx. 5 kilometers in 31 sols

[Rankin et al., 2023]
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Autonomous Long-range Surface Mobility
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Autonomous Long-range Surface Mobility

Triton

EnceladusEuropa

Ceres
Pluto



2024/11/19 6

• Science-driven mobility targets

• Semantic scene understanding

• Non-geometric hazard identification

• Event scheduling

• Global localization, subsystem health estimation

…

Many Ground Functions For Mobility Are Difficult To Replicate

• Adaptive decision-making

Terrain Robot?

[Reid et al., 2021] [Vaquero et al., 2024]

[Wettergreen et al., 2014] [Kolvenbach, 2021]
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Adaptive Decision-making: Apollo J-type Missions

Apollo 17 Lunar Roving Vehicle (LRV), extravehicular activity (EVA) 1

[Credit: NASA]
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Adaptive Decision-making: Apollo J-type Missions

Active traversability assessment

(Apollo 15 Stand-Up EVA)

Following outbound rover tracks

(Apollo 16 EVA 1, return to lunar module (LM))

[Jones, 1995a] [Jones, 1995b]
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Adaptive Decision-making: Apollo J-type Missions

Highly unconsolidated soil on Mons Hadley

(Apollo 15 EVA 2, Station 6a)

Parking the LRV in a depression on Stone Mountain

(Apollo 16 EVA 2, Station 4)

[Jones, 1995a] [Jones, 1995b]
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Adaptive Decision-making: Apollo J-type Missions

Apollo 17 traverse map

(EVA 2 region highlighted)

LM distance vs. EVA elapsed time

(Apollo 17 EVA 2)

[Zhang et al., 2019] [Jones, 1995c]
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Human operator input/intuition required at every mobility planning stage (strategic & tactical)
[Biesiadecki et al., 2007; Verma et al., 2022]

Adaptive Decision-making: Martian Robotic Missions

Early M2020 strategic traverse candidates in 

the Jezero Crater floor

Example M2020 tactical drive with human-

designated keep in/out zones.

[Verma et al., 2022] [Verma et al., 2022]
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Mars Science Laboratory: unexpected wheel wear

Adaptive Decision-making: Martian Robotic Missions

Wear on left front & middle wheels on MSL mission sol 1315 Angular embedded rocks

[Arvidson et al., 2017a] [Ono et al., 2015]



2024/11/19 13

Mars Science Laboratory: unexpected wheel wear

Adaptive Decision-making: Martian Robotic Missions

[Arvidson et al., 2017a]

Geologic units along MSL strategic traverse

[Arvidson et al., 2017b]

MSL detour around Hidden Valley
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1. Unassisted learning from past experiences

2. Exploiting stochastic rover-terrain interaction models

General Capabilities for Adaptive Decision-making
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• Highly autonomous spacecraft should be able to learn from past experiences
[Nesnas et al., 2021]

• Self-supervision is a core characteristic, especially in planetary exploration

Key Capability #1: Unassisted Learning From Past Experiences

Gaussian process-based slip estimation in 

unknown terrain types via transfer learning

[Inotsume & Kubota, 2022]

Traversability cost estimation from locomotion 

data on overhead global terrain maps

[Eder et al., 2023]
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• Highly autonomous spacecraft should be able to learn from past experiences
[Nesnas et al., 2021]

• Self-supervision is a core characteristic, especially in planetary exploration

• Deep learning-based self-supervised methods are on the rise

Key Capability #1: Unassisted Learning From Past Experiences

Fast traversability estimation from camera 

images and point clouds

[Frey et al., 2024]

Deep learning-based traction learning with 

out-of-distribution (OOD) terrain rejection

[Cai et al., 2024]

Deep learning-based slip predictions with 

test-time adaptation

[Endo et al., 2024]
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Shortcoming: assumption of background knowledge availability.

• Training data coverage representative of test cases

• Availability of (human-biased) discrete semantic terrain map

Provides assistance to the traversability inference framework.

Recommendations:

• Associate training data / observations with an unbiased description of the 

environment

• Traversability estimation through similarity of training and testing data 

features (e.g., kernel methods)

• Acquire observations useful for future traverses

Key Capability #1: Unassisted Learning From Past Experiences

Albedo

Visible

Elevation

Slope

Hyperspectral

Thermal Inertia

CFA

...

[Eder et al., 2023]

Example terrain category map
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• Aforementioned work determinize traversability predictions to ease planning

• Repetitive calls to deterministic planners enables limited proactivity

• Stochastic (policy-based) planning methods provide insights about possible outcomes

Key Capability #2: Exploiting Stochastic Rover-terrain Interaction Models

Risk-bounded policies for

safe mission-level path planning

[Lamarre et al., 2024]

Chance-constrained spatiotemporal 

planning applied to planetary rovers

[Santana et al., 2016]

Risk-averse policies for off-road 

mobility in uncertain graphs

[Guo & Barfoot, 2019]
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Shortcoming: oversimplification for computational tractability.

• Simplified disturbance models

• Simplified notion of rover safety, risk aversion is limited

Recommendations:

• Rollout-based methods to mitigate state space and dynamics complexity, 

similar to VIPER global planning efforts
[Shirley & Balaban, 2022]

• Borrow notions from the emerging field of risk-sensitive control for long-

range planetary mobility
[Brunke et al., 2022 ; Wang & Chapman, 2022]

Key Capability #2: Exploiting Stochastic Rover-terrain Interaction Models

[Shirley & Balaban, 2022]

Example VIPER strategic traverse, 

overlay over ice stability depth map

1km
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Conclusion

Long-range surface mobility requires adaptive decision-making

Two important capabilities:

• Learning from past experiences, with little to no external assistance or background knowledge

• Planning methods accounting for environment stochasticity

Other capabilities:

• Explainable adaptability

• Locomotion designs favorable to adaptation

Slides and references: https://starslab.ca/publications 

VIPER

Credit: NASA/Daniel Rutter

Rosalind Franklin ExoMars rover

Credit: ESA/ATG medialab
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