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Abstract

Robots excel at completing short-term tasks within structured environments but strug-

gle with longer-horizon tasks in dynamic, unstructured settings, due to the limitations

of current motion planning algorithms. Task and motion planning (TAMP) frameworks

address this problem by integrating high-level task planning with low-level motion plan-

ning. However, existing TAMP methods rely heavily on the manual design of planning

domains that specify the preconditions and effects of all high-level actions. This the-

sis proposes a novel method to automate planning domain inference, reducing the re-

liance on human design. Our approach incorporates a deep learning-based estimator

that predicts the appropriate domain for a new task, and a search algorithm that refines

this prediction. Our method is able to generate new domains from minimal demonstra-

tions at test time, enabling robots to handle complex tasks more efficiently. We demon-

strate that our approach achieves superior performance and generalization on a variety

of tasks compared to behavior cloning baselines.
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Chapter 1

Introduction

Humans are able to effortlessly navigate through dynamic environments and to han-

dle most daily chores, but robots struggle to do the same. Simple tasks for humans, such

as manipulating typical objects in a kitchen to make a salad, for example, have proven

to be very difficult for robots to perform. This difficulty highlights Moravec’s paradox,

which roughly postulates that what is simple for humans is hard for machines, and vice-

versa. Robot autonomy that generalizes to a diverse set of environments requires effi-

cient integration of complex real-time perception, decision-making, and path planning.

The growing demand for capable robots has captured significant attention from both

industry and academia, leading to rapid advances in automated robotic systems.

Motion planning is a fundamental robotic capability that enables a robot to cre-

ate a collision-free path to move from a defined start pose to a goal pose, consider-

ing any environmental constraints. The motion planning problem is relatively easy to

solve in static and structured environments, such as manufacturing plants and indus-

trial packaging settings, enabling robots to navigate and avoid obstacles. These environ-

ments have minimal uncertainty and low-dimensional decision spaces, however, mak-

ing the planning problem straightforward. Existing motion planning reaches its limits in

complex and high-dimensional environments [1]–[5] that are frequently encountered in

modern robot applications, such as collaborative robots for Industry 4.0 and household

service robots [6]. These new scenarios require robots to automatically make decisions,

generate complex plans, and adapt to changes in surroundings [7].

To accomplish complex, long-horizon tasks, task planning is necessary in addition to

motion planning. Task planning aims to find a sequence of high-level actions to achieve

a set of objectives while respecting constraints [8] introduced by intermediate sub-tasks.

An assembly task, for example, may involve stepping through a sequence of sub-tasks,

such as selecting tools, aligning pieces, and tightening fasteners. These sub-tasks, with

1



CHAPTER 1. INTRODUCTION 2

smaller decision spaces and more structured objectives at each step, make it much sim-

pler to find a feasible motion plan. Therefore, task planning offers a way to break down

a complex and lengthy planning problem into smaller, simpler sub-problems, which are

manageable for motion planning algorithms.

Task and motion planning (TAMP) frameworks combine high-level task planners

with low-level motion planners to solve complex planning problems. TAMP employs

high-level task planners to discretize a complex planning task into a sequence of man-

ageable sub-tasks for low-level motion planners. Task planners use logic-based reason-

ing to ensure that the sequence of sub-tasks is feasible and coherent, relying on rules

and constraints to guide the decision-making process. A motion planner then gener-

ates a motion plan for each sub-task. Finally, the motion plans for each sub-task are

sequenced to solve the full planning problem. If the motion planner cannot find a so-

lution to a given sub-task, the task planner backtracks and attempts to identify another

sequence of sub-tasks that might accomplish the full task.

1.1 Reducing Reliance on Manual Domain Design

While existing TAMP frameworks have successfully solved many complex, multi-step,

long-horizon tasks in robotics [7], [9], task planners rely on human design. In traditional

TAMP, a task planner requires a planning domain, that is, a set of human-designed plan-

ning rules that encompass the set of objects, actions, and constraints (preconditions

and effects) of a particular planning problem. The task planner can only solve problems

within the decision space of the planning domain. When faced with a new task, the task

planner cannot adapt accordingly. However, human engineers are not able to foresee

all possible situations, nor can they pre-design all domains in advance. The reliance on

manual input is inefficient and risks introducing human errors, leading to failures and

low efficiency.

The significant effort required to engineer a well-structured planning domain moti-

vates us to explore automated solutions for generating planning domains. While directly

designing a planning domain is challenging, creating a new planning domain based on

existing ones is possible.

We aim to develop a system that learns the relationships between tasks and their re-

spective planning domains from training data, enabling the automatic generation of a

new planning domain based on just one or a few demonstrations, obviating the need

for manual design of the domain. To do so, we compile each existing domain into

structured data and use graph neural networks to extract transferable knowledge. Our

method is designed to learn from small domains that are associated with simple plan-
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ning tasks and then to generate larger planning domains for longer-horizon tasks, from

a small number of additional demonstrations.

1.2 Contributions

The primary contribution of this thesis is a new domain inference method, which au-

tomates the generation of planning domains for new TAMP problems in a one-shot or

few-shot manner based on demonstrations of continuous (low-level) state-action tra-

jectories. Domain inference has two main components. The first component is a deep

learning-based domain estimator that predicts the most likely planning domain for a

new task based on knowledge gained from the demonstration dataset. The second com-

ponent is a search algorithm that adds essential rules to or removes unnecessary rules

from the planning domain. The search step ensures that planning is feasible (i.e., solv-

able) while also enabling fast planning. In summary, the contributions of this thesis are

as follows.

• A deep learning-based algorithm to predict the most likely planning domain for a

new task based on a small set of demonstrations.

• A search algorithm to refine the predicted planning domain, ensuring that plan-

ning is both feasible and efficient.

• A framework to integrate the prediction and search algorithms to efficiently gen-

erate the corresponding planning domain for a new task.



Chapter 2

Background

This chapter reviews traditional motion and task planning methods and related con-

cepts and provides a foundation for understanding the thesis. In Section 2.1, we discuss

the problem of motion planning and describe the primary approaches that appear in

the literature. Section 2.2 reviews classic task planning methods. In Section 2.3, we con-

sider task and motion planning algorithms that enable autonomous robots to effectively

plan and execute complex multi-step tasks in the real world. Section 2.4 briefly details

the major standardized languages for task planning and defines key concepts related to

planning domains, where a planning domain encompasses the set of objects, actions,

and constraints for a particular planning problem. Finally, in Section 2.5, we cover the

mathematical details of graph neural networks, the main deep learning architecture that

is used in this thesis.

2.1 Motion Planning

Motion planning, also known as path planning, is the computational problem of find-

ing a sequence of valid configurations that move a robot from a defined start state to

a goal state while avoiding collisions with the environment as well as self-collisions ac-

cording to the robot’s geometry. For instance, motion planning for a robotic manipu-

lator involves finding a sequence of arm joint angles that move the end-effector from

a start pose to a goal pose along a collision-free path. As a fundamental problem in

robotics, motion planning has a long history. Mainstream motion planning algorithms

can generally be divided into two categories: optimization-based motion planning and

sampling-based motion planning. We discuss each category in turn below.

Algorithms in the optimization-based category formulate planning as an optimiza-

tion problem. The objective function or cost function is the distance to the goal config-

4



CHAPTER 2. BACKGROUND 5

uration, subject to geometric constraints. Although optimization-based motion plan-

ning methods are generally faster at generating solutions, they suffer from often pre-

maturely converging to local optima (minima) and require the planning problem to be

well-conditioned [10]. To address these issues, researchers have developed various al-

ternative approaches. Among these efforts, Wang et al. [11] develop a method based

on genetic algorithms that is less likely to get stuck in local minima. Their method iter-

atively ’evolves’ potential solutions, leading to highly efficient and effective outcomes.

Another notable effort in optimization-based motion planning is the ant colony opti-

mization method proposed by Zhang et al. [12], inspired by the colony behavior of ants.

The other major category is sampling-based motion planning. Methods in this cate-

gory generate random samples in the configuration space and build a tree structure that

represents possible paths. A tree search is then carried out to find a feasible path through

the configuration space. Sampling-based motion planning is generally more preva-

lent than optimization-based planning because sampling does not require the planning

problem to be well-conditioned. However, sampling-based planning is usually slower

compared to optimization-based methods and is affected by the curse of dimensional-

ity. Therefore, an effective heuristic, which prioritizes feasible paths for search, is typi-

cally necessary to ensure efficiency.

A significant advance in sampling-based motion planning came with the develop-

ment of the rapidly exploring random tree (RRT) algorithm by LaValle [13] in 1998. This

algorithm efficiently explores the configuration space by randomly sampling and con-

necting points (or nodes) to construct a space-filling tree. The RRT algorithm quickly

expands the tree in several directions, enabling it to cover large areas and identify feasi-

ble paths effectively. The RRT method can be combined with heuristics to guide the tree

expansion toward the goal, such as goal biasing, for example.

Notably, RRT does not guarantee that the shortest path will be found. To address

this limitation, various RRT variants have been proposed to advance the original idea.

One such RRT variant is RRT* [14]. This algorithm modifies RRT by re-evaluating and

changing the connections between nodes in the tree to reduce the overall path length

(cost) as the tree grows. This continuous reconfiguration ultimately leads to better and

better solutions; RRT* is able to produce asymptotically optimal solutions, in fact, given

sufficient planning time.
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Figure 2.1: Demonstration of RRT from [13]. Left: The tree is rooted at the start state

in the center of the figure. Middle: As more sample points are added, the tree covers a

greater area and explores a larger number of possible paths. Right: The tree continues

to grow until it densely covers the space.

Recently, Gammell et al. [15] proposed the batch-informed trees (BIT*) algorithm,

which explores the configuration space like RRT* but uses a smart sampling strategy to

focus on promising regions. BIT* further accelerates finding the shortest path in com-

plex environments.

2.2 Task Planning

In contrast to motion planning, robot task planning is a higher-level process that typ-

ically involves finding a sequence of discrete sub-goals (to be executed by the motion

planner) that accomplish a long-horizon task [16]. Task planning requires knowledge of

the effects of the robot’s actions and of the abstract state of the environment and objects

contained within it. The majority of task planning algorithms involve the application of

graph search. Classical AI search algorithms can be divided into three main categories:

forward search, backward search, and bidirectional search; we briefly review each cate-

gory below.

The primary task planning algorithm in robotics is forward search. Forward search

begins at the initial state (configuration) and builds a search tree forward toward the

goal state (configuration). Forward search is straightforward to implement because it

starts from a fully defined initial state. Fast-Forward, developed by Hoffmann [17], is

one of the most important and widely used modern task planners due to its outstanding

planning efficiency and excellent adaptability to various planning tasks.

Backward search, although less commonly utilized, also plays a significant role in
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task planning in robotics. The backward search algorithm starts from the goal state and

searches backward until the initial state is reached. Notably, backward search can dras-

tically reduce planning time in many cases by reducing the size of the search space [18].

Forward and backward search algorithms can be applied together in a composite

approach called bidirectional search. Bidirectional search runs two searches simultane-

ously: one forward search from the initial state and one backward search search from

the goal state. The algorithm terminates when the two search trees meet at a common

intermediate state. Garrett et al. [19] have attempted to combine forward and backward

searches to speed up planning. Bidirectional search can be fast but suffers from the

problem that the frontiers of the two search trees can fail to meet at a common interme-

diate state. This failure usually results from difficulties synchronizing the progress of the

two searches and ensuring that the trees intersect in complex or irregular search spaces.

A primary challenge with all of the search strategies outlined so far is the curse of

dimensionality. Because the algorithms search ‘blindly,’ they become much less effi-

cient as the number of possible states grows. A heuristic search can be employed to

enhance planning efficiency and improve performance. Heuristic search, also known as

informed search, is a family of tree-searching algorithms that adopts a heuristic func-

tion to estimate the cost to reach the goal state from a given intermediate state. In task

planning, the cost is usually a measure of resources or effort required to complete the

task, or in cases where only a feasible task plan is required, the cost could be the nega-

tive estimated feasibility of the task plan. Task planning heuristics essentially inform the

branch and bound process, ranking the next high-level actions that will be considered.

Heuristic search accelerates problem-solving by prioritizing the least-cost path, espe-

cially for NP-hard problems [20]. The A* search algorithm is a representative example

from the heuristic search family. A* searches for the lowest-cost path by maintaining

a combined estimate of the cost to reach a state (known exactly) and the cost to reach

the goal (estimated). At each step, A* expands (i.e., searches forward from) the state

with the lowest estimated total cost. An important factor influencing the performance

of heuristic search is the informativeness of the heuristic function. Thus, the heuristic

functions must be specifically designed for task planning problems. Recent research has

also applied machine learning techniques to learn efficient heuristic functions [21].

In most robotics problems, an optimal task planning solution has the lowest pos-

sible cost while meeting all objectives and constraints. However, robotic task plan-

ning is often a high-dimensional problem, and it is extremely difficult to find an opti-

mal solution within a reasonable time. In this case, robotics researchers have extended

the well-known, complete and optimal A* algorithm. Weighted A* search more heav-
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ily weights the heuristic function, sacrificing optimality in an effort to find a solution

more quickly [22]. Aine et al. [23] describe a multi-heuristic search algorithm that al-

lows multiple heuristic functions to work together to generate feasible plans (i.e., plans

that satisfy all constraints) more rapidly. Du et al. [24] extend multi-heuristic A* search

to multi-resolution A* search, where the heuristic functions are adjusted based on the

complexity of the planning problems.

2.3 Task and Motion Planning

As robotic applications become increasingly complex, the direct solution of the motion

planning problem has become a significant challenge. Consequently, research in the

hybrid field of task and motion planning (TAMP) has emerged, integrating techniques

for task planning with motion planning [7]. Recent advancements in TAMP frameworks

reflect substantial progress in this rapidly evolving area. Similar to motion planning, tra-

ditional TAMP methods are primarily categorized into optimization-based TAMP and

sampling-based TAMP. Algorithms in both categories provide diverse strategies to ad-

dress the complexities associated with task and motion planning problems.

Optimization-based TAMP treats task and motion planning as a joint optimization

problem, using geometric information to determine the problem constraints. Similar to

optimization-based motion planning, optimization-based TAMP is faster when finding

solutions but may fall into local optima. Logic-geometric programming, for example, is

a representative optimization-based method proposed by Toussiant et al. [25] to solve

for the robot trajectory at each time step, according to the specific sub-task.

Sampling-based TAMP, which is the method adopted in this thesis, is a more com-

mon choice compared to the optimization-based approach. The sampling-based TAMP

framework consists of a task planner that discretizes the planning problems into sub-

tasks that are sequenced to reach the goal state [26]. An auxiliary motion planner then

later produces a trajectory that satisfies the kinematics, dynamic, and geometric con-

straints for each sub-task [27]. This joint, bi-level method divides TAMP into task plan-

ning, determining what to do, and motion planning, choosing how to do it. A graphical

explanation is shown in Figure 2.2. The high-level, logical task planner breaks down

the full task into sub-tasks and sequences them to form a task plan. A low-level mo-

tion planner focuses on finding the precise robot trajectories required to complete each

sub-task. By combining the two planners, sampling-based TAMP allows robots to ex-

ecute intricate tasks efficiently and to adapt to changing conditions. Sampling-based

methods are (again) typically slower than optimization-based methods.
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Sub-task 1:
Pick blue cube

Sub-task 2:
Stack blue cube on 

green cube

Task 
Planner

Task Plan

Initial

Trajectory 1 Trajectory 2

Motion Planner

Goal

Motion Plan

+

Figure 2.2: An illustration of the task and motion planning pipeline for the task of stack-
ing two cubes. (1) The task planner decomposes the overall task into sub-tasks, ‘Pick
blue cube’ and ‘Stack blue cube on green cube.’ (2) The motion planner then refines
these sub-tasks into specific robot trajectories. (3) The robot trajectories for each sub-
task are sequenced together to form the complete motion plan. (4) The robot executes
the motion plan to achieve the goal state (stacked cubes).
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2.4 Planning Domains and Planning Languages

In the context of task and motion planning, a planning domain is a description, typically

given in a formal description language, of the problem space in which a robot operates.

A concise definition of the concept of a planning domain is given below.

Definition 2.4.1 (Planning Domain). A planning domain is a structured representation

encompassing the objects, tasks, actions, and constraints within the working environ-

ment of the robot [28].

A planning domain provides the framework for generating a feasible TAMP plan that

achieves a specific goal, ensuring that both the high-level task (what to do) and the low-

level motions (how to do it) are effectively integrated. It includes high-level task actions,

such as “pick up an object” or “move to a location,” and low-level motion actions, like

“grasp.” The planning domain also specifies the objects that the robot is able to interact

with, the possible states of the world at any given time, and the constraints governing

actions and states, such as collision avoidance and joint limits.

The structured domain representation is crucial to bridge the gap from high-level

task requirements to concrete physical actions. TAMP plans are usually discretized and

abstracted, simplifying the design and implementation of planning algorithms and en-

hancing reusability across different tasks and robots.

The design of a planning domain typically involves formulating the logic required

to solve a TAMP problem. Logic provides a formal, precise way to carry out automated

reasoning in an interpretable way. Depending on the application, planning logic is often

a combination of propositional logic and first-order logic. Propositional logic deals with

propositions and connectives (i.e., ’and,’ ’or,’ and ’not’) [29]. First-order logic incorpo-

rates quantifiers and provides a richer and more expressive language for describing ob-

jects, properties, and relationships [30]. The application of either type of logic requires a

clear definition and structured domain formulation. Consequently, a well-defined plan-

ning domain is essential to efficiently and reliably solving TAMP problems in complex

environments. More details are provided in Section 2.4.1.

2.4.1 Standardized Planning Languages

The systematic description of a planning domain is most easily facilitated by the use

of a standardized planning language. Early examples of such standardized languages

include the Stanford Research Institute Problem Solver (STRIPS) and the Action De-

scription Language (ADL). STRIPS was initially developed as an automated planner by
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Richard Fikes et al. [31] at SRI International. Over time, it evolved into what is now

known as Action Description Language (ADL), a standardized programming language

designed for automated planning and scheduling. These languages provide a structured

foundation for defining the rules of task planning, enabling the systematic transforma-

tion of planning logic into a format suitable for machine learning and execution.

Inspired by STRIPS and ADL, PDDL (the Planning Domain Definition Language) was

developed by McDermott et al. [28] for the International Planning Competition (IPC).

PDDL is a human-readable, standardized planning language capable of describing var-

ious world logical states; it includes specific constructs for actions (with preconditions

and effects) that are not part of first-order logic. However, while expressive enough for

planning problems, PDDL is less general than first-order logic and does not support all

possible logical constructs or quantifiers. PDDL is now the most widely used planning

language and has been interfaced with multiple planning engines. This thesis adopts

PDDL for task planning domain formulation.

A PDDL [28] planning domain can formally be written as a tuple 〈P,A〉, where P is

a set of predicates and A is a set of actions. A predicate p is a Boolean function that

defines a logical property, condition, or relationship among objects. For example, the

predicate (free ?gripper) could indicate whether a robot’s gripper is holding an object.

A ground atom x is obtained by applying the predicate to one or more objects from the

set of objects O in the environment. The objects o ∈ O are references to entities in the

planning problem [32]. The ‘?’ character in the predicate denotes a variable that can

be instantiated with a specific object to produce a ground atom. A logical state X is a

set of ground atoms x describing the environment. An action a = 〈Oa,Pre,Eff〉 can be

considered as a logical abstraction of a sub-task. Each action a is a tuple of a set of target

parameters Oa, precondition Pre, and postcondition Eff [33]. The target parameters Oa

specify the objects involved in this action. The precondition Pre of an action is a set

of predicates that must be true to trigger the action. The postcondition Eff is a set of

predicates that indicates the change in the logical state Xafter after the action is executed.

The transition of the logical state before and after executing an action is assumed to be

deterministic, Xbefore ×a → Xafter.

Figure 2.3 provides one example of an action, ‘Pick,’ specified in PDDL. The action’s

parameters are a robot gripper ‘?gripper’, a cube object ‘?obj’, and a table object ‘?t’. The

preconditions of ’Pick’ are (cube ?obj), (free ?gripper), and (is_on ?obj ?t). The predicate

(cube ?obj) indicates that the picked object must be a cube, (free ?gripper) indicates

the gripper is not holding anything, while (is_on ?obj ?t) defines the relative position of

the cube and the table. In natural language, the preconditions can be described by the
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Figure 2.3: Example of a ‘Pick’ action written in PDDL.

sentence: The gripper must be free, and the cube must be on the table. For the postcon-

ditions, (carry ?obj ?gripper) expresses the fact that the gripper is carrying the object,

while (not (is_on ?obj ?t)) indicates that the cube is no longer on the table, and (not

(free ?gripper)) asserts that the gripper is holding something (and cannot hold anything

else). In natural language, the postconditions are given by the sentence: The gripper is

not free because it is holding the cube, and the cube is no longer on the table.

The state of the robot’s operating environment must be fully describable using the

logical predicates in the planning domain. The robot can only execute the actions de-

fined in the domain to complete a (full) task. In the context of TAMP, task planning is

the process of searching for a sequence of actions that connect the initial logical state to

the goal logical state. Once the logical plan is available, a motion planner translates this

action sequence into executable robot motion plans.

A domain set is the union of the names of the predicates and actions in the planning

domain [7]. The domain set contains only the names of predicates and actions, exclud-

ing the action target parameters, preconditions, and postconditions. Different planning

domains can be constructed from the same domain set by identifying different target

parameters, preconditions, and postconditions for each action [34].

2.4.2 Complete and Optimal Planning Domains

Different planning domains can be used to complete the same TAMP task. A domain

may contain extra predicates and actions irrelevant to the specific task being considered.

In turn, we give two criteria, completeness, and optimality, that can be used to evaluate

the expected performance (in terms of computational effort) of planning.

Definition 2.4.2 (Complete Domain). A complete domain is a domain that includes all

predicates and actions needed to solve the TAMP problem.
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GoalState 1Initial

Pick Stack

Wash

Wash

Wash
…

Stack

Stack

State 2

Throw

Figure 2.4: A graphic explanation of how redundant actions can negatively impact plan-
ning efficiency in a cube-stacking task. The shortest plan, shown with black arrows, in-
cludes only the essential actions ‘Pick’ and ‘Stack,’ leading directly from the initial state
to the goal state. In contrast, the redundant action ‘Throw,’ indicated by a solid red ar-
row, leads to a dead end (State 2), while the redundant action ‘Wash,’ shown with dashed
red arrows, causes the exploration of unnecessary states (State 3 and State 4), deviating
from the shortest plan and prolonging the planning process.

Definition 2.4.3 (Optimal domain). An optimal domain is a complete domain that con-

tains the least number of predicates and actions.1

Clearly, a complete domain is needed in order to successfully find the task plan. The

computational effort required to find a task plan depends primarily on the size (predi-

cates and actions) of the domain. As illustrated in Figure 2.4, task planning using PDDL

relies on tree search. Starting from an initial state, each action adds a branch to the

search tree leading to a successor state. Assuming that every action can be executed in

every environment state, we can approximate the complexity of the planning problem.

Given the number of actions included in the domain, na , and the maximum length of

the plan, l , the complexity of a planning problem is O((na)l ). Thus, when we include

redundant actions, considerable redundant effort may be expended.

Figure 2.4 presents a state-action diagram for a task involving the stacking of two

cubes. The planning domain includes both essential actions, such as ‘Pick’ and ‘Stack’

1This is the definition of optimality applied in the thesis, but there are other optimality criteria in the
literature [7], [23].
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(black arrows), which are crucial to reach the goal, and redundant actions, such as

‘Throw’ (red arrows) and ‘Wash’ (dashed red arrows), which are not relevant to the goal.

Redundant actions may lead to dead ends. For example, as shown in Figure 2.4, the

‘Throw’ action tosses an object out of the environment, resulting in an irreversible dead

end where planning fails. Another example is the ‘Wash’ action, which increases overall

complexity by exploring states that deviate from the goal. The shortest task plan for the

stacking of two cubes is ‘Pick→Place’, while ‘Wash’ adds unnecessary steps that do not

contribute to the goal, thereby reducing planning efficiency.

2.5 Graphs and Graph Neural Networks

A graph is a data structure used to describe objects (i.e., nodes) and their relationships

(i.e., edges) [35]. Formally, a graph is a tuple G = (V ,E), where V is a set of nodes (or

vertices), and E is a set of edges, E ⊆ {(u, v) | u, v ∈ V }. Edges can be classified mainly

into two categories: directional edges, which specify the direction of information flow

from the source node to the destination node, and bidirectional edges, which allow in-

formation to flow in both directions. For example, in social sciences, directional edges

can model relationships, such as one person following another on a social network.

Bidirectional edges can represent mutual friendships, where both individuals share the

same connection [36]. In chemistry, graphs are widely used to describe the structure of

molecules, where nodes represent atoms and edges represent bonds [37]. Directional

edges can represent directional bonds. In this thesis, graphs are used to represent the

logical state of the environment.

Graph neural networks (GNNs) are designed to work directly with graph-structured

data. GNNS are trained (i.e., learn) by passing information between nodes in the graph

along the edges, in a process called message passing. Past studies have shown that GNNs

can be trained to solve TAMP problems by learning the structured relationships between

actions and predicates. For example, Silver et al. [38] train a GNN to assess the relevance

of each object in the environment to a TAMP problem and to ignore irrelevant objects.

Khodeir et al.[21] utilize past plans as demonstrations to train a GNN policy, which pre-

dicts the probability that a state will appear in the TAMP plan for a new, related task.

2.5.1 Graph Neural Network Structures

The input to a GNN is a graph, where each node represents an object. Each node has

an associated node feature, represented as a vector, that conveys information about the



CHAPTER 2. BACKGROUND 15

1

2

3
1 0 0 0

1 0 1 0

1 1 0 0

Node Feature
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Figure 2.5: An example of graph structures. The grey circles indicate the nodes and the
double arrows indicate the bidirectional edges. The node features are indicated by the
vector next to each node.

node. The length of the node feature varies depending on the type of information stored

for each object. Node features may be numerical or logical values or a complex data

format such as an image or a 3D point cloud.

Edges in the input graph connect the nodes and define relationships or interactions

between the objects. Similar to node features, edge features can also be defined to en-

code more information than the edge direction alone. An edge feature is usually defined

by a one-hot vector.

Most popular GNN architectures are designed to solve one of three types of prob-

lems: node classification, edge classification, or graph classification. Node classifi-

cation models can predict node properties using existing node attributes [39]. Simi-

larly, edge prediction models, also known as link prediction models, are designed to

predict missing properties of edges based on existing node and edge properties [35].

Most edge-prediction tasks involve predicting the existence of edges, similar to binary

classification. Finally, graph classification models predict the properties of the entire

graph. Graph classification aims to categorize an entire graph based on the node rela-

tionships [40].

Scarselli et al. [41] proposed a method to convert a graph and the associated node

features into a matrix that serves as a trainable input to a GNN. Node features, expressed

as node vectors, are stacked vertically to form the input matrix. For edges, an adjacency

matrix is proposed in the same paper to represent edge information in matrix form. An

adjacency matrix A is a square matrix. The indices of the rows and columns correspond

to the enumeration of the nodes, and the matrix entries indicate (with a one or a zero)

whether a connection exists between the corresponding nodes.
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As an example, consider the simple graph shown in Figure 2.5, which has three

nodes: 1, 2, and 3. Each of the nodes has a corresponding node feature (as indicated).

The matrix of node features can be easily found by stacking the node features together,

H =


1 0 0 0

1 0 1 0

1 1 0 0

 . (2.1)

The adjacency matrix for the example graph in Figure 2.5 can be written as

A =


1 1 0

1 1 1

0 1 1

 . (2.2)

The element in the i th row and j th column of the adjacency matrix A is denoted by Ai , j .

If Ai , j = A j ,i = 1, then the edge is a bidirectional edge. If Ai , j = 1,A j ,i = 0, the edge is

a directional edge from node i towards node j . Similarly, if Ai , j = 0,A j ,i = 1 the edge

direction is from node j towards node i . If Ai , j = A j ,i = 0, there is no edge between node

i and node j .

2.5.2 Message Passing and Aggregation

Graph neural networks use a unique information aggregation process. Considering the

stacked node feature matrix H and the adjacency matrix A, the aggregation rule [41] for

a node’s connected neighbors can be written as

H′ =σ(
(A+ I)H W

)
(2.3)

where W is a trainable (learnable) linear transformation. All nodes share the linear

transformation, that is, the same transformation matrix W is uniformly applied to ev-

ery node in the network. Unlike sequences, graphs are inherently unordered; the same

input graph can have a different adjacency matrix (and a different node feature matrix)

by altering the node indices. Therefore, the linear transformation must be invariant to

permutations of the node ordering to ensure that the learned representation remains

consistent. In Equation (2.3), σ is a nonlinear activation function (with various options

available, including the sigmoid and rectified linear unit, or ReLU, functions). The iden-

tity matrix I appears in Equation (2.3) to capture information from a node itself, in ad-

dition to its neighbors. Adding the identity matrix is equivalent to adding a loop to each
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of the nodes. At each node, H′ is the aggregated information from all connected nodes.

The formula given by Equation (2.3) is the basic update rule for GNN learning, but many

variations are possible.

The basic updating rule above, while effective, suffers from a problem known as over-

smoothing, where the node representations become indistinguishable from each other

after multiple layers of graph convolution. Various researchers have developed modified

update rules to address this issue. The graph convolution network (GCN) designed by

Kipf et al. [42] uses a weighted average of neighboring nodes’ features with symmetric

normalization to enhance learning stability. GraphSAGE, created by Hamilton et al. [43],

employs an inductive approach to generate node embeddings by sampling and aggre-

gating features from local neighborhoods to improve learning scalability. The graph

attention network (GAT) proposed by Veličković et al. [40] incorporates an attention

mechanism to assign different importance weights to neighboring nodes, allowing for

more adaptive and expressive aggregation of node features. Also, GATs allow the use of

edge features (encoded as one-hot vectors). GATs and GCNs, both types of GNNs, share

a number of similarities but also have important differences. The key difference lies

in how they aggregate node information: GCNs aggregate information uniformly from

all neighbors, while GATs learn an attention mechanism to assign different weights to

neighbors based on their importance. GCNs can be considered as special cases of GATs,

in fact, where the importance weights of all neighboring nodes are the same.
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Related Work

For many task and motion planning problems, the logical task planning domain is usu-

ally designed in advance by a human being. When faced with simple TAMP problems,

manually designing the planning domain is feasible and sufficient. However, it is not

possible to manually design all planning domains, particularly for high-dimensional

problems. If a domain is not designed properly (e.g., a large number of unnecessary

predicates are included), TAMP planners can be extremely slow, as described in Sec-

tion 2.4.2. Thus, considerable effort has been made to accelerate the planning process

and to avoid manually designing planning domains.

This chapter presents an overview of related work on TAMP that is relevant to the

thesis. We focus on methods that leverage various machine-learning techniques to en-

hance planning efficiency and adaptability. In Section 3.1, we discuss how deep learning

has been used to accelerate planning, including the application of supervised learning

and reinforcement learning. Section 3.2 delves into recent advances related to learning

planning domains, including studies of logical predicate learning and automatic plan-

ning domain generation.

3.1 Learning to Plan for Faster Task and Motion Planning

Recent advances in machine learning have brought new approaches to task and mo-

tion planning. Learning-based TAMP methods often use past plans as demonstration

datasets to train policies that either accelerate or replace traditional planners. Recent

research highlights the effectiveness of using supervised learning and reinforcement

learning to prioritize successful plans.

In supervised learning, the focus is on replicating successful planning experiences

from training data. For instance, Kim et al. [44] introduce a relational, logical state rep-

18
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resentation to train graph neural networks (GNNs) for generating TAMP plans. Their

method enables robots to move objects while avoiding obstacles by learning from suc-

cessful demonstrations. Xu et al. [45] employ a convolutional neural network-based

encoder to extract geometric information from images and facilitate backward plan-

ning. Zhu et al. [18] extend this approach by integrating both geometric and logical

information to enable long-horizon manipulation planning. Silver et al. [38] address

the challenge of real-world planning involving numerous objects by proposing a GNN

architecture that identifies and removes irrelevant objects from the planning process.

This reduces computational overhead and simplifies collision checking. McDonald et

al. [46] developed a bi-level imitation learning policy with sensory data input to gener-

ate TAMP plans. The policy’s input includes current environmental observations (RGB

images, joint angles, gripper state, and object poses) and logical goals. The high-level

policy selects logical actions, while the low-level policy generates continuous control

signals to execute these actions. This system is proven capable of handling complex,

multi-step robotic tasks. Lin et al. [47] present a GNN policy architecture trained with

imitation learning to generate plans for manipulation tasks. Their approach allows for

the GNN output’s explainability and effectively learns objects’ spatial relations in Carte-

sian space. Yang et al. [48] developed PIGINet, a transformer-based model that assesses

the feasibility of a task plan given the task Plan, initial state, and goal state. Their ex-

perimental results demonstrate significant improvements in planning speed. Khodeir

et al. [21] train a Graph Attention Network (GAT), which assigns attention weights to

neighboring nodes in a graph using a set of demonstration plans. The GAT-based policy

is integrated with PDDLStream, a variant of the Planning Domain Definition Language

(PDDL), to predict the feasibility of actions. This approach demonstrates the potential

of deep learning to improve TAMP by leveraging structured data from demonstrations.

Dalal et al. [49] utilize visual transformers with image inputs to imitate the behavior of a

TAMP planner to generate task and motion plans.

While the methods above have shown that supervised learning can speed up the

planning process, they require large amounts of demonstration data. Moreover, the

planning policies are conditioned on specific planning environments, meaning that new

demonstrations are required for each new environment. As a result, these policies strug-

gle to generalize across different environments or goals. Even though some algorithms

can generalize to a larger number of objects within the same environment, their perfor-

mance declines significantly as the number of objects increases.

Another significant trend in integrating learning with TAMP is the use of reinforce-

ment learning. Chitnis et al. [50] combine an imitation-learned task planner with a
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reinforcement-learned motion planner to complete mobile manipulation tasks. This

approach uses expert demonstrations to train a task planning policy, which is refined

by a reinforcement learning-based motion planner. Paxton et al. [51] use reinforcement

learning to train low-level control and high-level task policies to generate safe vehicle

motion plans. The high-level policy takes the logical state of the environment and out-

puts logical actions, such as ‘accelerate’ and ‘stop’. The low-level policy uses the vehicle’s

continuous state(speed, position, etc.) as input and output control signals(acceleration,

steering angle, etc.) directly. Jiang et al. [52] propose Task and Motion Planning Rein-

forcement Learning (TMP-RL), which integrates TAMP with reinforcement learning to

enhance robustness and adaptability in dynamic and uncertain environments. TMP-

RL uses a TAMP planner to generate feasible plans and a reinforcement learning loop

to learn from execution experiences, improving the planning system’s adaptability. Xu

et al. [53] develop Deep Affordance Foresight (DAF), a reinforcement learning-based

method that introduces a new representation of affordance—defined as the potential

success of an action on an object. DAF learns from trial and error to execute multi-step

tasks, share affordance knowledge across tasks, and plan using image inputs.

Although reinforcement learning methods often do not require a large training

dataset, they are constrained by the need for a well-defined reinforcement learning en-

vironment to carry out the learning process [54]. However, creating such environments

for complex TAMP problems, in simulation or in the real world, can be challenging,

limiting the applicability of reinforcement learning in these scenarios [5]. Most rein-

forcement learning environments are simplified simulations, and their quality directly

impacts policy performance. Constructing highly complex environments is exceedingly

difficult, and conducting robot reinforcement learning in the real world is prohibitively

expensive. Additionally, reinforcement learning methods often suffer from long training

times [55].

3.2 Learning Planning Domains

Recognizing the limitations outlined previously, researchers have increasingly focused

on learning planning domains. Traditional methods aimed at learning the behavior of

the planner often require a policy to implicitly learn both the planning domain and the

search algorithm. However, by focusing solely on learning the planning domain and

then combining it with existing search algorithms, the burden on the policy can be re-

duced. This has led to two main aspects in learning planning domains: logical predicate

learning and automatic planning domain generation.
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Logical predicate learning often integrates visual information. Kase et al. [56] in-

troduced a framework for learning logical predicates to be used in task planning. Their

approach employs a two-level network structure. The high-level network processes a

series of images to predict predicates that describe the logical state of the world. These

predicates are then used in a pre-designed planning domain to generate task plans. The

low-level network takes both the image series and the task plan as input to predict the

arm’s next joint state. Mukherjee et al. [57] expand on Kase et al.’s work by using 3D

point clouds instead of images for predicate learning. However, both methods share a

common limitation: they only learn the predicates from visual data, while the planning

domain itself remains pre-designed and fixed.

Automatic planning domain generation refers to the automatic creation of plan-

ning domains from associated demonstration trajectories. Diehl et al. [33] proposed

a method for automatically compiling planning domains from virtual reality (VR) data.

However, their approach relies on predefined predicate search trees and does not guar-

antee the optimality (according to our definition in Section 2.4.2) of the generated do-

main. Kumar et al. [58] introduce a method for distinguishing necessary preconditions

and postconditions through search. Their approach eliminates unnecessary predicates

appearing in the preconditions and postconditions of actions by modifying the precon-

ditions and postconditions and then and comparing performance before and after the

changes.

Building on Kumar et al.’s research, Silver et al. [34] develop a method to learn state

abstractions (predicates) from demonstrations, eliminating the need for manual pred-

icate specification. However, both Kumar et al.’s and Silver et al.’s approaches rely on

blind search rather than leveraging past experiences to prioritize likely planning do-

mains. Consequently, their methods require many demonstrations, making the process

time-consuming. Additionally, these approaches struggle to generate planning domains

for previously unseen environments. Our method is most similar to that of [34], [58], but

we train GNN-based domain estimators to accelerate the generation speed of planning

domains and reduce the number of demonstrations needed during execution.

3.3 Research Gap

In summary, the related work above shows that learning a planning domain leads to

better generalizability and adaptability compared to directly learning a TAMP planner.

Although considerable efforts have been made to automate the generation of planning

domains, no existing method can produce an optimal planning domain for a new task
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from just one or a few demonstrations during execution. Therefore, in this thesis, we

combine deep learning with search to find the most likely planning domain for a new

task, given one or a few example trajectories that successfully complete the task. Our

method thereby enables the rapid generation of an associated, optimal planning do-

main for the new task.
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Method Classification Method Mehodologies Pros Cons

Supervised Learning

Xu et al. (2019) [45]
CNN-based encoder extracts geometric
information from images for backward
planning.

Significantly accelerate the
planning efficiency in TAMP.

1. Requires a large set of
demonstration data.

2. Policies are conditioned on
specific planning environments,

limiting generalizability.

Kim et al. (2020) [44]
GNN-based imitation learning to generate
task plans considering geometric constrains.

Zhu et al. (2021) [18]
Combines geometric and logical data to
generate task plan for long-horizon
manipulation.

Silver et al. (2021) [38]
GNN-based imitation learning to identifies
and removes irrelevant objects from
the planning process.

McDonald et al. (2021) [46]
Bi-level imitation policy uses sensory input
to generate TAMP plans for complex
multi-step robotic tasks.

Lin et al. (2022) [47]
GNN-based imitation learning for manipulation
task plan generation, enabling
the explainability of the GNN output.

Yang et al. (2022) [48]
Transformer-based model speeds up
task planning by feasibility assessment.

Khodeir et al. (2023) [21]
GAT-based imitation learning to predict
action feasibility to accelerate planning.

Dalal et al. (2023) [49]
Visual transformers generate TAMP plans
by imitating planner behavior from
image inputs.

Reinforcement Learning

Chitnis et al. (2016) [50]
Combine imitation-learned task planning
policy with reinforcement-learned motion
planning policy.

1. Improve planning efficiency.
2. Enhance the planner’s

adaptability to dynamic and
uncertain environments.

1. Require to construct highly
complex environments.

2. The training period is long.

Paxton et al. (2017) [51]
Reinforcement learning trains high-level
task and low-level control policies for safe
vehicle motion.

Jiang et al. (2019) [52]

Integrate a traditional TAMP planner with
reinforcement learning loop to enhance
robustness and in dynamic and uncertain
environments.

Xu et al. (2021) [53]
Reinforcement learning-based method
introducing a new representation of
affordance for multi-step tasks.

Table 3.1: The pros and cons of the learning-based methods reviewed in Section 3.1.
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Methodology

Our method aims to automatically generate the planning domain for a new task. We as-

sume that our system is trained with a set of existing TAMP problems that involve differ-

ent planning domains but that share some predicates and actions. For example, stacking

and cooking tasks share the common action ‘Pick,’ while ‘Unstack’ only appears in the

stacking task, and ‘Grill’ only appears in the cooking task. Our system has two phases: a

training phase and a testing phase. In the training phase, the system is trained to learn

the relationships between tasks and their respective planning domains. All predicates

and actions used in the planning domains associated with the training TAMP problems

are assumed to be known in advance. During the testing phase, we solely utilize the

trained system, with no further training conducted. The system is given one or a few

examples of continuous state-action trajectories of a robot completing a specific task.

Our system searches through all the predicates and actions to select those needed to

generate a planning domain capable of reproducing the example robot trajectories and

solving TAMP problems in a similar manner.

Previous research has highlighted the high cost of blind search in automatic plan-

ning domain generation [33], [58]. The search process can become prohibitively expen-

sive as the number of predicates and actions increases. Studies have shown that leverag-

ing past successful search experience to train graph attention neural networks (GATs) is

an effective strategy for accelerating search [21], [38]. Thus, to speed up domain gener-

ation, we opt to use GATs to find the most likely planning domain and reduce the search

costs.

Our method predicts the most likely planning domain for a new task at test time us-

ing a deep learning estimator and then optimizes the domain by adding or removing

predicates and actions. We call the complete process of producing a new planning do-

main for an unseen task planning domain inference. In this chapter, we describe our

24
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method and provide one example for a specific robot task. We describe our problem

setting in Section 4.1. Then, we introduce our complete domain inference process and

provide an overview of each sub-component in Section 4.2. In Section 4.3, we elaborate

on the training processes of our predicate and action estimators, which are GAT-based

learning algorithms that predict the relevance of a planning domain to the input exam-

ple trajectories. In Section 4.4, we explain how the preconditions and postconditions of

actions are identified. Then, in Section 4.5, we describe our domain optimization strat-

egy, a search algorithm that continuously adjusts the planning domain until the optimal

domain associated with the example trajectory is obtained. Finally, in Section 4.6, we

present an example of a sorting task that clusters objects into two piles.

4.1 Problem Setting

For a specific task, the object set O = 〈o1,o2, . . . ,on〉 is assumed to include all relevant

objects that exist within the environment. The objects o ∈ O are references to entities

in the planning problem [32]. A known state function provides the continuous state of

an object s : O×T → Rd×n , where T is the time index used to denote discrete point in

time at which the state of an object is evaluated. The continuous state of an object is

characterized by its continuous properties, such as pose or temperature, at time t .

Definition 4.1.1 (Full predicate set). The full predicate set P is a set that encompasses all

the predicates required to solve a set of TAMP problems from several different environ-

ments.

Each predicate p ∈ P defines a logical property, condition, or relationship among

objects (e.g., (is_on ?object1 ?object2), (cooked ?object)) via a classifier function that

outputs true or false given the continuous state p(s(o1, t ), s(o2, t ), . . . ) ∈ {true; false}. A

ground atom x is a predicate combined with the objects and the classification result

(e.g., (is_on o1 o2), (not (cooked o)) ...). The logical state of an environment is a collec-

tion of all ground atoms for objects in the environment X = 〈x1,x2,x3, . . . ,xn〉.

Definition 4.1.2 (Full action set). The full action set A is a set of actions that logically

describe possible actions the robot may execute for a set of TAMP problems.

Each action a ∈ A has a corresponding precondition Pre = 〈p1,p2, ...〉, which is a set of

predicates that must be true to trigger the action, and a postcondition Eff = 〈p1,p2, ...〉,
which is a set of predicates that indicates the change in the logical environmental

state after the action is executed. The transition between logical states before and
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after the actions is considered to be deterministic, Xbefore × a → Xafter. A task plan

π = 〈a1,a2,a3, ...,an〉 is a sequence of logical actions that change the initial logical en-

vironmental state to the goal logical environmental state. A (logical) trajectory τ is the

sequence of logical environmental state and logical action at each step during task exe-

cution, τ= 〈(X1, a1), (X2, a2), . . . , (Xn, an)〉.

Definition 4.1.3 (Full motion planner set). The full motion planner set C is a set of mo-

tion planners that produce the corresponding trajectories for actions in A.

For any a ∈ A, there exists a corresponding c ∈ C that can verify the existence of fea-

sible motion plans for the action and produce the motion plan if it exists. For example,

the corresponding motion planner for the action ‘Pick’ will generate a collision-free tra-

jectory for the robot to grasp an object and lift it from the table. The motion planner can

be implemented via various methods. For this thesis, we adopt the RRT-based motion

planner implemented by Garrett [19].

Using the concept defined above, we can now define a TAMP problem. Any TAMP

problem q can be defined by the object set, the full predicate set, the full action

set, the initial logical environmental state, and the goal logical environmental state,

q = 〈O,P,A,Xinit,Xgoal,〉. A TAMP problem set Q is a set of unsolved TAMP problems

Q = 〈q1, q2, . . .〉.
The planning domain D associated with a task is characterized by a set of predicates

PD ⊆ P, a set of actions AD ⊆ A, and the corresponding motion planner set CD ⊆ C. For-

mally, the planning domain is defined as D = 〈PD,AD,CD〉. The domain set ωD contains

all the names of the predicates in PD and actions in AD. The planning domain D can be

constructed from the domain setωD by designing the preconditions and postconditions

for each action and writing the domain into a PDDL file following the PDDL syntax.

4.2 Overview of Inference Framework

Dataset Collection. Our system requires a training dataset in the training phase and

two inputs, an example trajectory and a challenge problem set, in the testing phase to

produce the planning domain. The training dataset consists of TAMP problems and

their associated planning domain sets, with predicates and actions drawn from the full

predicate set P and full action set A. The training dataset is generated through random

sampling of various TAMP problems across different experimental planning environ-

ments running in the PyBullet simulator. We ensure that each problem is solvable using

a traditional TAMP planner and manually label each TAMP problem with the planning
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Figure 4.1: The overall framework of domain inference consists of the following steps:
(1) The most relevant planning domain, Dtop, is predicted by the predicate and action
estimators. (2) The predicted domain, Dtop, is used as the initial hypothesis for domain
optimization, a specific instance of combinatorial optimization, where the problem is
to find the smallest subset of predicates and actions associated with the example trajec-
tory. In this process, we keep adding or removing predicates and actions to the planning
domain to solve the challenge problem set Qt . (3) The optimal domain is returned when
Qt is fully solved; otherwise, more example trajectories from the same type of task are
needed.
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domains that can solve it. The first input at the testing phase, the example trajectory τe,

is a logical state-action trajectory of a robot successfully completing a new task. The ex-

ample trajectory can be collected from a TAMP planner or a human demonstration. The

second input, the challenge problem set, is a set of TAMP problems that are solvable by

a TAMP planner. The challenge problem set Qt contains m unsolved TAMP problems,

Qt = 〈q1, q2, . . . , qm〉. The training dataset is used in the training phase to train our sys-

tem, while the other two are used in the testing phase to generate the planning domain.

Training Phase. In the training phase, the predicate and action estimators, which

are graph attention networks, are trained using the training dataset of TAMP problems

and their corresponding planning domain sets. A relevance score u ∈ [0,1] measures

how relevant a predicate(action) is to a specific TAMP problem. A score of 0 indicates

that the predicate or action is irrelevant to q , while a score of 1 indicates that it is criti-

cal to solving q . The predicate (action) estimator uses the initial state Xinit and the goal

state Xgoal of a TAMP problem q to predict a set of relevance scores Up (Ua). For each

predicate p ∈ P (action a ∈ A), there is a corresponding score u ∈ Up (u ∈ Ua). The rele-

vance score of a planning domain uD can be calculated with Up and Ua. The relevance

score of the domain measures how likely one domain is to be the associated domain for

a given TAMP problem. More details in the calculation can be found in Section 4.3. The

predicate and action estimators are trained only in the training phase and remain fixed

during the testing phase.

Testing Phase. There are two major steps in the testing phase. First, the most likely

planning domain for the example trajectory is predicted. The continuous example tra-

jectory is transformed to a logical state-action trajectory τe described by p ∈ P and a ∈ A.

The initial logical state Xinit ∈ τe and the goal logical state Xgoal ∈ τe are extracted as in-

puts for the estimators. The estimators predict the relevance score of each predicate

and action in the full predicate set P and the full action set A. The relevance score for

the planning domain is then computed and the domain Dtop represents the planning

domain with the highest score. Figure 4.1 visualizes the domain inference method at

the testing phase.

Second, Dtop is modified by a search algorithm that adjusts the predicates and ac-

tions in the planning domain until the optimal domain is obtained. The domain Dtop

serves as the initial guess, and at each iteration, a predicate or action is added to or re-

moved from Dtop, resulting in a new planning domain Dperturb. We then attempt to solve

the challenge problem set Qt , which is a set of TAMP problems, with Dperturb. If any

Dperturb solves all problems in Qt , the process continues until Doptm is obtained. Other-

wise, if no Dperturb can fully solve Qt after searching through all possible domains, the
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system requires additional example trajectories of the same task to identify the planning

domain.

In summary, given A, P, and C, at the testing phase, our system aims at utilizing one

or a few example trajectories τe and a challenge problem set Qt to produce the opti-

mal planning domain Doptm = 〈Poptm,Aoptm,Coptm〉 that can reproduce the trajectory τe

and generalize to similar TAMP tasks, even with shuffled object poses and varied object

numbers.

4.3 Training Predicate and Action Estimators

In this section, we provide a detailed explanation of how the predicate and action esti-

mators are trained. We begin by introducing the architectural design of the GAT-based

estimators in section 4.3.1, then elaborate on our method for generating training data in

section 4.3.3.

4.3.1 Estimator Design

An important aspect of the GAT-based estimator architecture design is formulating the

scene graph, which represents the environment information as graph-structured data.

The initial and goal logical states (Xinit,Xgoal) of a TAMP problem are represented as

scene graphs that are input to our estimators, where each node in the graph represents

a single object. Two types of predicates, represented by the node feature and edges,

are formulated. The first type, unary predicates, defines the logical states of individual

objects o ∈ O, such as (top, ?o) and (cleaned, ?o), and is encoded as Boolean elements

within the node feature vector. For example, with node feature [(top, ?o), (cleaned, ?o)],

an object on top of a pile but not cleaned will have the node feature [1,0]. The sec-

ond type of predicate, binary predicates, specifies relationships between objects, such

as (is_on, ?o1, ?o2 ), and is represented as edges connecting the nodes. The edge type is

characterized by an edge feature encoded as a one-hot vector.

Figure 4.2 shows the graphical formulation for a cube unstacking problem. The

graph on the left is the initial scene graph, and the graph on the right is the goal scene

graph. The node feature is [object index, (top, ?o), (cleaned, ?o), (cooked, ?o)], where

object index indicates the type of object with an integer. In this planning problem, the

index for Cube is 1. The predicate (top, ?o) indicates whether the object o is on top. The

predicate (cleaned, ?o) indicates whether the object o is cleaned. The predicate (cooked,

?o) indicates whether the object o is cooked. Each node is assigned a node feature rep-
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resenting the logical state of the corresponding object in the environment. As shown in

Figure 4.3, the edges represent the predicates describing relations between the objects

such as (is_on, ?o1, ?o2 ). The type of edge is specified by an edge feature, which is a

one-hot vector. The dashed edge is a special edge connecting the same object’s initial

and goal states.

Each estimator processes the graph input (scene graph of initial and goal logical

states) using a series of GAT layers. After the graph data is processed through these GAT

layers, the output of the final GAT layer is passed through a multilayer perceptron (MLP)

layer. The MLP layer linearly transforms this processed graph information into a vec-

tor, and an activation function is applied to bring the range of each output element to

between 0 and 1. Each element of the output vector represents the relevance score of a

specific predicate or action to the input.

4.3.2 Relevance Scoring

Next, we introduce the method to compute the relevance score of a candidate planning

domain. Drawing inspiration from the calculation of the total probability of indepen-

dent events, we propose a method for computing the domain set score. In this method,

the relevance scores for all actions and predicates contribute to the overall domain set

score in the following manner:

uD = ∏
p∈ωD

up
∏

p∉ωD

(1−up)
∏

a∈ωD

ua
∏

a∉ωD

(1−ua) (4.1)

In Equation (4.1), up represents the score for a predicate, while ua represents the

score for an action. Similar score computation schemes can be found in many other

learning-based planning methodologies [38].

The scores for all possible domain sets can be computed using Equation (4.1). The

domain set with the highest relevance score is denoted as ωtop
D . The predicates and ac-

tions excluded from ω
top
D are ranked by their relevance score in a descending manner in

a priority list L

4.3.3 Dataset Generation

To effectively train the predicate and action estimator, we need a demonstration dataset

of planning problems, each defined by initial and goal environmental logical states. To

create this dataset, we employ a sampling-based method that randomly samples a wide

range of planning problems in the simulation environment. These TAMP problems are
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Figure 4.2: Formulating predicates as node features: The dashed blue cube in the goal
scene has an object index 1; the cube is on top, so (top, ?o) is true. The cube is not
cleaned or cooked, so both (cleaned, ?o) and (cooked, ?o) are false. The resulting node
feature vector is [1,1,0,0]. We can do the same for other cubes to obtain their node
features

(𝒊𝒔_𝒐𝒏, ? 𝑜ଵ, ? 𝑜ଶ): True

1 0 0 0 1 1 0 0

1 1 0 0 1 1 0 0

Initial GoalInitial Goal

Figure 4.3: Formulating predicates as edge connections: In the initial scene, the predi-
cate (is_on, ?o1, ?o2 ) is true for the blue and orange cubes. Thus, a bidirectional edge,
represented by a solid line, is formulated to connect them.
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labeled with the predicates and actions required for the corresponding planning do-

main. In this labelling process, predicates and actions crucial for solving the problem

are given a score of 1, while irrelevant ones are assigned a score of 0. However, before

this dataset can be utilized to train the estimators, it is important to validate the feasi-

bility of solving the sampled problems. This validation step involves verifying if each

generated problem has a feasible solution. Including impossible problems in the train-

ing data would compromise the performance of the predicate and action estimators.

Existing methodologies for feasibility verification include human verification and

automated TAMP planner verification. Human verification has been employed in TAMP

research for a long time, but it significantly limits the speed of data generation, and the

data quality can be low due to potential human error [59]. An alternative approach in-

volves using traditional TAMP planners to verify the validity of the sample problems. The

autonomous nature of these planners allows for massive data generation [21]. Utilizing

TAMP planners also results in a cleaner dataset by avoiding human error. Therefore,

using traditional TAMP planners is the superior choice for problem verification.

In this thesis we develop a TAMP planner implementation for the Franka Panda arm,

which can be parallelized on a compute cluster to check feasibility. Our TAMP planner

supports launching multiple planning interfaces simultaneously. The planner reads the

input of planning problems and parses them into planning simulation environments.

The output of the planner includes information on whether the problem-solving was

successful and the complete trajectory of the manipulation (if the TAMP problem is

solved). This data generator is specifically designed for the supercomputer operating

system. It can be directly cloned online and built on supercomputers automatically.

4.4 Precondition and Postcondition Generation

In the testing phase, we obtain ω
top
D , which is a set of the names of all predicates and

actions included in the domain Dtop, from the predicate and action estimators. Then,

we must convert ωtop
D into an executable PDDL domain Dtop by determining the target

parameters, preconditions, and postconditions for each action. This process depends

on finding the commonalities across instances of the same action from the demonstra-

tions.

Definition 4.4.1 (Pre-image). The logical world state for the last time step before the

action is triggered.

Definition 4.4.2 (Post-image). The logical world state for the first time step after the
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action is completed.

The precondition is determined by identifying the intersections of the pre-images of

the same action across multiple instances. As shown in Figure 4.4, we first extract the

pre-images for all actions and then group these pre-images by the same action. Next,

we find the intersection of all pre-images for the same action, which is then used as the

precondition.

Similarly, for generating postconditions, we start by extracting the post-images for all

actions and grouping them by the same action. The intersection of the post-images for

each action is then calculated. To refine the postcondition, this intersection is compared

to the corresponding precondition, and any unchanged predicates are removed. The

resulting set of predicates is defined as the postcondition.

Collecting the predicates and actions with preconditions and postconditions, the

planning domain is automatically written into a PDDL file, which is ready for task and

motion planning.

4.5 Domain Optimization by Generate-and-Test Search

The domain optimization process is based on the generate-and-test search method, a

heuristic search technique that involves backtracking. This method ensures that a so-

lution is found if one exists. The technique involves generating all potential solutions

and testing them to determine the optimal one [60]. Starting from Dtop, the optimiza-

tion process iterates through all possible domains by adding or removing one predicate

or action from Dtop at each iteration until the domain successfully solves the challenge

problem set Qt with the minimal number of predicates and actions.

There are a few assumptions made to perform the generate and test search:

Assumption 1. If a domain D is incomplete, then any subdomain Ds ⊆ D is incomplete.

Assumption 2. If a domain D is complete, then the optimal domain Doptm ⊆ D.

Recall the formal definitions of a complete domain and an optimal domain. A com-

plete domain can help the TAMP planner find a solution whenever a solution exists. An

optimal domain is a complete domain that contains the minimal number of predicates

and actions.

The optimization process aims to add or remove predicates (actions) from the initial

guess until the optimal domain is found. As indicated in Algorithm 1, Dperturb is ini-

tialized as Dtop. There are two major steps in the optimization process: expansion and

contraction.



CHAPTER 4. METHODOLOGY 34

Post-imagePre-image

Stove

Pick 
1

Pick 
2

Pick 
3

Find common
pre-image

Find common
post-image

Precondition Postcondition

Stove

Figure 4.4: Precondition and postcondition generation: (1) The pre-images and post-
images are collected and grouped for each action. (2) The intersection of all pre-images
(post-image) is formulated as the precondition (postcondition)
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Algorithm 1 Domain Optimization Algorithm.
1: Dperturb = Dtop ▷ Initialization.
2: i s_sol ved = pl an(Dperturb,Qt )

3: el ement_l i st =ωtop
D

4: ▷ top(L) returns the highest-scored element from L.
5: while not i s_sol ved do
6: Dperturb = add(Dperturb, top(L))
7: i s_sol ved = pl an(Dperturb,Qt )
8: el ement_l i st .i nser t (top(L))
9: L.pop(top(L))

10: end while
11: Doptm = Dexpanded = Dperturb

12: for ei ∈ el ement_l i st do
13: Dperturb = r emove(Doptm,ei )
14: i s_sol ved = pl an(Dperturb,Qt )
15: if i s_sol ved then
16: Doptm = Dperturb

17: end if
18: end for

In the expansion stage, Dperturb is expanded until it solves the challenge problem

set Qt . In each iteration, we remove the top element in the priority list L, which has

the highest relevance score, and add it to Dperturb. Then Dperturb is tested with Qt . We

continue this loop until Dperturb can fully solve Qt . If Dtop can fully solve Qt without any

additional predicates or actions, the expansion stage can be skipped.

In the contraction stage, we remove redundant elements from Doptm until no more

elements can be removed while still solving the challenge problem set Qt . The final

domain from the expansion stage, Dexpanded, is assigned as the initial Doptm. In each it-

eration i , we remove one element, either a predicate or an action, ei ∈ Doptm, to produce

a perturbed domain Dperturb. If Dperturb maintains the ability to fully solve Qt , indicating

that the removed element ei is redundant, Dperturb becomes the new optimal domain

Doptm. If Dperturb fails to solve Qt , the removed element ei is critical. In this case, we

backtrack to the last domain that fully solved Qt as Doptm. This iteration continues until

each element in Dexpanded has been verified.

4.6 Example of Domain Inference

Figure 4.5 shows the domain inference process for sorting objects into two clusters. The

objects are sparsely placed on the table in the initial state. One example trajectory τsort
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and a challenge problem set Qsort are provided to the system. The most relevant domain

dtop and the priority list L are produced by the estimators.

In the first iteration, the perturbed domain D1
perturb is the highest-relevance-score

domain, Dtop. However, D1
perturb cannot fully solve Qsort because it is missing a critical

predicate, (holding, ?o, ?r ), which prevents the robot ?r from grasping multiple objects

simultaneously. Therefore, the system enters the expansion stage. The domain D1
perturb

is considered incomplete, and no optimal domain is found at this step.

In the second iteration, the domain is perturbed by adding the predicate (holding,

?o, ?r ), which has the highest relevance score in L. Now, D2
perturb can fully solve Qsort.

Thus, the planning domain D2
perturb is considered complete and is designated as the cur-

rent optimal domain, Doptm.

However, at this stage, the optimality of the planning domain is not guaranteed, as it

may contain irrelevant predicates. Therefore, from iteration 3 onward, the system enters

the contraction stage.

In the third iteration, the predicate (on_table, ?o, ?t ) is removed from Doptm to pro-

duce D3
perturb, which cannot fully solve Qsort and is considered an incomplete domain.

The predicate (on_table, ?o, ?t ) specifies the vertical relative relation between an object

o and a table t . Without this predicate, the planner does not know which table an object

should be on. Therefore, the algorithm backtracks to D2
perturb to be Doptm.

In the fourth iteration, the predicate (top, ?o) is removed from Doptm to produce

D4
perturb. Since all objects are sparsely placed on the table in the initial state, (top, ?o)

is unnecessary. The domain D4
perturb can fully solve Qsort and is considered a complete

domain. The predicate (top, ?o) is considered redundant, and the current optimal do-

main, Doptm, is updated to D4
perturb.

In the fifth iteration, (is_on, ?o1, ?o2 ) is removed from Doptm to produce D5
perturb,

which can fully solve Qsort and is considered a complete domain. The predicate (is_on,

?o1, ?o2 ) specifies the vertical relative relation of two objects. As objects are sparsely

placed on the table, the predicate (is_on, ?o1, ?o2 ) is classified as redundant by our sys-

tem, and the current optimal domain Doptm is updated with D5
perturb.

In the sixth iteration, the action ‘Pick’ is removed from Doptm to produce D6
perturb,

which cannot fully solve Qsort and is considered an incomplete domain. Without ‘Pick’,

no action can be executed from the initial state, and the planner will fail. The action

‘Pick’ is considered critical, and the algorithm backtracks to D5
perturb to be Doptm.

In the last iteration, the action ‘Place’ is removed from doptm to produce D7
perturb,

which cannot fully solve Qsort and is considered an incomplete domain. Without ‘Place’,

the planner cannot move an object to its target position. The action ‘Place’ is considered
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to be critical, and the algorithm backtracks to D5
perturb to be doptm.

Eventually, Doptm (D5
perturb) is returned since it fully solves Qsort, and all redundant

elements have been removed during the contraction phase.
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Figure 4.5: Example of the domain optimization process of sorting cubes. In initial state,
objects b1, b2, and b3 are sparsely placed on table T3. The robot needs to move the ob-
jects from T3 to T1, T2 as specified in the goal state. The elements in the perturbed do-
main set for each iteration are listed in the table together with its ability to solve Qsort and
the failure mode. The optimal domain is found at iteration 5, which is highlighted.The
detailed explanation of the failure modes can be found in Section 4.6



Chapter 5

Experiments

To demonstrate the advantages of our method, we designed a variety of TAMP tasks,

each characterized by a unique planning domain. These tasks include classic cube ma-

nipulation, everyday task scenarios, and puzzle solving. This chapter describes each

experimental task, with a corresponding graphic showing the initial environment state

and the goal environment state. Section 5.1 provides details on our experiments in-

volving classical cube manipulation tasks. Section 5.2 presents a few experiments with

everyday tasks such as cleaning. Section 5.3 outlines a puzzle-solving task experiment.

The tasks in Section 5.1, Section 5.2, and Section 5.3 are considered to be basic tasks. In

Section 5.4, we design several tasks that are composed of sequences of the basic tasks.

These composed tasks are used to evaluate whether our approaches can robustly gen-

eralize. After explaining our experiment setup, we provide details about our training

and testing datasets in Section 5.5 and introduce a baseline method for comparison in

Section 5.6. Through our experiments, we aim to answer the following questions:

• How accurately can our system generate the planning domain for a given new

task?

• How effective is planning using the generated planning domain? Are we able to

generalize to unseen and more complex tasks?

• During the testing phase, how much does our method reduce computational costs

compared to blind search?

All experiments rely on the PyBullet simulation platform [61]. The task planner is

based on the Fast-Forward library [17] interfaced with PyBullet. This PyBullet task plan-

ner library is developed by Garret et al. [7]. The motion planner is an RRT-based algo-

rithm implementation available in the pybullet-planning library, also developed by

39
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Garret et al. [19]. For each action a ∈ A, the corresponding motion planner c ∈ C is de-

signed to perform effectively across various environments. GAT training is implemented

in PyTorch [62] and PyTorch Geometric [63]. A full explanation of the meaning of predi-

cates and actions is provided in the appendix.

Figure 5.1: A graphical view of our cube stacking experiment: Left: The initial state,

where three cubes sit on the table. Right: The goal state, where the cubes are stacked

vertically.

5.1 Cube Manipulation

The cube manipulation tasks in this thesis include stacking cubes, unstacking cubes,

and sorting cubes into clusters.

As shown in Figure 5.1, the stacking task requires the robot to stack cubes into a tower

in a specific order. Initially, the cubes are randomly placed on the table. In the goal state,

the cubes are stacked into a tower. The predicates and actions for the domain are:

• Pstack = {(on_table ?obj ?table), (top ?obj), (is_on ?upper ?lower),

(holding ?obj ?gripper)}

• Astack = {Stack, Unstack, Pick, Place}

The unstacking task is the reverse of the stacking task. As shown in Figure 5.2, the

unstacking task involves unstacking a tower of cubes and placing them on a table. The

predicates and actions for the domain are:

• Punstack = {(on_table ?obj ?table), (top ?obj), (is_on ?upper ?lower),

(holding ?obj ?gripper)}

• Aunstack = {Stack, Unstack, Pick, Place}
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Figure 5.2: A graphical view of the unstacking experiment: Left: The initial state, where

the cubes are stacked vertically. Right: The goal state, where three cubes are sitting on

the table.

Figure 5.3: A graphical view of sorting experiment: Left: The initial state, where three

cubes sparsely sit on the table. Right: The goal state, where the cubes are clustered into

two piles.

The sorting task requires the robot to cluster cubes into two groups at different loca-

tions. In Figure 5.3, the cubes are randomly placed on the table in the initial scene and

are clustered by the robot into two piles when the task is completed. The predicates and

actions for the domain are:

• Psort= {(on_table ?obj ?table), (holding ?obj ?gripper)}

• Asort={Pick, Place}
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5.2 Everyday Tasks

This section presents a few experiments involving everyday tasks, including washing,

grilling, cooking, table cleaning, and painting.

The washing task requires the robot to wash food ingredients in the kitchen sink.

As shown in Figure 5.4, the ingredients are randomly placed on the table in the initial

scene, and the robot moves the ingredients into the sink to wash them. The predicates

and actions for the domain are:

• Pwash= {(on_table ?obj ?table), (holding ?obj ?gripper), (cleaned ?obj)}

• Awash={Pick, Place, Clean}

Figure 5.4: A graphical view of washing experiment: Left: The initial state, where the

food ingredients sit on the table. Right: The goal state, where the food ingredients are

moved into the sink.

The grilling task requires the robot to grill food on the stove. As shown in Figure 5.5,

the ingredients are randomly placed on the table in the initial scene, and the robot

moves the ingredients to the stove and grills them. The predicates and actions for the

domain are:

• Pgrill= {(on_table ?obj ?table), (holding ?obj ?gripper), (cooked ?obj)}

• Agrill={Pick, Place, Cook}

The cooking task involves a combination of washing and grilling food. As shown in

Figure 5.6, the raw ingredients are initially randomly placed on the kitchen table. The

robot is responsible for washing ingredients in the sink, grilling them on the stove, and

placing them back on the table. The predicates and actions for the domain are:
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Figure 5.5: A graphical view of grilling experiment: Left: The initial state, where the food
ingredients sit on the table. Right: The goal state, where food ingredients are moved on
the stove to grill.

• Pcook= {(on_table ?obj ?table), (holding ?obj ?gripper), (cleaned ?obj),

(cooked ?obj)}

• Acook={Pick, Place, Cook, clean}

As shown in Figure 5.7, the table cleaning task involves collecting objects from the

table and storing them in a bin. The objects are randomly placed on the table in the

initial scene and the bin is closed. The robot needs to open the bin, move all the objects

on the table into the bin, and then close the bin. The predicates and actions for the

domain are:

• Ptable_clean= {(on_table ?obj ?table), (holding ?obj ?gripper), (in ?obj ?container),

(containable ?obj), (is_container ?obj), (closed ?container, ?cover)}

• Atable_clean={Pick, Place, Open, Close, Dispose}

As shown in Figure 5.8, the painting task involves drawing figures on an object or a

piece of paper. In the initial scene, the objects to be painted are randomly placed on the

table. The robot needs to pick up the pen from the pen box, dip it in the pigment (black

ink), and paint the object. The predicates and actions for the domain are:

• Ppaint= {(on_table ?obj ?table), (holding ?obj ?gripper), (colored ?pen),

(is_pen ?obj), (is_pigment ?obj), (painted ?obj, ?pen)}

• Apaint={Pick, Dip, Paint}
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Figure 5.6: A graphical view of the cooking experiment: Left: The initial state, where the
raw food ingredients sit on the table. Right: The goal state, where the food ingredients
are washed and grilled.

Figure 5.7: A graphical view of table cleaning experiment: Left: The initial state, where
one object and the bin sit on the table. Right: The goal state, where the object is moved
inside the bin.
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Figure 5.8: A graphical view of painting experiment: Left: The initial state, where the pen

is in the pen box, and the pigment and two objects sit on the table. Right: The goal state,

where the robot grasps the pen and paints the objects.

5.3 A Puzzle-Solving Task

The puzzle-solving task is to solve the famous ‘Towers of Hanoi’ puzzle as indicated in

Figure 5.9. The Towers of Hanoi environment includes three pegs and a number of disks

of different sizes. The goal is to move all the disks from one peg to another while fol-

lowing two rules: only one disk can be moved at a time, and a larger disk can never be

placed on top of a smaller one. The predicates and actions for the domain are:

• Phanoi= {(smaller ?obj1 ?obj2), (top ?obj), (is_on ?upper ?lower),

(holding ?obj ?gripper)}

• Ahanoi={stack, unstack}

5.4 Composed Task

Our composed tasks are new tasks created by combining the basic tasks from Sec-

tion 5.1, Section 5.2, and Section 5.3. Though different, the planning domain of the

composed tasks consists of predicates and actions from the same predicate dictionary

P and action dictionary A. Three composed tasks are designed: the cook-and-plate task,

the unpack-and-cook task, and the labelling task. We do not design the planning do-

main for composed tasks because these tasks are only used in the testing phase to verify

that our model is able to generate the planning domain for a novel task.
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Figure 5.9: A graphical view of the Towers of Hanoi experiment: Left: The initial state,
where the tower is on the lower peg. Right: The goal state, where the tower is moved to
the upper peg.

The cook-and-plate task involves cooking the raw materials and stacking them to-

gether. Composed of the cooking and stacking tasks, as shown in Figure 5.10, the cook-

and-plate task is a simplified simulation of the process where a chef washes raw ingre-

dients, grills them, and then arranges them on a plate.

The unpack-and-cook task in our experiment involves unstacking raw materials and

cooking them. This task, as shown in Figure 5.11, combines the unstacking and cook-

ing tasks. The unpack-and-cook task is a simplified simulation of how people unpack

groceries, wash the raw ingredients, and then grill them.

The last composed task is the labelling task, which requires the robot to unstack piles

of objects and then label each item. As shown in Figure 5.12, the labelling task combines

the unstacking and painting tasks. This task simulates the process of labelling products

in factories.

5.5 Training and Testing Dataset

The training dataset for the predicate and action estimators consists of 30 demonstra-

tions per basic task (no composed task). Each demonstration involves a TAMP task in

which the planning environment has two to four objects. During testing, our method

is presented with one example trajectory along with a challenge problem set containing

five unsolved TAMP problems for which the corresponding planning domain needs to

be generated. The planning domain is then utilized to solve the test problems.

The test problem set includes both basic and composed tasks. For each task, the test
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Figure 5.10: A graphical view of the cook-and-plate experiment: Left: The initial state,
where the food ingredients sit on the table. Right: The goal state, where the food ingre-
dients are washed, grilled, and stacked vertically.

Figure 5.11: A graphical view of the unstack-and-cook experiment: Left: The initial state,
where the food ingredients are stacked vertically. Right: The goal state, where the food
ingredients are washed, grilled, and placed on the table.
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Figure 5.12: A graphical view of labelling experiment: Left: The initial state, where two
objects are stacked vertically and the pen is in the pen box. Right: The goal state, where
the objects sit on the table and have been painted by the robot.

set includes problems with varying numbers of objects in the planning environment,

ranging from two to nine. We generate 10 test problems with randomized object posi-

tions for each object count within the specified range. Each planning problem must be

solved within a time limit of 30 seconds.

5.6 Baseline

For the baseline, we train a GAT-based behavior-cloning task planner inspired by the

work of Lin et al. [47]. The graph-based formulation used in the baseline method is

close to ours, with the key difference being that [47] utilizes both predicates and the 3D

poses of objects as node features, whereas our approach only uses the predicates. To

maintain consistency, we modify their method to use predicates alone as node features.

The inputs to the GAT-based task planning policy are the current logical state Xcurrent

and the goal logical state Xgoal, both represented as scene graphs. The policy produces

two outputs: a one-hot vector indicating the action anext to execute in the next step and

a binary vector where each element corresponds to an object, with 1 indicating a target

object and 0 indicating a non-target object. The action and target object are then com-

bined to select the corresponding motion planner cnext ∈ C, which generates the motion

plan. As the robot executes the plan, the environment state updates. The updated log-

ical state, along with the goal state, serves as the new input to the task planning policy.

This process repeats until the goal is achieved. The baseline method is trained on the

same dataset as our method, but trained for and conditioned on each specific task type.
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The baseline is trained and evaluated solely on basic tasks. This is because demon-

strating the behavior cloning baseline with a single example trajectory for the composed

task, as is done in our method, would be trivial. Each planning problem must be solved

within 30 seconds.



Chapter 6

Results

In this chapter, we present the experimental results of our method and provide a com-

parative analysis against the baseline. Section 6.1 presents the experimental planning

success rate and compares our method to the behavior cloning baselines. Section 6.2

assesses the computational cost of our method’s domain optimization compared to the

blind search baseline.

6.1 Planning Success Rate and Generalizability

In Figure 6.1, we compare the performance of our method against the GAT-based

behavior-cloning baseline across basic tasks with an increasing number of objects. Each

sub-figure presents the change in success rate (y-axis) with the increasing number of ob-

jects (x-axis) for each task.

As illustrated in Figure 6.1, our method shows a significant advantage in generaliz-

ability, maintaining high success rates even as the number of objects in the tasks in-

creases. Across all the tasks tested, our method consistently outperforms the baseline,

maintaining success rates above 90% even as the number of objects increases. In con-

trast, the baseline method exhibits a sharp decline in success rate as the number of

objects increases, showing limited generalizability within a certain threshold for object

number. The success rate quickly drops to zero when the number of objects exceeds

this threshold. These results indicate that our method has a significant advantage in

generalizing to tasks involving more objects.

Moreover, our method exhibits superior performance in generalizing across differ-

ent task types. It consistently maintains high performance across the nine basic task

types shown in the experiment chapter, whereas the baseline’s performance varied sig-

nificantly depending on the task type. The baseline achieved high success rates in sim-
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Figure 6.1: Success rates of basic planning tasks for increasing numbers of objects. The
planning success rate is the ratio of the number of solved TAMP problems to the to-
tal number of TAMP problems attempted. BC-GAT indicates the GAT-based behavior
cloning baseline.

ple tasks, such as sorting cubes. However, when faced with more complex tasks, the

baseline’s performance dropped drastically and sometimes failed to solve the planning

problems entirely.

3 4 5 6 7 8 9
Number of Objects

0

20

40

60

80

100

Su
cc

es
s R

at
e 

(%
)

cook and plate

3 4 5 6 7 8 9
Number of Objects

0

20

40

60

80

100

Su
cc

es
s R

at
e 

(%
)

unpack and cook

3 4 5 6 7 8 9
Number of Objects

0

20

40

60

80

100

Su
cc

es
s R

at
e 

(%
)

label

Our Method

Figure 6.2: Success rates of composed planning tasks for increasing numbers of objects.

In addition to achieving high performance in the basic task types previously seen in

the training set, our method is also capable of solving unseen composed tasks in the test

problem set. As shown in Figure 6.2, our method consistently maintains a high success

rate across all tasks and object counts, demonstrating our system’s ability to automati-
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cally generate planning domains for new planning tasks in a one-shot or few-shot man-

ner. Compared to the success rate of our method for basic tasks in Figure 6.1, we observe

a larger drop in success rate for composed tasks as the number of objects exceeds seven.

This is primarily due to the increased difficulty of the composed tasks, which prevents

our method from solving the planning problem within the limited time.

6.2 Computational Cost

Another significant advantage of our method is its lower computational cost during the

testing phase. Unlike blind search, our approach predicts the most likely planning do-

main as an initial solution, thus avoiding searching through less likely planning domains

at the beginning stage. The computational cost is assessed based on the number of

queries made to the motion planner, which is the most time-intensive component of

the optimization process. This metric is chosen because it provides a consistent com-

parison independent of the computer’s performance.
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Figure 6.3: The number of queries to motion planners during domain optimization.

As shown in Figure 6.3, we compare the number of queries to motion planners (y-

axis) during domain optimization between our method and the blind search baseline.

The results show that our method drastically lowers the computational cost in the opti-

mization process. We observe an average reduction of over 74% in the number of motion
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planner queries across all test problems. The reduction in computational cost is more

apparent for basic task types and attenuates when dealing with composed task types.

This phenomenon occurs because the computational cost of our method depends on

the accuracy of the most likely domain prediction. When the prediction deviates from

the optimal domain, computational costs increase, and the informed search process can

become inefficient. The planning domain prediction for composed tasks is more diffi-

cult as they are novel to the estimators, leading to increased search efforts. Among the

three composed task types, the estimator performs effectively for cook-and-plate tasks

and unpack-and-cook tasks, while the domain prediction for the labelling tasks is less

accurate. In the domain inference for the labelling task, a critical action, ‘Unstack’, is

predicted to have a very low relevance score. This causes the system to bias other pred-

icates and actions, only including ‘Unstack’ after expending significant computational

resources searching for other predicates and actions.

Overall, our method demonstrates the ability to reduce search effort, even for novel

tasks. The reduced search cost is critical for practical applications with limited compu-

tational resources, ensuring that our method is efficient and practical for real-world use

cases.



Chapter 7

Conclusion

In this thesis, we presented a method to automatically generate planning domains for

new task and motion planning problems using deep learning techniques.

Task and motion planning solves complex tasks by integrating a high-level planner,

which breaks tasks into sub-tasks, with a low-level planner that computes the corre-

sponding robot trajectories. However, task planning usually requires the manual design

of a planning domain, which reduces automation and may introduce errors.

Automatic planning domain generation methods address the issue of dependency

on manually-designed domains by searching for predicate and action sets using data

from demonstrations. However, they often suffer from poor performance due to the

time cost of blind search. In contrast, GNN-based behavior cloning methods effec-

tively accelerate the search process by learning an informative heuristic to help guide

the search.

The potential to combine the benefits of heuristic learning for accelerated domain

generation led us to develop a method that utilizes GATs, a subclass of GNNs, to prior-

itize the most likely planning domain for a new task. Our approach, planning domain

inference, eliminates the need for manual domain design and significantly accelerates

domain generation. To validate the effectiveness of our method, we compared it against

a behavior cloning baseline across 870 different tasks (10 tasks evaluated for each com-

bination of task type and object count). Our method achieved an average reduction in

domain generation search time of over 74% compared to blind search.

7.1 Contributions

The core contribution of this thesis is the planning domain inference method, which

generates the associated planning domain for example robot trajectories in a one-shot
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or few-shot manner. We incorporate GAT-based domain estimators with a generate-

and-test search process to determine the optimal planning domain. We test the gener-

ated domains on various tasks and quantitatively compare the improvements in success

rate and reductions in computational cost to existing methods.

There are several important findings from our work. First, our method exhibits bet-

ter generalization across various environments than direct behavior cloning of the task

planner. Our method consistently outperforms behavior cloning, particularly in unseen

tasks and with more objects. Second, the computational cost of planning domain gener-

ation is significantly reduced compared to blind search. The GAT-based domain estima-

tors provide a reliable initial guess for the most likely planning domain and an efficient

heuristic to guide the search. Third, our method is data-efficient when generating new

planning domains, since it only requires one or a few demonstrations of a new planning

task. In contrast, the behavior cloning baseline requires a large training dataset.

7.2 Future Work

Although the our proposed method improves performance, there are several potential

improvements to consider for future work. First, our method assumes the availability

of the full predicate and action sets that provide a sufficiently-complete description of

the environment state. When the predicates and actions are poorly designed or mean-

ingless, our method is unlikely to produce an effective planning domain. Thus, learn-

ing high-quality predicates and actions from the environment could be valuable. Sec-

ond, the transformation from a continuous state to a logical state in this thesis relies

on artificially-designed procedures. Creating such procedures can become increasingly

challenging as the number of predicates and actions grows (e.g., managing 1,000 actions

and predicates). Learning the transformation directly from sensor data, such as images

or 3D point clouds, would make the system more adaptable, more generalizable, and

easier to deploy on real robots [56], [57]. Lastly, our method assumes full observability

of the environment, which limits its ability to adapt to uncertainty. Past work in TAMP

has shown the importance of considering partial observability [64]. Handling partial

observability within our system could significantly improve its robustness.



Appendix A

Table of Predicates and Actions

Predicate Explanation

(on_table ?obj ?table) Indicates whether object is on table.

(top ?obj) Indicate whether one object is on top of a pile.

( is_on ?obj1 ?obj2) Indicates whether object 1 is on object 2.

(holding ?obj ?gripper) Indicates whether one object is held by the robot gripper.

(cleaned ?obj) Indicates whether one object is cleaned.

(cooked ?obj) Indicates whether one object is cooked.

(in ?obj ?container) Indicates whether one object is in a container.

(containable ?obj) Indicates whether one object is a containable.

(is_pigment ?obj) Indicates whether one object is a pigment.

(is_pen ?obj) Indicates whether one object is a pen.

(colored ?pen) Indicates whether a pen has dipped color.

(painted ?obj ?pen) Indicates whether one object is painted by the pen.

(is_container ?obj) Indicates whether one object is a container.

(closed ?container ?cover) Indicates whether a container is closed by the cover.

(smaller ?obj1 ?obj2) Indicates whether object 1 is smaller than object 2.

Table A.1: Predicates used in the experiments described in Chapter 5, along with expla-

nations.
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Action Explanation

Pick Grasp and lift an object.

Place Lay an object on the table.

Stack Put one object on another.

Unstack Separate piled of objects.

Cook Heat up an object

Clean Wash an object.

Open Uncover the container.

Close Close the container with its lid.

Dispose Toss an object in a container.

Dip Immerse briefly in liquid.

Paint Apply color to a surface.

Table A.2: Actions used in the experiments described in Chapter 5, along with explana-
tions.
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