
Cross-Modal Data Fusion for
3D Instance Segmentation of Indoor Scenes

by

Edwin Gawing Ng

A thesis submitted in conformity with the requirements
for the degree of Master of Applied Science

Graduate Department of Aerospace Science and Engineering
University of Toronto

© Copyright 2023 by Edwin Gawing Ng

Cross-Modal Data Fusion for
3D Instance Segmentation of Indoor Scenes

Edwin Gawing Ng
Master of Applied Science

Graduate Department of Aerospace Science and Engineering
University of Toronto

2023

Abstract

Tremendous strides have been made in image-based scene understanding over the

past decade, thanks to larger datasets and enhanced model capacity. However, 3D-

based understanding still struggles, in part because 3D data are so costly to annotate.

Top 3D instance segmentation models, trained exclusively on 3D data, outperform

models using both 2D and 3D data, suggesting untapped potential in merging 2D

data to enrich 3D pipelines. Interestingly, while instance segmentation has not yet

benefited from 2D-3D data fusion, the sequential fusion of outputs from 2D and 3D

models that are trained separately does improve object detection. This thesis applies

sequential fusion to instance segmentation and investigates what and where to fuse.

We demonstrate that current 2D models do not perform well enough compared to 3D

models to enhance instance segmentation results, but that future, higher-performing

2D models should show performance gains using the sequential fusion method.

ii

Acknowledgements

As I approach the end of my Master’s program at the University of Toronto, I cannot

help but feel the utmost gratitude to have been a part of this program, encompassing

the friendships I’ve made and the valuable experience I’ve acquired along this journey.

I would like to thank my advisor, Jonathan Kelly, for providing me with this opportu-

nity. Throughout the program, your positive attitude and technical guidance helped

me overcome obstacles in both my research and personal life, and I am truly grateful

to have had you as my mentor. I wish to express my gratitude to my second reader,

Steven Waslander, for conducting a comprehensive review and providing valuable in-

sights through your comments and inquiries. I would also like to thank my friends

and colleagues at the STARS laboratory and TRAILab for your support, advice, and

constructive feedback. I would like to thank Andrej Janda for having been my partner

on the ARIBIC project and for our conversations that helped culminate my initial re-

search direction. I would like to particularly thank Anas Mahmoud for meeting with

me regularly to discuss the progression of my research results and providing me with

new perspectives to consider other approaches. I would like to thank Lee Slinger for

her meticulous review of my thesis and valuable editorial recommendations. I would

also like to thank those at aUToronto and the ARIBIC project for the experience of

applying theory to a real-world product. Lastly, I would like to thank my parents,

Victor Ng and Lily Ng, and sister, Olivia Ng, for your unconditional love throughout

my life.

iii

Contents

1 Introduction 1

1.1 About Segmentation . 1

1.2 Motivation . 2

1.3 Contributions . 4

2 Background 5

2.1 Contrasting Images with Point Clouds 5

2.2 Representations for 2D and 3D Data 7

2.3 Three-Dimensional Geometry . 8

2.4 Projective Geometry . 10

2.5 Tasks and Metrics for Scene Understanding 12

2.6 Learning Algorithms . 15

2.6.1 Machine Learning Fundamentals 15

2.6.2 Neural Networks and Deep Learning 20

2.6.3 Convolutional Neural Networks 23

2.7 Summary . 26

3 Related Work 28

3.1 Semantic Segmentation in 2D . 28

3.2 Instance Segmentation in 3D . 30

3.3 Cross-Modal Data Fusion for 3D Scene Understanding 33

3.4 Limitations . 36

3.5 Summary . 36

4 Methodology 38

4.1 Models for Semantic Segmentation in 2D 38

4.2 A Model for Instance Segmentation in 3D 39

4.3 Cross-Modal Data Fusion . 40

iv

4.4 Summary . 45

5 Experiments 46

5.1 Experimental Settings . 46

5.1.1 ScanNet Dataset . 46

5.1.2 Evaluation Metrics . 47

5.1.3 Implementation Details . 47

5.2 Results from the Early-Fusion Experiments 48

5.2.1 Baselines . 49

5.2.2 Fusing Model-Based Outputs 50

5.2.3 Fusing Non-Model-Based Outputs 52

5.2.4 Main Factors that Impact Post-Fusion Performance 53

5.3 Results from the Mid-Fusion Experiments 62

5.4 Ablation Study from Masking Augmentation Experiments 65

5.5 Summary . 66

6 Conclusion 68

6.1 Contributions . 68

6.2 Limitations and Potential Improvements 70

Bibliography 71

v

List of Tables

3.1 Categorization of related work . 37

5.1 Early-fusion results . 49

5.2 Comparison between 2D semantic segmentation and 3D semantic seg-

mentation . 53

5.3 Multi-Frame PointPainting results . 55

5.4 Guided Multi-Frame PointPainting results 60

5.5 Mid-fusion results . 61

5.6 Class-wise mid-fusion results . 63

5.7 Masking augmentation results . 65

vi

List of Figures

1.1 Comparison between semantic segmentation and instance segmentation 2

2.1 3D representations . 6

2.2 Visualization of reference frames . 9

2.3 Illustration of the convolution operation. 24

2.4 Dilated convolutions . 25

3.1 PointGroup architecture. 30

3.2 Hierarchical aggregation . 31

3.3 Soft grouping vs. hard grouping . 32

3.4 SoftGroup architecture . 33

3.5 PointPainting method . 34

4.1 Our early-fusion architecture. 41

4.2 Our mid-fusion architecture. 42

5.1 RGB image and depth map . 52

5.2 Object detection performance vs. segmentation quality 57

5.3 Visualization of the correspondences found using Multi-Frame Point-

Painting . 59

vii

Chapter 1

Introduction

This thesis focuses on improving the 3D instance segmentation of indoor environ-

ments by combining 2D image data and 3D point cloud data. We begin by providing

an overview of the segmentation process, current trends in the field of 3D instance

segmentation, opportunities for improvement, and our contributions.

1.1 About Segmentation

Segmentation is a popular method for processing images or point clouds that facil-

itates interpretation by downstream decision-making modules. The goal of segmen-

tation is to divide an image or point cloud into distinct regions, which can then be

useful in a variety of applications. When used by autonomous vehicles, for exam-

ple, segmentation can help identify pedestrians, other vehicles, and obstacles on the

road. In warehouse environments, segmentation can assist with automatic inventory

tracking by recognizing and identifying objects.

There are three primary types of segmentation: semantic, instance and panoptic.

We focus on semantic and instance segmentation in this thesis. Figure 1.1 compares

the application of semantic and instance segmentation to a point cloud that repre-

sents an indoor scene. Semantic segmentation provides a high-level understanding

of the scene by identifying object categories, without differentiating between indi-

vidual instances of those objects. Instance segmentation goes a step further by also

distinguishing between different instances of the same class. Panoptic segmentation

combines both of the above types of segmentation by distinguishing different instances

of the same class, as well as identifying classes of amorphous background regions, such

as the floor and walls.

Segmentation algorithms can also be categorized based on the type of data being

1

CHAPTER 1. INTRODUCTION 2

(a) Original Point Cloud (b) Semantic Segmentation (c) Instance Segmentation

Figure 1.1: Comparison between semantic segmentation and instance segmentation
labels obtained from the ScanNet dataset [16].

segmented. Segmentation of images is referred to as 2D segmentation, while seg-

mentation of point clouds is referred to as 3D segmentation. Notably, segmentation

methods are not limited to using data exclusively from the modality of the data being

segmented. For example, 2D techniques can incorporate point-cloud data to aid in

image segmentation, which is known as fusion-based 2D segmentation. Similarly, 3D

methods can integrate images to assist in point cloud segmentation, which is referred

to as fusion-based 3D segmentation.

1.2 Motivation

The current landscape of leading 3D instance segmentation models is dominated

by those that rely solely on point cloud data. Surprisingly, fusion-based models that

leverage both image and point cloud data perform poorly in comparison. Point clouds,

although providing accurate depth information, are relatively sparse, making segmen-

tation inherently challenging. Images offer dense colour and texture information, and

so intuitively, fusing dense image data with sparse point cloud data should aid in dis-

ambiguating the segmentation of objects. In particular, fusing multiple images that

capture different angles of an object should further aid segmentation. Also, whereas

3D point-cloud datasets are typically limited in size, 2D image datasets tend to be

CHAPTER 1. INTRODUCTION 3

significantly larger. This substantial volume of labelled image data can be harnessed

effectively for training purposes.

One possible explanation for why current fusion-based methods underperform 3D-

only methods is that point clouds are less susceptible to degradation than images. The

photometric information captured in images is sensitive to lighting conditions, such

as intense shadows, reflections, and over- and underexposure. In general, extreme

changes in lighting are not present in segmentation datasets, but even minor changes

in lighting conditions can still cause relatively large variations in the data captured

in an image. Consequently, fusion-based methods that incorporate image features

without also incorporating confidence scores for the features may underperform com-

pared to 3D-only methods [24]. Moreover, most fusion-based segmentation networks

employ less mature architectures, and the alignment between the two modalities may

be imprecise [47]. Previous work on cross-modal 3D instance segmentation jointly

fused 2D and 3D data, which creates a complex optimization problem.

Other branches of 3D scene understanding have successfully enhanced 3D-only

models by fusing 2D and 3D data sequentially in a process called sequential fusion [42,

44, 33, 47, 32]. A 2D model is trained separately on image data and then the image-

based outputs of this model are fused into the 3D model. The advantage of sequential

fusion over joint fusion is that the models can be trained separately, which simplifies

the optimization problem and allows the method to be model-agnostic. This flexibility

enables the pairing of the best-performing 2D segmentation model with the best-

performing 3D segmentation model. Additionally, confidence scores from the 2D

model can be easily incorporated within the sequential fusion approach.

Sequential fusion has been successfully applied to 3D object detection [42] and

3D semantic segmentation [47], however, to the best of our knowledge, it has not

been successfully applied to improve 3D instance segmentation models. Furthermore,

sequential fusion has primarily been used with outdoor datasets, where each point

in the point cloud typically corresponds to only one or two image views. In con-

trast, indoor datasets often have many image views for each point cloud point. The

availability of multiple views in indoor scenes presents further potential to fully ex-

ploit the benefits of 2D information. Consequently, this thesis aims to bridge the

gap in the literature by exploring sequential, cross-modal data fusion for 3D instance

segmentation, specifically tailored for indoor scenes.

CHAPTER 1. INTRODUCTION 4

1.3 Contributions

Our sequential fusion approach trains a 2D semantic segmentation model on images

from an indoor dataset and extracts image-based features from this model. These

image-based features are then fused into the 3D instance segmentation model during

training. The key contributions of this thesis are summarized as follows:

• Previous work has focused on 3D-only instance segmentation or fusion-based

3D object detection for outdoor scenes. This thesis fills a gap in the literature

by proposing a fusion-based instance segmentation method evaluated on indoor

scenes.

• Whereas outdoor datasets tend to have only one or two image views correspond-

ing to each point, indoor scenes tend to have a large number. We present an

algorithm for establishing associations between points and corresponding pix-

els in situations involving multiple images. The goals of this research required

considering a larger number of images than previous studies.

• We present experiments to determine where to fuse the image-based features

by comparing the effect of early-fusion against mid-fusion.

• We present experiments to determine what to fuse, by comparing the effect

of varying the content of the image-based fusion vector. The four different

representations that we explore are features, logits, softmax scores, and one-hot

encoded predictions extracted from the 2D semantic segmentation model.

• We provide an analysis of the effect that cross-modal data fusion has on semantic

and instance segmentation performance.

• We provide an analysis to determine the main contributing factors that impact

post-fusion performance.

• We provide a method of determining an estimated maximum performance boost

using the mid-fusion approach.

• We perform an ablation study to determine the effectiveness of geometric in-

formation, compared to photometric information, on 3D instance segmentation

performance.

Chapter 2

Background

In this chapter, we provide a review of the mathematical concepts needed to under-

stand the thesis. We begin with an overview of images and point clouds, highlighting

the strengths and weaknesses of each modality for scene understanding. Next, we

discuss standard representations of 2D and 3D data and the types of data structures

used in our work. We then examine three-dimensional and projective geometry in the

context of point cloud segmentation. Lastly, we describe various scene-understanding

tasks and provide an overview of available learning-based methods to solve such tasks.

2.1 Contrasting Images with Point Clouds

Images contain densely encoded photometric information, including the colour and

intensity details of the environment. However, this photometric information is sus-

ceptible to variations in lighting conditions, such as low lighting, intense shadows, and

bright reflections. Additionally, occlusions can obscure key elements—for instance, a

pedestrian can be obscured by a moving vehicle. Images obtained from a monocular

camera also lack depth information. Although stereo cameras (i.e., two cameras with

known relative positions, designed to capture two images of the same subject) can be

utilized for depth estimation, their range and accuracy remain limited.

Point clouds complement images by capturing geometric data from the environ-

ment, which often provide more precise depth measurements and which are less sus-

ceptible to environmental disturbances, such as changes in lighting conditions. Point

clouds can also be converted to various other 3D representations, such as voxel grids

and polygon meshes (as depicted in Figure 2.1), to suit different applications. If mul-

tiple point clouds captured from different positions in the environment are merged,

they can form a single reconstructed cloud that encompasses object surfaces from

5

CHAPTER 2. BACKGROUND 6

Figure 2.1: 3D data representations [17]: (a) a point cloud, (b) a voxel grid, (c) a
polygon mesh, and (d) a multi-view representation.

various angles, thereby solving the occlusion problem. Point clouds, however, are

typically sparse, whereas images consist of densely packed pixels. When using both

data modalities simultaneously, images can help overcome potential issues with point

clouds, such as sparsity.

Image datasets are orders of magnitude larger than point cloud datasets. Large

2D datasets, such as Conceptual Captions [40, 34], Segment Anything 1 Billion

(SA-1B) [27], Conceptual 12M [8], and ImageNet [39] contain millions of images,

whereas the largest 3D datasets—such as S3DIS [1], 2D-3D-S [2], ScanNet [16], and

SemanticKITTI [4]—only contain thousands or tens of thousands of 3D scans. This

difference in scale is also a result of the relative ease in labelling image data compared

with point cloud data. Annotating point clouds typically requires human annotators

to pan, zoom, and rotate the point cloud to label each point, whereas image data

labelling requires fewer transformations. Contemporary point cloud datasets employ

novel approaches to accelerate point cloud labelling. For instance, ScanNet [16] (dis-

cussed in more detail in Section 5.1.1) uses an over-segmentation algorithm, which

separates the point cloud into small segments, to enable annotators to label each

segment instead of each point. However, even with this novel labelling approach, it

still takes on average 22 minutes to label one 3D scan of a 243 square foot room with

24 objects [16]. With the availability of such large image datasets, image encoders

generalize well to novel data and continue to rapidly improve while 3D encoders are

limited by data. Hence, there is untapped potential for improving 3D models by

effectively fusing them with powerful image encoders.

CHAPTER 2. BACKGROUND 7

2.2 Representations for 2D and 3D Data

Data can be represented in various ways and its format dictates the available process-

ing methods. In this thesis, 2D images are represented using the RGB colour space,

as captured by a standard camera with a rectangular photosensor. While other colour

spaces, such as HSV (for hue, saturation, and value) exist, we opt to employ the RGB

colour space due to its widespread use in learning-based frameworks. An image is

represented as a 3D matrix, denoted as I ∈ RH×W×C , where H represents the height

of the image, W represents the width of the image and C represents the number of

channels in the image. Conventionally, each image pixel location is defined by its

coordinates: u ∈ [0, · · · ,W − 1] along the x-axis and v ∈ [0, · · · , H − 1] along the

y-axis. The origin is positioned at the upper left-hand corner of the image. RGB

images contain three channels, a red, a green and a blue one; each channel measures

the intensity of light for the corresponding colour. The values of each channel in RGB

images are typically represented as integers ranging from 0 to 255 or floating point

values ranging from 0 to 1, where larger values indicate a greater intensity. Greyscale

images also utilize the same value ranges but contain a single channel.

In contrast, the raw 3D data obtained from depth sensors are typically in the form

of an unordered set of point coordinates. The coordinates are obtained by measuring

the distances of object surfaces from the depth sensor. Each point cloud can represent

a single measured frame from the depth sensor or multiple frames can be concatenated

to create a reconstructed map of the environment. This concatenation process is

commonly used in indoor settings to generate a dense map of the surroundings (as

discussed in Section 2.3). Point clouds are represented by a 2D matrix denoted as

P ∈ RN×C , where N represents the number of points and C represents the number

of channels. Note that the channels described here are different from the channels

described for images. Point clouds contain three channels that represent the x, y

and z coordinates of each 3D point. Colourized point clouds contain six channels

consisting of an x, y, z and a red, green and blue channel. Additional information,

such as the reflectivity of objects, can be encoded as separate channels.

Machine learning models such as PointNet [9] can process point clouds directly, but

a more common approach is to transform the unordered point cloud into an ordered

voxel grid using a process called voxelization. During the voxelization process, a

resolution (voxel size) is chosen, which determines the side length of each voxel.

Then, the RGB value of each voxel is computed as the average RGB value of all

points that fall within the bounds of the voxel. If no points fall within a voxel, then

CHAPTER 2. BACKGROUND 8

it is empty and its values are set to zero. Voxel grids are represented by a 4D tensor

denoted as V ∈ RH×W×D×C , where H represents the height, W represents the width,

D represents the depth, and C represents the number of channels. Voxel grids, which

are obtained from the voxelization of colourized point clouds, contain three channels

consisting of a red, green and blue channel.

2.3 Three-Dimensional Geometry

A key advantage of indoor point cloud datasets over those for outdoor autonomous

vehicles is that they tend to include point cloud measurements from a larger variety

of viewing angles, allowing dense reconstructed maps of the indoor environment to

be produced. This section reviews the 3D geometry required to merge multiple point

clouds measured from a moving depth sensor into a dense reconstructed map. We

follow the notation of [3], where unbolded characters denote scalars, bolded lowercase

characters denote vectors, and bolded uppercase characters denote matrices.

Objects in the environment are typically able to translate and rotate, giving them

six degrees of freedom, three for translation and three for rotation. The position and

orientation of an object define its pose. The position of a point on the surface of an

object measured by a depth sensor can be described as a vector r−→
ps. We follow the

convention where the leftmost superscript describes the tip of the vector (point p)

while the rightmost superscript describes the tail of the vector (sensor s).

Each set of points measured by the moving depth sensor must be represented

in the same reference frame to generate the reconstructed map. By convention, the

inertial (static or world) frame F−→i, coinciding with the first pose of the depth sensor,

is chosen as the reference. Therefore, the goal is to transform all point coordinates

from the moving sensor frame F−→s to the inertial frame F−→i. To obtain the relationship

between the two reference frames, we start by expressing the vector r−→
ps in the sensor

frame and in the inertial frame, which has the following relationship:

r−→
ps = F−→i

T rpsi = F−→s
T rpss . (2.1)

The components of the vector r−→
ps with respect to the inertial reference frame are

represented by rpsi , while the components of the vector r−→
ps with respect to the sensor

frame are represented by rpss . Following the convention in [3], the vector components

are with respect to the reference frame denoted by its subscript. By rearranging the

CHAPTER 2. BACKGROUND 9

Figure 2.2: Visualization of a point P relative to an inertial reference frame F−→i and
a moving sensor frame F−→s.

equation, we obtain the relationship between the two components as

rpsi = F−→iF−→s
T rpss = Cisr

ps
s . (2.2)

The matrix Cis is called a rotation matrix; it converts the components in the sensor

frame to the components in the inertial frame and is defined as

Cis = F−→iF−→s
T . (2.3)

Rotation matrices have the property that

Cis = CT
si = C−1

si . (2.4)

The set of all valid 3 × 3 rotation matrices in R3 form the special orthogonal group,

defined as

SO(3) =
{
C ∈ R3×3

∣∣ CCT = 1, det (C) = 1
}
, (2.5)

where 1 is the identity matrix and det (C) = 1 ensures that C is a proper rotation

(i.e., a rotation only and not a rotation followed by a reflection).

In addition to rotating, the sensor can translate within the environment. The

relationship between the position of the inertial frame and the sensor frame can be

derived as:

r−→
pi = r−→

si + r−→
ps. (2.6)

Writing the relationship in the inertial frame F−→i, we have

rpii = rsii + rpsi . (2.7)

CHAPTER 2. BACKGROUND 10

Substituting in Equation (2.2), we obtain

rpii = rsii +Cisr
ps
s , (2.8)

where {rsii ,Cis} represents the pose of the depth sensor. The relationship in Equa-

tion (2.8) can be rewritten in the form given by[
rpii
1

]
=

[
Cis rsii

0T 1

]
︸ ︷︷ ︸

Tis

[
rpss

1

]
, (2.9)

where Tis is referred to as a 4× 4 transformation matrix. To use this transformation

matrix, the 3× 1 point coordinates must be augmented with a one. The augmented

point coordinates are referred to as the homogeneous representation of the point.

Using Equation (2.4), we can derive the property of the inverse of transformation

matrices such that

T−1
is =

[
Cis rsii

0T 1

]−1

=

[
Cis

T −CT
isr

si
i

0T 1

]
=

[
Csi −rsis
0T 1

]
=

[
Csi riss

0T 1

]
= Tsi. (2.10)

The set of all transformation matrices form the special Euclidean group,

SE(3) =

{
T =

[
C r

0T 1

]
∈ R4×4

∣∣∣∣∣ C ∈ SO(3), r ∈ R3

}
. (2.11)

Finally, the reconstructed map of the environment is obtained by transforming the

vector components of all points measured with respect to the moving sensor frame

into the inertial frame. This reconstruction process is performed by applying the

corresponding transformation matrix to the points measured by the depth sensor in

each sensor frame.

2.4 Projective Geometry

This section reviews the projective geometry necessary to project a 3D point into a 2D

image. We consider, in particular, a depth camera, a type of sensor that captures both

colour and depth information in the form of an RGB-D image. The captured colour

and depth data are expressed with respect to the same sensor reference frame. We

use projective geometry to determine pixel correspondences for each point, allowing

CHAPTER 2. BACKGROUND 11

our fusion algorithm (discussed in Chapter 4) to append the associated 2D fusion

information to each point.

The reconstructed map of the environment is represented as a point cloud P with

respect to the inertial reference frame F−→i. To project each point into an image, we

must first convert the point cloud coordinates from the inertial frame to the sensor

frame. The transformation matrix Tsi (equivalent to the inverse of the sensor pose

shown in Equation (2.10)) is used to convert the coordinates from the inertial frame

to the sensor frame. This transformation matrix is called the extrinsic matrix E as

denoted by [
rpss

1

]
= Tsi

[
rpii
1

]
= E

[
rpii
1

]
. (2.12)

Once the point coordinates are represented with respect to the sensor frame, a

projective mapping based on the ideal perspective model, also known as the pinhole

camera model, is applied to project the 3D coordinates onto a 2D image plane. The

pinhole camera model describes the imaging characteristics when the aperture of

the camera is reduced to a single point. In this scenario, all light rays converge at

the optical centre, which serves as the origin of the sensor frame. The optical axis

intersects with the principal point, which represents the origin of the image-plane

coordinate system. The projective map from R3 → R2 for a point rpss = [x y z]T

in the sensor frame is given by

p =
rpss
z

=

x/zy/z

z/z

 =

xn

yn

1

 , (2.13)

where {xn, yn} are called the normalized image coordinates.

The normalized image coordinates are associated with a hypothetical camera that

has a unit focal length along both the horizontal and vertical axes, and has the origin

set at the principal point. We can map the normalized image coordinates to the

actual pixel coordinates through the relationuv
1

 =

fu 0 cu

0 fv cv

0 0 1


︸ ︷︷ ︸

K

xn

yn

1


︸ ︷︷ ︸

p

, (2.14)

where K is called the intrinsic matrix. The intrinsic matrix contains the focal length

CHAPTER 2. BACKGROUND 12

along the horizontal axis fu and the focal length along the vertical axis fv, as well

as the offset from the principal point (cu, cv). These parameters can be determined

through camera calibration.

The complete projection model to convert a point with respect to the inertial

frame to image coordinates is defined as

P1K
1

z
P2E

[
rpii
1

]
= P1K

1

z
P2

[
rpss

1

]
= P1K

1

z
rpss = P1Kp = P1

uv
1

 =

[
u

v

]
, (2.15)

where

P1 =

[
1 0 0

0 1 0

]
, K =

fu 0 cu

0 fv cv

0 0 1

 ,

P2 =

1 0 0 0

0 1 0 0

0 0 1 0

 , E = Tsi =

[
Csi riss

0T 1

]
, rpii =

x
pi
i

ypii
zpii

 .

(2.16)

The depth d measured by the depth sensor is computed as

d = zk, (2.17)

where the constant k is used to convert between different units of measurement, for

example from metres to millimetres.

2.5 Tasks and Metrics for Scene Understanding

Scene understanding encompasses various tasks involving both the 2D and 3D modal-

ities. This section describes the tasks and metrics associated with scene understand-

ing for the 2D modality, but the concepts discussed here can be extended to the 3D

modality also. We will outline the key tasks of scene understanding in increasing

levels of detail: image classification, object detection, semantic segmentation, and

instance segmentation.

The simplest scene understanding task is image classification, where the goal is to

categorize the entire image. Performance is generally measured in terms of accuracy.

Object detection takes a step further by predicting both a class and bounding box

around each object in the image. The metric used to measure the performance of an

object detector is the mean average precision (mAP). To compute mAP, a confusion

CHAPTER 2. BACKGROUND 13

matrix is computed for each class, which consists of four values:

• True Positive (TP): the number of correct detections made by the model.

• False Positive (FP): the number of incorrect detections made by the model.

• False Negative (FN): the number of times a ground-truth object is not detected

by the model.

• True Negative (TN): this represents the background region that should not be

detected by the model and is not detected by the model. However, this value is

not used for object detection because these regions are not explicitly annotated

in object detection datasets.

To determine whether a detection is considered correct or not, a metric called inter-

section over union (IoU) is used to measure how closely the predicted bounding box

matches the ground-truth bounding box. Specifically, the IoU metric computes the

overlap between the two bounding boxes as given by

IoU =
area(gt ∩ pd)

area(gt ∪ pd)
, (2.18)

where gt is the ground-truth bounding box and pd is the predicted bounding box.

IoU ranges from zero and one, where a value of zero means that there is no overlap

between the bounding boxes and a value of one means that there is a full overlap.

An IoU threshold of 0.5 (i.e., 50% overlap) is usually used to determine whether a

correct detection is made by the model. Once the confusion matrix is computed for

each class, the precision P and recall R metrics for each class are computed using

P =
TP

TP + FP
(2.19)

and

R =
TP

TP + FN
. (2.20)

Precision is a metric that evaluates the accuracy of predicted bounding boxes for

a specific class, while recall measures the ability of the model to detect all ground-

truth bounding boxes for that class. The computation of these two metrics relies

on an additional threshold called the confidence score threshold, which ranges from

zero to one. Learning-based object detection models provide a confidence score for

each predicted bounding box, and the confidence score threshold is used to remove

predicted bounding boxes with low confidence scores. Increasing the confidence score

CHAPTER 2. BACKGROUND 14

threshold results in fewer detected objects, leading to fewer false positives but more

false negatives. Consequently, precision increases while recall decreases. In contrast,

decreasing the confidence score threshold leads to more detected objects, resulting in

more false positives but fewer false negatives. This causes precision to decrease while

recall increases. Comparing models using two separate metrics can be cumbersome.

To overcome this issue, precision and recall are combined into a precision-recall curve,

as a function of the confidence score threshold. The area under the curve (AUC) is

calculated to generate a metric called the average precision. The average precision

summarizes the model performance on a specific class into a single metric. Finally,

the mean average precision (mAP) is computed by taking the mean of the average

precisions across all classes. In the literature, mAP may be followed by a number

such as mAP25 or mAP50, which indicates the mean average precision at different IoU

thresholds, such as 25% or 50%, respectively.

Compared to classification and object detection, segmentation is a significantly

more challenging task, because a prediction for each image pixel is required. Segmen-

tation can be divided into two main categories: semantic segmentation and instance

segmentation. Semantic segmentation involves classifying each pixel into an object

class. It does not distinguish between different instances of objects in the same cate-

gory. For example, given an image of a classroom, the task of semantic segmentation

would be to label each pixel as a chair, desk, window, chalkboard, etc. All instances

of the same category (e.g., all chairs) will be given the same label. The performance

of semantic segmentation is a commonly evaluated using the mean intersection over

union (mIoU) metric, which calculates the intersection over union (IoU) for each

class and then computes the average. Instance segmentation takes a step further

by not only classifying each pixel by its category but also distinguishing between

individual instances of the same category. This is done by predicting a unique la-

bel called an instance ID for each individual object in the image. Similar to object

detection, instance segmentation employs the mean average precision (mAP) as a

metric. However, instead of computing the overlap between predicted and ground

truth bounding boxes, the IoU metric calculated for the mAP metric computes the

overlap between predicted and ground truth object segmentation masks. Specifically,

in the case of ScanNet [16], 3D instance segmentation performance is measured using

mAP25, mAP50, and mAP. These metrics represent the mean average precision using

IoU thresholds of 25%, 50%, and an average over the range of 50% to 95% increment-

ing every 5%, respectively. In summary, the key difference between semantic and

instance segmentation is in the granularity of the output.

CHAPTER 2. BACKGROUND 15

2.6 Learning Algorithms

Although classical techniques—thresholding, K-means clustering [31], edge-based ap-

proaches, region-based techniques, the watershed transform, and others [5]—have

proven effective for simple image segmentation tasks, they are often outperformed by

learning-based methods in more complex domains. We begin this section with a brief

introduction to machine learning fundamentals and then delve into the key compo-

nents of learning algorithms that have state-of-the-art performance on 3D instance

segmentation.

2.6.1 Machine Learning Fundamentals

There are two primary types of machine learning models: regression models, which

are used to predict real-valued numbers from input data, and classification models,

which are employed to predict categories based on input values. This subsection

gives an introductory overview of fundamental regression and classification problems

and explores their relationship with fully connected neural networks, which serve as

the basis for many contemporary machine learning approaches. We also discuss the

optimization and generalization issues of neural networks and potential solutions to

these issues.

Primer on Regression

One of the simplest approaches to model the relationship between a scalar target and

one or more input variables is linear regression. Formally, given a set of N examples

(xi, ti)Ni=1 where the input values of example i are stored in vector x and the target

value is stored in scalar t ∈ R, the goal is to predict ti from xi. In linear regression, as

indicated by the name, a linear model predicts the target value from the input values

and has the form

y = wTx, (2.21)

where y is the predicted value and column vector w contains the model parameters

(also called model weights). From this model, an optimization problem is defined to

solve for the weights that minimize the difference between the predicted value y from

the target value t. Linear regression uses the L2 loss function also known as squared

error loss defined as

LL2(y, t) =
1

2
(y − t)2 (2.22)

CHAPTER 2. BACKGROUND 16

to optimize the weights. The loss is zero when the predicted and target values match

and the loss error is quadratic. An alternative loss function, which is popular in

regression-type problems is the L1 loss function, which is

LL1(y, t) = |(y − t)|. (2.23)

The loss function is defined for a single example, whereas the corresponding cost

function is defined as the average loss across the entire training set of examples. The

relationship between the cost function C and loss function L is given by

C(w) =
1

N

N∑
i=1

L(yi, ti). (2.24)

The cost function is minimized with respect to the weightsw to determine the optimal

weights that minimize the difference between the predicted and target values.

There are two primary ways to minimize the cost function. The first method is

to set the derivative of the cost function to zero,

∂C
∂w

= 0, (2.25)

and solve for the weights. The second method is to use an iterative algorithm called

gradient descent to update the weight values in each iteration of the algorithm ac-

cording to the iteration rule

w← w − α
∂C
∂w

(2.26)

until convergence, where α is a hyperparameter called the step size or learning rate.

A hyperparameter is a parameter that is not learned from the data during the

training of a machine-learning model but is set prior to the training process to control

various aspects of the learning process. The learning rate is a hyperparameter that

dictates how fast and stable the convergence characteristics are. A learning rate that

is too small requires many iterations before convergence, while a learning rate that is

too large would result in oscillations or instability during the optimization process.

The relationship between the input values and the target value is not always linear.

A non-linear model such as

y = w3x
3 + w2x

2 + w1x+ w0

= wTϕ, ϕ(x) =
[
1 x x2 x3

] (2.27)

CHAPTER 2. BACKGROUND 17

can be used, where the choice of ϕ is another example of a hyperparameter. ϕ is

also called a feature map [19], which involves selecting or designing a function that

maps the original input values to a new set of features that better represents the

relationship between the inputs and target value.

Careful consideration of hyperparameters is essential when developing a machine-

learning model to avoid the issues of underfitting or overfitting. If the underlying

relationship between the input data and the target output is quadratic, a linear

model will underfit this relationship, whereas a cubic model has the potential to

overfit. Hence, it is crucial to select suitable hyperparameters.

A separate dataset called the validation set is used to evaluate different hyper-

parameter choices. By testing various hyperparameters on the validation set, in a

process called hyperparameter tuning, we can discover the values for the hyperpa-

rameters that yield optimal model performance. Furthermore, to obtain an unbiased

evaluation of the performance of the model, we utilize a third dataset known as the

test set. This dataset is independent from both the training set and the validation

set. By using the test set, we can report the performance of the model without any

biases introduced by hyperparameter tuning, ensuring a fair and accurate assessment.

Primer on Classification

The simplest classification problem is binary classification. In this problem, we are

given a dataset consisting of N examples with input values and binary class targets

denoted as (xi, ti)Ni=1, where t can take values of zero or one. The objective is to

predict the target ti based on the input values xi. For instance, we may want to

determine whether an image depicts a dog or a cat. As mentioned in Section 2.2, an

image I ∈ RH×W×C can be represented as a 2D grid of RGB values, which can then

be flattened into a single input vector x. In this case, we can assign a target value of

zero to dogs and a target value of one to cats.

One of the core machine learning algorithms for solving binary classification prob-

lems is logistic regression. In logistic regression, we choose a log-linear model to

represent the relationship between the input values and the target value. The model

is formulated by the following two equations:

z = wTx,

y = σ(z) =
1

1 + e−z
∈ [0, 1].

(2.28)

The sigmoid function σ(z) maps a real-valued number to a range between zero and

CHAPTER 2. BACKGROUND 18

one. The binary cross-entropy loss function is used for optimizing the weights and is

defined as

LBCE(y, t) = −t log y − (1− t) log(1− y). (2.29)

The loss is low when the predicted value is close to the target value and the loss is

high when the predicted value is far from the target value. As with linear regression,

the cost function for logistic regression is computed as the average of the loss across

the training set, as shown in Equation (2.24). This cost function can be optimized

by finding the direct solution using Equation (2.25) or by using gradient descent as

shown in Equation (2.26).

Finding a direct solution may not be feasible in cases where the cost function is

non-convex. Additionally, when dealing with large training sets, it may be computa-

tionally intractable to calculate the derivative over all examples required for gradient

descent (a form of batch training). To address these challenges, stochastic gradient

descent (SGD) is commonly employed. It is a form of mini-batch training where the

derivative is computed for a subset of training examples during each iteration of the

algorithm. The mini-batch size is another example of a hyperparameter. Choosing

a mini-batch size that is too large can result in increased memory usage and longer

computation time per iteration, while selecting a size that is too small may reduce

the effectiveness of vectorized operations.

The process of determining the values for the weights in a model is known as the

training process. Once the model has been trained, it can be used for inference to

make predictions on new data. During inference, the predicted value y falls within the

range of zero and one, indicating the probability of belonging to a particular category.

To assign a specific category, a threshold is set, such that values equal or above the

threshold are assigned a category of one and values below the threshold are assigned

a category of zero. Typically, a default threshold of 0.5 is used, but it can be adjusted

based on performance and specific requirements.

The binary classification task described earlier can be extended to handle multiple

classes. For instance, given a flattened input vector representing an image, we may

want to predict whether it belongs to the class of dog, cat, or pig. Formally, in

a multi-class classification problem, we are given a dataset, which is comprised of

N examples with input values and multi-class targets denoted as (xi, ti)Ni=1. Here,

x ∈ RD×1 represents the input values with D dimensions, and t ∈ RK×1 is a one-hot

encoded vector representing the target, where K denotes the number of classes. The

goal is to predict the target ti based on the input values xi.

A one-hot encoded vector is a vector with zeros in all positions except for the index

CHAPTER 2. BACKGROUND 19

corresponding to the labelled class, which is assigned a value of one. In our example,

we can assign the one-hot encoded vectors [1, 0, 0]T , [0, 1, 0]T , and [0, 0, 1]T to represent

the classes dog, cat, and pig, respectively. Alternatively, a simpler representation—

known as label encoding—assigns the values zero, one, and two to represent dog, cat,

and pig, respectively. However, label encoding may not work well in practice since the

categorical classes of the animals do not form a continuous spectrum. For example,

two cats (with a label encoding of one) do not form a pig (with a label encoding of

two).

One approach to solving the multi-class classification task is through multi-class

logistic regression. This method employs a model with the following two equations:

z = Wx+ b,

yk = softmax(z)k =
exp zk∑K

k′=1 exp zk′
.

(2.30)

The parameters of the model, W ∈ RK×D and b ∈ RK×1, are called weights and

biases, respectively. Together, the weights and biases form the parameters θ of the

model. The softmax function is used to map from the real-valued vector z ∈ RK×1

called logits to a vector y ∈ RK×1 called softmax scores where each element is in the

range between zero and one. Each element yk is the softmax score of the class index

it corresponds to. The cross-entropy loss (multi-class version) is used in multiclass

logistic regression and is defined as

LCE(y, t) = −
K∑
k=1

tk log(yk) = −tT (log y). (2.31)

The loss is high when the predicted softmax score of the correct class is near zero and

the loss is low when the predicted score of the correct class is near one. The cost func-

tion can be the average loss over all training examples as shown in Equation (2.24),

which is then optimized using gradient descent. However, for large datasets, it is

more common for the cost function to be the average loss over a subset of training

examples, which is optimized using stochastic gradient descent. During inference, the

model in Equation (2.30) is used to determine the softmax scores. The element with

the highest score is used as the predicted class as given by

prediction index = argmax
k

(index(z, k)) , (2.32)

where the index(v, i) function outputs the value of the vector at index i.

CHAPTER 2. BACKGROUND 20

2.6.2 Neural Networks and Deep Learning

Artificial neural networks have become extremely successful in a variety of regression

and classification tasks. Equation (2.30) is an example of a model with a single fully

connected layer. A fully connected layer is a function defined as

hl(x) = ϕ(Wlx+ bl) (2.33)

with layer index l where ϕ(·) is called the activation function and each input or output

element of the fully connected layer is called a neuron. The input neurons are the

elements xd in vector x ∈ RD×1 and the output neurons are the elements hl
k from the

vector hl ∈ RK×1. The equation for an output neuron is

hl
k = ϕ(wl

k

T
x+ blk), (2.34)

where wl
k
T ∈ R1×D is the k-th row of matrix Wl ∈ RK×D. A fully connected neural

network defined by function FC(x) is the composition of M fully connected layers as

given by

FC(x) = (hM ◦ · · · ◦ h1)(x). (2.35)

The purpose of the activation function is to add non-linearity to the otherwise lin-

ear model. By having a non-linearity in the activation function and an exponentially

large network, a fully connected network can universally approximate any function.

Many different types of non-linear activation functions can be used. The following

activation functions will be defined for a scalar value. A linear function

ϕ(x) = x (2.36)

represents no activation function, such as in Equation (2.30). The most common

activation function for fully connected networks is the rectified linear unit (ReLU)

defined by

ϕ(x) = max(0, x). (2.37)

Backpropagation popularized by [38] is the most common algorithm for computing the

gradients necessary for updating the parameters of a neural network by using the chain

rule to compute derivatives efficiently. However, for very deep neural networks, using

the ReLU activation function can cause vanishing gradient problem. This problem

arises when the gradients of the loss function with respect to the parameters of the

network become very small as they are back-propagated through the layers of the

CHAPTER 2. BACKGROUND 21

network during the training process. When gradients become extremely small, they

effectively “vanish”, making it difficult for the network to update the weights in a

meaningful way. This can significantly slow down or hinder the convergence of the

training process. One method to reduce this issue is to use a soft ReLU activation

function, which produces small values rather than a zero value for negative input

values. The soft ReLU is defined as

ϕ(x) = log(1 + exp x). (2.38)

Optimization Issues and Potential Solutions

As alluded to above, the primary challenges associated with neural networks are

around optimization. The cost function is generally non-convex, so stochastic gradient

descent may have problems getting stuck in local minima, encountering saddle points,

or reaching plateau areas. Any of these optimization problems can lead to difficulties

in converging to the global minimum. However, there are a few techniques to reduce

these problems, such as initializing the parameters of the network with small random

values instead of initializing all weights to zero and using momentum in the stochastic

gradient descent algorithm to reduce the potential of getting stuck in local minima.

The update rule for stochastic gradient descent with momentum is defined by the

following two iteration rules:

p← µp− α
∂C

∂θ
,

θ ← θ + p.
(2.39)

The momentum factor µ is usually set to a value slightly less than one, such as 0.99 or

0.9. In stochastic gradient descent, when the algorithm reaches a local minimum, the

magnitude of the gradient will reduce and the algorithm may converge to the local

minimum instead of the global minimum. The addition of the momentum factor

helps to overshoot small local minima and increases the chance of converging to the

global minimum. Another extension of the stochastic gradient descent algorithm that

uses momentum is the Adam optimizer [26]. It adjusts the learning rate adaptively

for each model parameter based on the exponential moving average of the gradients

and the square of the gradients calculated for that parameter; this leads to faster

convergence. Other techniques to reduce the chance of getting stuck in local minima,

such as ravines, involve centring inputs to zero mean and unit variance, as done with

batch normalization or performing learning rate decay. Learning rate decay refers to

the method of reducing the learning rate over the course of training. This is useful

CHAPTER 2. BACKGROUND 22

because the model parameters are far from optimal in the early stages of training so

a larger learning rate is necessary. In contrast, the model parameters would be closer

to a minimum in the later stages of training, so a small learning rate to fine-tune the

parameters is desired. Other learning rate strategies, also referred to as learning rate

schedules, exist. For instance, a cosine annealing learning rate schedule decreases the

initial learning rate to a value near zero before increasing the learning rate back to

its original value in a cyclical process. By introducing periodic fluctuations in the

learning rate, the model can potentially escape local minima in the loss landscape.

Generalization Issues and Potential Solutions

In addition to optimization issues, the performance on the training set does not always

generalize to the test set. To improve generalization from the training set to the test

set, a variety of techniques can be used, such as data augmentation, dropout, capacity

reduction, weight decay and early stopping. Data augmentation is the process of

adding more data to the training set by transforming the existing training examples.

The transformations used depend on the task, but the common transformations for

images are: translation, horizontal/vertical flip, rotation, smoothing and adding noise.

For point clouds, common transformations include: randomly dropping out points,

random rotation and axis flip. Another technique called dropout, randomly ‘turns off’

a number of neurons, which prevents overfitting by encouraging the network to learn

redundant representations of the data. This redundancy makes the network more

robust because it can not rely too heavily on the output of a single neuron. Dropout

can also be thought of as training an ensemble of multiple models within a single

model. Each dropout configuration (i.e., which neurons are dropped out) corresponds

to a different subnetwork. When making predictions, dropout is typically turned off,

but during training, different subnetworks are sampled. This ensemble effect helps

improve the ability of the model to generalize. Reducing the model capacity, which is

the ability of the model to fit a variety of functions, is yet another method to reduce

overfitting. There are many ways of reducing model capacity, such as introducing a

smaller layer between two larger layers called a bottleneck layer or simply reducing the

number of layers or parameters of the model. Weight decay is a method of regularizing

the neural network by penalizing large weight values, which encourages the network

to only use small weight values. Small weight values are desirable because they are

less susceptible to changes in the data distribution between training and test set.

CHAPTER 2. BACKGROUND 23

Weight decay augments the cost function into the form of

Creg = C + λR, (2.40)

where λ is the regularization rate that describes how heavily to penalize large weight

values and R is the regularize. The two most common regularizers are L2 regulariza-

tion in the form of

RL2 =
∑
i

w2
i (2.41)

and L1 regularization in the form of

RL1 =
∑
i

|wi|, (2.42)

where wi is an individual weight value. L2 regularization encourages weights to be

close to zero while L1 regularization encourages weights to be zero, which is a form

of feature selection. Lastly, early stopping of the optimization process is a method to

reduce the model capacity, which in turn reduces the chance of overfitting onto the

training set.

2.6.3 Convolutional Neural Networks

A convolutional neural network (CNN) named AlexNet [28] won the ImageNet Large

Scale Visual Recognition Challenge (ILSVRC) [39] in 2012, which popularized the

method of applying convolutional neural networks to image-based tasks. ImageNet [39]

is a dataset of over 14 million annotated images with more than 20,000 categories for

the image classification task; ILSVRC trims the list of categories to a non-overlapping

set of 1,000.

A convolutional neural network uses convolutional layers. Unlike fully connected

layers that require many parameters, convolutional layers share parameters within a

layer making them much more efficient. A convolutional layer uses a square matrix

called a convolutional kernel or filter, to extract features from square patches of the

image by performing an element-wise multiplication of the kernel with the extracted

patch and summing the results. The receptive field of the kernel is defined by its size,

and the output of a convolutional layer is called a set of features. Convolutional layers

use the kernel to process consecutive (possibly overlapping) patches of the image in

a “sliding window” fashion to extract features such as edges. The number of pixels

to skip between consecutive patches when performing the windowing is called the

CHAPTER 2. BACKGROUND 24

0 2

-1 -2

2 1 3

1 -1 0

-1 -2 2
* =

0 4 2 6

-2 -3 -7 -6

-1 -3 -2 -2

1 4 2 -4

-2 -1

2 0
×

-2 -1

2 0
×

Figure 2.3: Illustration of the convolution operation. The illustration depicts a 3× 3
input matrix being convolved with a 2 × 2 convolutional kernel to generate a 4 × 4
output matrix. The kernel is applied to each extracted patch of the input matrix in
a “sliding window” fashion. For each extracted patch, the kernel performs a “flip-
and-filter” operation. The flip operation refers to a double diagonal reflection of the
square matrix, which involves reflecting the matrix first over its main diagonal (from
the top-left to the bottom-right corner) and then over its secondary diagonal (from
the top-right to the bottom-left corner). The filter operation refers to an element-
wise multiplication of the flipped kernel with the extracted patch from the input
matrix and summing the results. Note that this is the mathematical definition of the
convolution operation. The convolution operation in convolutional layers of CNNs
only performs the filtering step.

stride of the kernel. Convolutional layers found in the earlier parts of the network

extract fine-grained features, while convolutional layers found in the later parts of the

network extract higher-level features (by aggregating lower-level features).

The element-wise multiplication and summation of the kernel with the extracted

patch of the image is referred to as the convolution operation. This operation, used

in mathematics, is shown in Figure 2.3, where there is an additional step of flipping

the kernel before performing the element-wise multiplication and summation.

However, it is important to note that convolutional layers in neural networks do

not perform convolutions in the strict mathematical sense. Instead, they only perform

the element-wise multiplication and summation step [19].

Convolutions are commutative and associative, so when applying two convolution

operations on an image, the order of the two operations does not matter. They are also

equivariant to translation, meaning that if the input is translated, then the output

of the convolution layer is shifted by the same amount. This is a useful property

because CNNs are used to recognize patterns in data and translational equivariance

implies that if the input pattern shifts, the response or prediction of the network also

shifts by the same amount.

CHAPTER 2. BACKGROUND 25

A desirable property of the convolutional neural network would be its ability to

remain unchanged or consistent when exposed to minor image transformations. To

obtain this property, a pooling layer is used to summarize the features extracted

from convolutions. The most common pooling layer summarizes the features by

aggregating the features and extracting the maximum value within the extracted

patch called max pooling.

The authors of AlexNet emphasized that the depth of the model was essential in its

performance. A higher-performing model called VGG [41] was introduced in 2014 with

19 layers, compared to the 8 layers used in AlexNet. However, deeper neural networks

were more difficult to train due to the vanishing gradient problem. To address this

problem, a CNN called ResNet [20] introduced the use of residual connections, also

known as skip connections, that allow previous layer outputs to be propagated to

later parts of the model. Directly propagating the outputs from previous layers to

subsequent layers reduces the chance of encountering zero gradients, which allowed

deeper neural networks to be trained. Residual connections have become a common

part of contemporary segmentation models.

Types of Convolutions

In current state-of-the-art computer vision methods, numerous improved variants

of the convolution operation are utilized. This section highlights the most relevant

variants employed in the domain of segmentation.

(a) Dilation Rate = 1 (b) Dilation Rate = 2 (c) Dilation Rate = 4

Figure 2.4: Convolutions with different dilation rates [45]. The number of parameters
is identical, but the receptive field grows exponentially as the number of parameters
increase linearly. (a) A dilation rate of one is equivalent to a normal convolution.
(b)(c) Display dilated convolutions with rates of two and four, respectively.

Dilated convolutions, also known as atrous convolutions, introduce an additional

CHAPTER 2. BACKGROUND 26

parameter called the dilation rate shown in Figure 2.4, which determines the spacing

between values in the kernel. By adjusting the dilation rate, the receptive field can

be increased while using fewer parameters, thereby improving the efficiency of the

network.

Regular and dilated convolutions both generate output maps smaller than the

input. In some cases, generating an output map larger than the input is necessary.

Transposed convolutions enable the creation of output maps larger than the input by

inserting additional rows and columns of zeros between each pixel of the input layer,

padding the image border with zero values, and then performing a regular convolution

with a stride of one over the modified input.

Another category of convolution is the separable convolution, of which there are

two main types. Spatially separable convolutions, also known as asymmetric convo-

lutions, decompose a 2D convolution into two 1D convolutions. In the first step, a

1D convolution is performed on the x-axis of the input. The second step performs

a 1D convolution on the y-axis of the input. The second type, depthwise separable

convolutions, are also performed in two steps. In the first step, a 2D convolution is

performed for each channel of the input. In the second step, a 1x1 convolution is

applied to the output of the previous operation. Separable convolutions significantly

reduce the number of multiplication operations, resulting in accelerated computation

time.

In extending convolutions from two-dimensional data to three-dimensional data,

point clouds (discussed in Section 2.2) are voxelized, as convolutions can only be

applied to ordered data. This allows us to apply 3D convolutions directly on the

voxel grid, which—when obtained from point clouds—also typically contain numerous

empty voxels. To leverage this sparsity, sparse convolutions are used, which allow

empty voxels to be discarded during computations to improve efficiency.

2.7 Summary

We began this chapter by exploring the merits and drawbacks of images and point

cloud data. Images capture dense photometric information, but can be degraded

by unfavourable lighting conditions; they also do not necessarily represent occluded

portions of a scene. In contrast, point clouds contain depth and geometric data and

exhibit greater resilience to lighting and occlusion issues. However, they are sparser

and prove more challenging to annotate.

Subsequently, we laid the groundwork for our fusion-based research by explaining

CHAPTER 2. BACKGROUND 27

various representations of image and point cloud data, alongside providing an intro-

duction to the essentials of 3D geometry. The section on projective geometry provided

details on the mathematics of the mapping between 3D points and 2D pixels.

Following the mathematical foundations, we shifted our focus to the problem

of scene understanding and described associated task metrics, with an emphasis on

semantic segmentation and instance segmentation. Finally, we provided a compre-

hensive review of the fundamentals of machine learning, that serves as a prerequisite

for understanding how recent related work has implemented cross-modal data fusion

in 3D scene understanding tasks.

Chapter 3

Related Work

This thesis explores the potential of fusing 2D semantic segmentation with 3D instance

segmentation models. In this chapter, we provide an overview of prior work on 2D-

semantic and 3D-instance segmentation, including their development, foundational

models and those used in the current study. We also review previous efforts to combine

models for each modality in the context of object detection, semantic segmentation,

and instance segmentation.

3.1 Semantic Segmentation in 2D

Early methods for semantic segmentation performed image classification on consecu-

tive sub-regions of the image using a “sliding window:” a small patch or window of

pixels was extracted from the image and then processed by a fully connected layer

to classify the centre pixel of the patch. The sliding window was then shifted and

another fully connected layer was used to classify the centre pixel of the newly ex-

tracted patch. This process was repeated for all pixels in the image. This approach,

however, was very computationally inefficient as each fully connected layer contained

its own set of parameters that needed to be learned. Additionally, fully connected

layers could only accept fixed-size inputs, so all images in the dataset were required

to be of the same size.

The fully convolutional network (FCN) [30] solves both the inefficiency problem

and the fixed-sized input problem by replacing the fully connected layers with con-

volutional layers. Convolutional layers do not restrict the input size and they use

shared parameters across all image patches, improving computational efficiency. The

performance of the FCN, however, is limited by the type of upsampling layer used

in the network. An upsampling layer is one that produces an output with a size

28

CHAPTER 3. RELATED WORK 29

greater than its input; a downsampling layer is one that produces an output that has

a smaller size than its input. The convolutional layer is a downsampling layer: the

FCN architecture uses multiple convolutional layers to extract useful image features,

downsampling the size of the input in the process. To produce a semantic prediction

for each pixel, the internal network representation must be upsampled back to the

same size as the input image, which the FCN architecture does through bilinear in-

terpolation in the upsampling layer to generate a semantic prediction map. Notably,

unlike convolutional layers, bilinear interpolation layers have no tunable parameters,

so the FCN architecture is unable to adjust any of the class predictions made by the

final layers of the network.

One of the foundational components of most modern semantic segmentation mod-

els is the UNet [37] architecture, a network based on the FCN design. It replaces

bilinear interpolation with transposed convolutions (described in Section 2.6.3) in the

upsampling step. This enables the model to adjust class predictions in the final stage

of the network. Multiple transposed convolutions are applied to increase the number

of tunable parameters in the upsampling stage, which boosts performance.

The ENet [35] model is based on the UNet architecture and is one of the two

semantic segmentation models selected for further investigation in this thesis. Its

main advantage is the emphasis on efficiency, which leads to fast training and high

inference speed. It does this by replacing regular convolutions with dilated convolu-

tions (described in Section 2.6.3) and by downsampling the input image more heavily,

using a smaller decoder, and performing pooling in parallel with the convolutional

layers.

Other important models used for semantic segmentation include ResUNet [46]

and the DeepLab [13, 10, 12, 11] family of models. ResUNet combines the strengths

of ResNet [20] and UNet [37] by introducing residual connections (discussed in Sec-

tion 2.6.3) within the downsampling layers of the network and between the down-

sampling and upsampling layers, enabling even deeper networks to be trained. The

DeepLab models are based on FCN and use dilated convolutions and depth-wise

separable convolutions (discussed in Section 2.6.3) to improve speed and accuracy.

Pri3D [23], which can use the ResUNet or DeepLabv3+ architecture as a feature

extractor, is the second semantic segmentation model chosen for investigation in this

thesis, primarily because it achieves state-of-the-art performance on the ScanNet [16]

dataset. It also has slightly higher performance and unlike the previously discussed

models, which only use 2D image data, it includes 3D priors in a pre-training stage

before fine-tuning on image data. In the pre-training stage, Pri3D trains the network

CHAPTER 3. RELATED WORK 30

!
(c)

Score
Net

NMS

ℙ (N points)

(a) Backbone Network

U-Net
× 3

× 3
& (coordinates)

' (colors) # × 1

× 3

Semantic
Branch

Offset
Branch

)

*

+,
-×1

& (coordinates)

� �

. (shifted coordinates)

cluster cluster

(b) Clustering Part

+/ +
�+, ∪ +/�

(M clusters)

*1

2Final Instance Predictions

× 3

Figure 3.1: Illustration of the PointGroup architecture [25]. The backbone network
extracts point features and predicts a semantic class and offset vector for each point.
The offset vectors are used to shift each point to its respective instance centroid. The
original point coordinates and shifted point coordinates are each separately grouped
into clusters. Each cluster is assigned a score measuring how confident the network is
that the cluster forms an object instance. Finally, low confidence clusters are removed
and the remaining clusters are output as the set of final instance predictions.

to output similar features for all pixels and voxels that correspond to the same point in

3D space. Correspondences between pixels and voxels are computed using perspective

geometry, a topic described in Section 2.4. After pre-training, the network is fine-

tuned on images only to perform semantic segmentation.

3.2 Instance Segmentation in 3D

Early 3D instance segmentation models were based on related object detectors and

operated by predicting bounding boxes and then predicting point-level masks for

instance segmentation. Modern approaches instead predict point-level instances di-

rectly through a ‘point grouping’ technique that leverages the void space between

objects to improve performance. PointGroup [25], whose architecture is shown in

Figure 3.1, originally introduced this grouping procedure. The architecture incorpo-

rates three main processing stages. The first stage uses a two-branch network based

on the 3D UNet [15] to extract point features and to predict an object class and offset

vector for each point. An offset vector is a three-dimensional vector with x, y and z

components. When the offset vector is added to the point coordinates, the point is

shifted towards its respective instance centroid. In the second stage, candidate object

instances are predicted by clustering the original point cloud and the offset-shifted

point cloud. The reason for applying clustering to both point clouds is that clustering

on the original cloud (only) tends to produce incorrect predictions: adjacent same-

class instances are often identified as a single instance. For example, if two cabinets

CHAPTER 3. RELATED WORK 31

(a) Original coordinates (b) Shifted coordinates (c) Point aggregation

fragment

absorbing

primary

(d) Set aggregation

Figure 3.2: Illustration of hierarchical aggregation [14], used to group points into
predicted object instances. (a) Original points in the point cloud. (b) Points are
shifted towards their predicted instance centroid. (c) Points in close proximity to
each other are joined into a single set. (d) Small sets of points are merged into
larger sets that have the same semantic class. Points with different colours belong to
different semantic classes. Black points belong to the background.

are next to each other, clustering on the original point cloud will often group both

cabinets together as a single instance. Clustering the offset-shifted point cloud im-

proves the chances of grouping each object separately because the offsets increase the

void space between adjacent objects (as shown in Figure 3.1). Conversely, the authors

of PointGroup choose to not only cluster on the offset-shifted point cloud because of

potential inaccuracies in the offset vectors. Any errors in the offset vectors may shift

points towards an incorrect instance centroid; points near object boundaries, which

are furthest from the instance centroid, are more susceptible to being shifted to an

incorrect instance. In the last stage, a UNet-based network called ScoreNet is used

to predict a confidence score for each candidate instance found in the previous stage.

Finally, the network determines the final instance predictions by removing duplicate

candidates that have low confidence scores.

HAIS [14] is a newer model that improves upon the PointGroup architecture by

modifying the clustering step. HAIS has two main stages. Like PointGroup, first

HAIS predicts an object class and offset vector for each point. In the second stage,

the authors introduce “hierarchical aggregation”, a novel method to cluster points into

final instance predictions. First, as shown in Figure 3.2(b), the points (referred to as

nodes by the authors) are shifted towards their predicted object centroids using the

offset vectors from the first stage. Distances between every pair of nodes are computed

and, as shown in Figure 3.2(c), an edge is formed between two nodes when the distance

between them is less than a threshold value. After performing this operation on all

CHAPTER 3. RELATED WORK 32

Semantic ground-truth

Semantic prediction

Instance predict w/o SoftGroup

Instance predict w/ SoftGroup

Cabinet Otherfurniture

Semantic
color map

Figure 3.3: Illustration of how soft grouping [43] of points (bottom right image) can
improve instance predictions compared to hard grouping (top right image). Hard
grouping refers to the clustering of points into instances such that each point is only
associated with a single semantic class. Soft grouping refers to clustering points into
instances such that each point is associated with multiple possible semantic classes.

pairs of nodes, the point cloud is separated into independent groups of connected

nodes. These groups can be interpreted as intermediate instance predictions. In the

final step of hierarchical aggregation, smaller groups of points are merged into the

closest large group with the same semantic class prediction, forming the final instance

predictions. This hierarchical approach produces more accurate segments and non-

overlapping instances. Hence, unlike the clustering approach of PointGroup, HAIS

does not require a third stage to remove duplicate candidate instances.

PointGroup and HAIS make ‘hard’ semantic segmentation predictions that force

each point to be associated with a single class after the first stage of processing. How-

ever, any errors in the hard semantic predictions propagate to the clustering stage and

may lead to false positives. SoftGroup [43], whose architecture is shown in Figure 3.4,

improves performance by introducing a ‘soft’ grouping module that associates each

point with multiple high-confidence classes instead of a single class. We choose Soft-

Group as the 3D instance segmentation model to investigate in this thesis because

CHAPTER 3. RELATED WORK 33

Instance
proposals Segmentation

Mask scoring

ClassificationSemantic
branch

Offset
branch

Soft
Grouping

Per-instance
feature extractor

Input
point

clouds
U-Net Tiny U-Net

Bottom-up grouping Top-down refinement

Final
instances

Figure 3.4: Illustration of the SoftGroup architecture [43]. A UNet extracts point
features and predicts semantic confidence scores and an offset vector for each point.
Then, for each semantic class, the soft grouping module generates candidate instances
by performing hierarchical aggregation on the subsets of points with confidence scores
higher than a threshold. Each candidate instance is a group of points predicted to
form an instance. Lastly, a tiny UNet is used to predict the semantic class, seg-
mentation mask, and mask confidence score for each candidate instance, forming the
final set of output instances. The segmentation mask is used to differentiate between
foreground (part of the instance) and background points in each candidate instance.

it achieves state-of-the-art performance on the ScanNet dataset [16]. SoftGroup has

three main stages, similar to HAIS. The first stage predicts semantic scores and offset

vectors for each point. In the second stage, the soft grouping module predicts can-

didate object instances based on these scores and vectors. For each semantic class,

the subsets of points with a semantic score greater than a specified threshold are

grouped using hierarchical aggregation. The overall set of candidate object instances

is the union of the candidate instances obtained from each semantic class. In the

final stage, a UNet-based module is used to refine the candidate instances by extract-

ing features and predicting the semantic class, segmentation mask (to differentiate

between foreground and background points) and mask confidence score for each can-

didate instance. Compared to PointGroup and HAIS, this soft grouping module,

combined with the UNet-based refinement module, provides a significant boost in

accuracy.

3.3 Cross-Modal Data Fusion for 3D Scene

Understanding

Prior work has focused on two main types of cross-modal data fusion: sequential

and joint. Sequential fusion involves training a model with 2D data in a separate

optimization step before using the 2D model in a 3D fusion pipeline. In contrast,

joint fusion entails training a model with 2D data and 3D data simultaneously within

CHAPTER 3. RELATED WORK 34

Sem. Seg

Point Painting

Point
Painting

2

1

2

Lidar
Detector

e.g.
Point-RCNN
PointPillars

etc

3

Figure 3.5: Illustration of the PointPainting method [42]. A 2D semantic segmenta-
tion model first generates semantic predictions from images. Then, each point in the
input point cloud is projected into one image and the associated pixel-level semantic
prediction is appended to the point. If the field of view of two cameras overlaps,
some points will project onto two images simultaneously. In this case, one of the two
semantic prediction vectors is randomly chosen. This ‘decorated’ point cloud can be
processed by any object detector.

a single optimization procedure.

For 3D object detection, sequential fusion has yielded improvements compared to

3D-only baselines. An example of sequential fusion is the PointPainting [42] method.

As illustrated in Figure 3.5, PointPainting [42] is a cross-modal data fusion method

that successfully improves the performance of 3D object detectors by fusing 2D data at

the input level of the detectors. Specifically, each point in the point cloud is projected

into an image that contains the point using Equation (2.15). Then, the associated

semantic-class prediction obtained from the output of a 2D semantic segmentation

network is appended to the point. The augmented (painted) point cloud can be

processed by any 3D object detector. PointPainting has successfully been applied to

the KITTI [18] and nuScenes [6] outdoor autonomous driving datasets. In general, the

worst-performing classes benefited the most from PointPainting augmentation, with

a few notable exceptions. The nuScenes traffic-cone class from the nuScenes dataset

showed the largest improvement, most likely because traffic cones often have very

few points associated with them, and so the additional information from semantic

segmentation is particularly useful. Trailers and construction vehicles showed smaller

gains, despite starting from a lower baseline because the segmentation network had

worse recall on these classes. These observations suggest that most gains with this

fusion technique are for classes where the 2D semantic segmentation network does

well compared to the 3D object detection network, and where points on the object

CHAPTER 3. RELATED WORK 35

are generally sparse.

Other variants of PointPainting, such as bounding box PointPainting [33] and

PointAugmenting [44] have also shown improvements compared to 3D-only object

detector baselines. In bounding box PointPainting, bounding box-level semantics are

concatenated with the point cloud, as opposed to the point-level semantics used in

regular PointPainting. PointAugmenting [44] further improves PointPainting results

by appending CNN features instead of 2D semantic predictions to the point cloud.

For 3D semantic segmentation, sequential fusion via a modified version of Point-

Painting has also improved the performance of 3D-only semantic segmentation. One

example is LIF-Seg [47], which not only appends 2D semantic predictions to the input

of its 3D semantic segmentation model, but also appends either a 1x1, 3x3 or 5x5

window of RGB values. These windows of RGB values are centred on the image pixel

that corresponds to the point in 3D space; they provide additional 2D contextual

information to the 3D semantic segmentation model. The LIF-Seg authors also ex-

plore incorporating fused 2D information at different locations within the 3D pipeline.

Specifically, they experiment with early-fusion—where the 2D data is added at the

input level of the 3D encoder,—and mid-fusion—where the 2D data is added at the

output level of the 3D encoder. Experimentally, using the nuScenes dataset, they

show that appending 2D semantic predictions with a 3x3 window of RGB values and

using mid-fusion provides the largest boost in performance relative to their 3D-only

baseline.

In 3D instance segmentation, one of the best-performing models that uses both 2D

and 3D data is 3D-SIS [22]. Unlike the sequential fusion strategy used by PointPaint-

ing, which trains a model on 2D data independently from 3D data, 3D-SIS jointly

trains with and fuses 2D and 3D data. Specifically, 2D features extracted from multi-

view images are back-projected into a voxel grid and concatenated with a voxel grid

of 3D features. Then, the fused 2D-3D features are used to predict object instances.

The training procedure optimizes the 2D and 3D feature networks simultaneously.

However, the performance of the overall model is inferior to that of leading 3D in-

stance segmentation models that solely rely on 3D data. The inferior performance

could be attributed to the less mature 2D feature extractor used by the model or that

joint fusion creates a more difficult optimization problem.

CHAPTER 3. RELATED WORK 36

3.4 Limitations

The predominant focus of prior research on 3D instance segmentation has been on

the use of point clouds, with only a minority of work incorporating both image and

point cloud data. Approaches solely reliant on point cloud data are constrained

by smaller 3D datasets than those that are able to integrate with larger scale 2D

datasets. Moreover, the sparse nature of point clouds makes segmentation more

difficult—incorporating dense image features should help to improve performance.

Results from experiments with PointPainting support this hypothesis. As described

above, when 2D data was included, classes of objects with smaller numbers of points,

such as traffic cones, experienced more significant performance boost than those with

larger numbers of points, such as trailers and construction vehicles.

Currently, 3D-SIS is the best-performing fusion-based 3D instance segmentation

model on the ScanNet dataset, although its performance is far below leading 3D-only

instance segmentation approaches. Unlike successful fusion methods in the fields

of object detection and semantic segmentation, which apply sequential fusion, 3D-

SIS jointly fuses 2D and 3D data simultaneously. This increases the complexity

of the optimization process, which may be the cause of the reduced performance.

Sequential fusion, as is done by PointPainting, facilitates the training of a model on

2D data independently from 3D data. Subsequently, the outputs of the 2D model are

integrated into the training pipeline of the 3D model, simplifying each optimization

procedure. This separation allows for the use of the highest-performing 2D network

with the highest-performing 3D network (as separate modules).

3.5 Summary

This chapter provided an overview of the state-of-the-art 2D semantic and 3D instance

segmentation models and summarized literature describing approaches that integrate

both modalities. Table 3.1 categorizes these methods.

Early 2D semantic segmentation models were significantly enhanced by the intro-

duction of convolutional neural networks. With further improvements, the influential

UNet architecture now serves as a foundational element of many contemporary seg-

mentation models. To integrate 2D information with 3D models, our work leverages

ENet, an efficient variant of UNet, and Pri3D, a network with state-of-the-art per-

formance on the ScanNet dataset.

For 3D data, there are various models for instance segmentation of point clouds,

CHAPTER 3. RELATED WORK 37

Image-based Methods Point Cloud-based Methods Fusion-based Methods

2D Semantic Segmentation 3D Instance Segmentation 3D Object Detection
FCN [30] PointGroup [25] PointPainting [42]
UNet [37] HAIS [14] Bounding Box PointPainting [33]
ENet [35] SoftGroup [43] PointAugmenting [44]
DeepLab [13, 10, 12, 11] 3D Semantic Segmentation
Pri3D [23] LIF-Seg [47]

3D Instance Segmentation
3D-SIS [22]
Ours

Table 3.1: Categorization of related work. Image-based methods use only 2D im-
age data. Point Cloud-based methods use only 3D point cloud data. Fusion-based
methods use both 2D image data and 3D point cloud data.

but most of the leading models use a point grouping method. SoftGroup has emerged

as one of the best-performing models in this class, and we use SoftGroup as the

baseline 3D instance segmentation model in our research. Lastly, we noted that prior

work on cross-modal 3D object detection and semantic segmentation has yielded

evidence suggesting that sequential fusion can improve 3D instance segmentation

performance. In the next chapter, we describe our own sequential fusion method that

incorporates 2D predictions from the ENet and Pri3D models into the SoftGroup

model.

Chapter 4

Methodology

This chapter describes our approach to fusing 2D semantic segmentation outputs

from ENet or Pri3D with the SoftGroup 3D instance segmentation model. We begin

by discussing ENet and Pri3D in more detail, including their loss functions and their

outputs. Then, we review several important aspects of SoftGroup, with a focus on the

loss function of the model. Lastly, we explain our cross-modal data fusion method.

4.1 Models for Semantic Segmentation in 2D

The usual goal of 2D semantic segmentation is to assign a class label to every image

pixel. However, in our fusion architecture, the 2D semantic segmentation network

extracts a feature vector for each pixel, which is then used by the 3D instance seg-

mentation model at a later stage. We call this vector an image-based fusion vector

and explore four different representations: features, logits, softmax scores or one-hot

encoded predictions obtained from the 2D semantic segmentation network. One fu-

sion vector is required per pixel, and while logits, softmax scores, and one-hot encoded

predictions have a one-to-one correspondence with image pixels, features do not. The

height and width of the extracted feature map are smaller than the height and width

of the image, so we use bilinear interpolation to generate an interpolated feature map

that has the same size as the image.

To determine the effects of 2D model accuracy on fusion results, we experiment

with two different models: a ‘lighter’ fusion architecture with moderate performance

and a ‘heavier’ architecture with state-of-the-art performance. For the lighter net-

work, we use ENet [35], which is a UNet-based architecture (discussed in Section 3.1)

that achieves 36.1 mIoU on the validation set of the ScanNet Frames 25k dataset [16]

(datasets are described in more detail in Section 5.1.1). The encoder of ENet uses

38

CHAPTER 4. METHODOLOGY 39

max-pooling, and regular, dilated and asymmetric convolutional layers, while the de-

coder uses regular and transposed convolutional layers. For the heavier network, we

use Pri3D [23], which is a ResUNet-based [46] architecture (discussed in Section 3.1)

that achieves 62.3 mIoU on the validation set of the ScanNet Frames 25k dataset.

The encoder of Pri3D is a standard ResNet and the decoder contains convolutional

layers and bilinear interpolation layers.

The loss function used to train both networks is the multi-class cross-entropy loss,

given by Equation (2.31), averaged across all pixels in the image. Other variants of

the cross-entropy loss function, such as the focal loss [29] function could also be used.

However, the multi-class cross-entropy loss is the most widely used loss function for

2D semantic segmentation and is also used by both original models, so we adopt it

for our training process. The loss function is

Lsemantic =
1

N

N∑
i=1

LCE(yi, ti), (4.1)

where N is the total number of pixels per image, yi is the one-hot encoded prediction

at pixel i, and ti is the one-hot encoded target class of pixel i.

4.2 A Model for Instance Segmentation in 3D

SoftGroup, our baseline 3D instance segmentation network, is one of the top-performing

models released to date, achieving 67.3 mAP50 (reproduced) on the ScanNet 3D in-

stance segmentation benchmark. The architecture is discussed in Section 3.2; here,

we describe the loss functions for multiple branches of the network: semantic, offset,

instance classification, instance segmentation, and instance mask scoring (shown in

Figure 3.4).

The combined loss function consists of five separate terms, one for each branch

of the network. The semantic branch computes semantic scores S = {s1, · · · , sN} ∈
RN×Nclass over all Nclass classes for each of the N points in the point cloud. The offset

branch computes offset vectors O = {o1, · · · ,oN} ∈ RN×3, where each vector has its

tail at a point and its tip at the predicted instance centroid. Cross-entropy loss from

Equation (2.31) and L1 loss from Equation (2.23) are used for the semantic and offset

branches, respectively. They are defined as

Lsemantic =
1

N

N∑
i=1

LCE(si, s
∗
i) (4.2)

CHAPTER 4. METHODOLOGY 40

and

Loffset =
1∑N

i=1 1{pi}

N∑
i=1

1{pi}LL1(oi,o
∗
i), (4.3)

where s∗ and o∗ are the semantic and offset labels respectively, and 1{pi} is an indicator

function that determines whether the point pi belongs to a specific instance.

The remaining three network branches (instance classification, instance segmenta-

tion and instance mask scoring) generate the final, predicted instances from candidate

ones. The instance classification branch computes semantic scoresC = {c1, · · · , cK} ∈
RK×Nclass+1 for each instance, where K is the number of instances. In addition to

the Nclass semantic classes, there is one additional ‘background’ class that is used

to account for unlabelled points in the dataset. The instance segmentation branch

predicts a mask within each candidate instance to determine whether each point

in the candidate is a foreground point (that belongs to the instance) or a back-

ground point (that does not belong). The mask scoring branch computes a score

E = {e1, · · · , eK} ∈ RK×Nclass that is an estimate of the IoU of each predicted mask,

compared against its ground-truth mask. The final confidence score for each instance

is computed by multiplying the mask score by the classification score. The classifica-

tion loss, mask loss and mask score loss use the cross entropy (from Equation (2.31)),

binary cross entropy (from Equation (2.29)) and L2 loss (from Equation (2.22)) func-

tions, which are

Lclass =
1

K

K∑
k=1

LCE(ck, c
∗
k), (4.4)

Lmask =
1∑K

k=1 1{mk}

K∑
k=1

1{mk}LBCE(mk,m
∗
k), (4.5)

and

Lmask score =
1∑K

k=1 1{rk}

K∑
k=1

1{rk}LL2(rk, r
∗
k). (4.6)

The values c∗, m∗, and r∗ are the classification, segmentation and mask score labels,

respectively. Here, K is the total number of candidates and 1{.} indicates whether a

specific candidate belongs to a ground-truth instance.

4.3 Cross-Modal Data Fusion

We now describe the two fusion architectures that we explore in this thesis. Each

architecture inserts the image-based fusion vectors at a different location in the 3D in-

CHAPTER 4. METHODOLOGY 41

Early-Fusion Architecture
Cross-Modal Data Fusion

3D Instance Segmentation Network

2D Semantic
Segmentation Network

Image-based Fusion Vector+xyz

Figure 4.1: Our early-fusion architecture. The architecture consists of three stages:
(1) 2D semantic segmentation to obtain an image-based fusion vector for each pixel.
This vector can either be an encoded feature or the segmentation prediction in the
form of class logits, softmax scores, or one-hot encodings. (2) Cross-modal data fusion,
appending the image-based fusion vector to each point. (3) 3D instance segmentation
on the decorated point cloud to produce the instance-segmented point cloud. The
segmented cloud is shown at the bottom of the figure.

stance segmentation pipeline. Additionally, we discuss our two matching algorithms—

an initial version and an improved version—that are used to match each point with

an image-based fusion vector.

We run our experiments with an early-fusion architecture (shown in Figure 4.1)

and a mid-fusion architecture (shown in Figure 4.2) to determine which fusion location

maximizes performance. In the early-fusion design, the image-based fusion vectors

CHAPTER 4. METHODOLOGY 42

Mid-Fusion Architecture

3D Instance Segmentation Network Decoder

Cross-Modal Data Fusion

2D Semantic
Segmentation Network

Image-Based Fusion Vector
+

3D Instance Segmentation
Network Encoder

Point-Based Vector

Figure 4.2: Our mid-fusion architecture. Similar to the early-fusion design, the mid-
fusion architecture consists of the same three stages: 2D semantic segmentation,
cross-modal data fusion, and 3D instance segmentation. However, in mid-fusion, the
image-based fusion vector is appended to the point cloud-based vector obtained from
the 3D encoder.

are integrated at the input stage of the 3D encoder by appending the fusion vectors

to the x, y, and z coordinates of the point cloud. Conversely, in the mid-fusion

architecture, these fusion vectors are inserted between the 3D encoder and decoder

by appending the fusion vectors to the point-based vectors (specifically, to the 3D

semantic segmentation logits before fusion) extracted from the 3D encoder. Then,

a feed-forward layer is used to process the concatenated vector to generate the 3D

semantic segmentation logits after fusion.

CHAPTER 4. METHODOLOGY 43

Algorithm 1 Multi-Frame PointPainting(L,D,F,E,K, s)

Inputs:
Point cloud L ∈ RN,3 with N points, where li ∈ R3.
Depth images D ∈ RM,W,H,1 with M images, where dj,u,v ∈ R.
Image-based fusion vectors FM,W,H,C with C channels, where f j,u,v ∈ RC .
Camera extrinsic parameter matrices E ∈ RM,4,4, where Ej ∈ R4,4.
Camera intrinsic parameter matrix K ∈ R3,4.
Image increment value s.

Output:
Decorated point cloud P ∈ RN,3+C , where pi ∈ R3+C .

1: for i = 0 to N − 1 do
2: for j = 0 to M − 1 incrementing every s indices do
3: u, v, d = PROJECT(li,Ej,K)
4: if u ∈ [0,W) and v ∈ [0, H) and |d− dj,u,v| ≤ 1 then
5: pi = CONCATENATE(li, f j,u,v)
6: break
7: end if
8: end for
9: end for

We use a modified version of the PointPainting algorithm to match an image-

based fusion vector to each point and adapt the algorithm to work on indoor 3D

datasets. The original PointPainting algorithm was designed for use with outdoor

autonomous vehicle datasets. In these datasets, it is common to have just one or

two images associated with each point cloud. This simplifies the matching process

because each point is only projected onto one or two images to determine a pixel-

fusion vector correspondence. Note that we use pixel correspondence and fusion

vector correspondence interchangeably here because, as we recall from Section 4.1,

there is a one-to-one correspondence between image pixels and image-based fusion

vectors. In contrast to outdoor 3D datasets, indoor 3D datasets generally use dense,

reconstructed point clouds, so thousands of images can be associated with each point

cloud.

Our initial adaptation of the PointPainting algorithm, called Multi-Frame Point-

Painting and described in Algorithm 1, accommodates a large number of image frames

by selecting the first matching image-based fusion vector for each point. The Multi-

Frame PointPainting algorithm has two stages. In the first stage, a point is pro-

jected into each image using Equation (2.15) and Equation (2.17) until the first pixel

correspondence for that point is found. A pixel correspondence is found when the

CHAPTER 4. METHODOLOGY 44

Algorithm 2 Guided Multi-Frame PointPainting(L,D,F,E,K, s)

Inputs:
Point cloud L ∈ RN,3 with N points, where li ∈ R3.
Depth images D ∈ RM,W,H,1 with M images, where dj,u,v ∈ R.
Image-based fusion prediction vectors FM,W,H,C with C channels, where f j,u,v ∈ RC .
Camera extrinsic parameter matrices E ∈ RM,4,4, where Ej ∈ R4,4.
Camera intrinsic parameter matrix K ∈ R3,4.
Image increment value s.

Output:
Decorated point cloud P ∈ RN,3+C , where pi ∈ R3+C .

1: for i = 0 to N − 1 do
2: prediction vector list = []
3: for j = 0 to M − 1 incrementing every s indices do
4: u, v, d = PROJECT(li,Ej,K)
5: if u ∈ [0,W) and v ∈ [0, H) and |d− dj,u,v| ≤ 1 then
6: prediction vector list.APPEND(f j,u,v)
7: end if
8: end for
9: class index = GET TOP PRED(prediction vector list)
10: f = SELECT VECTOR(prediction vector list, class index)
11: pi = CONCATENATE(li, f j,u,v)
12: end for

computed pixel coordinates lie within the image and the computed depth value is

within one millimetre of the ground-truth depth value (this last threshold is a tuning

parameter). Unlike the original PointPainting algorithm that only uses colour images,

our algorithm also uses depth images to improve matching accuracy. The ground-

truth depth value is obtained by indexing into the depth image at the computed

pixel coordinates. In the second stage, the image-based fusion vector associated with

the computed pixel coordinates is concatenated with the point. These two stages of

processing are repeated for all points in the point cloud.

The improved version of our algorithm, called Guided Multi-Frame PointPainting

and described in Algorithm 2, matches to each point a fusion vector that is associated

with the most frequently predicted semantic class across all matching fusion vectors.

The Guided Multi-Frame PointPainting algorithm has three stages of processing.

First, unlike Multi-Frame PointPainting, each point is projected into every image to

find all pixel correspondences for that point. In the second stage, the most frequently

predicted semantic class associated with each pixel correspondence is determined. In

CHAPTER 4. METHODOLOGY 45

the final stage, the first fusion vector that is associated with the most frequently

predicted semantic class is concatenated to the point.

The main advantage of Guided Multi-Frame PointPainting over the original Point-

Painting algorithm is that only a fusion vector associated with the most frequently

predicted semantic class from all correspondences is concatenated to each point. By

leveraging the information from multiple correspondences, this approach significantly

improves accuracy when matching fusion vectors to points. As we shall see in Chap-

ter 5, increasing the matching accuracy also improves the performance of 3D instance

segmentation post-fusion. The Guided Multi-Frame PointPainting algorithm also in-

cludes depth images as an additional input to further increase the accuracy of our

matching algorithms. For example, two points with different depth values measured

from the position of a depth camera (as computed by Equation (2.17)) can be pro-

jected to the same pixel coordinates (as computed by Equation (2.15)) when they

are intersected by the same ray projected from the camera. To disambiguate the cor-

rect point-to-pixel correspondence from the incorrect one, we incorporate a condition

in our algorithms to only select correspondences with projected depth values that

are within one millimetre of the ground-truth depth values obtained from the depth

image. Lastly, due to the vast number of images in the ScanNet dataset, we run

our algorithms on a subset of images by using an image increment value s. We skip

every ten images for Algorithm 1 and every three images for Algorithm 2 to reduce

computation time.

4.4 Summary

In this chapter, we described the 2D semantic segmentation models and the 3D in-

stance segmentation model that we extend and incorporate in our sequential fusion

framework. We also discussed how our sequential fusion approach has been adapted

for indoor 3D datasets. Initially, we delved into four possible representations of our

image-based fusion vector that are derived from the 2D semantic segmentation model.

Subsequently, we described our two selected 2D model architectures, namely ENet

and Pri3D, and their performance on the ScanNet Frames 25k dataset. Additionally,

we explained the loss functions employed by SoftGroup. Finally, we discussed the

design of our early-fusion and mid-fusion architectures and the two matching algo-

rithms used to select an image-based fusion vector to concatenate with each point or

point-based vector. In the next chapter, we explain how we evaluated our cross-modal

data fusion framework and present the results.

Chapter 5

Experiments

In this chapter, we discuss the datasets we use for training and evaluation, our evalua-

tion metrics, and the implementation details of our models. Subsequently, we discuss

the findings of our early-fusion experiments by evaluating performance with different

representations of the image-based fusion vector (i.e., a model-based output), as well

as fusing with non-model-based outputs. From the early-fusion experiments, we ana-

lyze the effect of sequential fusion on 3D semantic and on 3D instance segmentation.

We further analyze the relationship between post-fusion instance segmentation perfor-

mance and the accuracy of point-to-pixel correspondences, as well as the relationship

between post-fusion instance segmentation performance and the performance of the

2D semantic segmentation model. Then, we discuss the findings of our mid-fusion

experiments and compare them with the early-fusion experiments. Lastly, we perform

an ablation study comparing different masking augmentation strategies to determine

the effect on performance when certain parts of the input data are removed.

5.1 Experimental Settings

Two datasets were used to train our 3D instance segmentation network (i.e., Soft-

Group) and our 2D semantic segmentation networks (i.e., ENet and Pri3D). Below,

we describe these datasets, the evaluation metrics used for each task, and the hyper-

parameters used for each model.

5.1.1 ScanNet Dataset

In this thesis, we train and evaluate our 3D instance segmentation model using the

ScanNet dataset [16]. ScanNet is the largest indoor dataset that offers both anno-

46

CHAPTER 5. EXPERIMENTS 47

tated 2D and 3D data and is comprised of 2.5 million images from 1,513 RGB-D

scans, covering 80,000 m2 and encompassing 707 unique indoor scenes. In contrast,

similar datasets such 2D-3D-S [2] contain 70,000 images in approximately 1,400 scans,

covering 6,000 m2. The reconstructed point clouds in ScanNet are accompanied by

3D camera poses, surface reconstructions, and instance-level semantic segmentations.

The dataset is divided into a training, validation and test set, which consists of 1,201,

312, and 100 scans, respectively. The annotations include 18 labelled instance classes:

bathtub, bed, bookshelf, cabinet, chair, counter, curtain, desk, door, other furniture,

picture, refrigerator, shower curtain, sink, sofa, table, toilet, and window. The anno-

tations also include three background classes: floor, wall, and unannotated.

The substantial size of ScanNet was achieved through the development of its cus-

tom labelling pipeline designed for annotation efficiency. The process involved cap-

turing an RGB-D video sequence, uploading it to a cloud server, and reconstructing

it into a 3D mesh. Crucially, the 3D mesh is subdivided into small segments using

an over-segmentation algorithm to enable annotators to label each segment instead

of each point, which significantly improves labelling efficiency.

We train and evaluate our 2D semantic segmentation models using the ScanNet

Frames 25k dataset. ScanNet Frames 25k [16] comprises 25,000 images and corre-

sponding semantic labels extracted from the ScanNet dataset. These images were

obtained by selecting every 100th image from the complete set of ScanNet images.

5.1.2 Evaluation Metrics

Following previous work, we use the mean intersection over union (mIoU) evaluation

metric for 2D and 3D semantic segmentation, because it measures the amount of

overlap between predicted and ground-truth masks. We use mean average precision

based on a 50% IoU threshold (mAP50) as the evaluation metric for 3D instance

segmentation because it provides a single metric to measure the overall precision and

recall of the predictions. Section 2.5 provides the details for calculating these metrics.

5.1.3 Implementation Details

Our models are built using PyTorch [36] and we use hyperparameter values that are

similar to the values used by the authors of each respective model. All experiments

that train the 3D instance segmentation model, SoftGroup [43], are trained on two

Nvidia V100 GPUs and all experiments that train a 2D semantics segmentation model

(i.e., ENet [35] or Pri3D [23]) are trained on one Nvidia Quadro 8000 GPU.

CHAPTER 5. EXPERIMENTS 48

2D Semantic Segmentation Model - ENet. ENet is trained using a batch size

of two RGB-D images, resized to dimensions of [240, 320] (to reduce computational

load), for a total of 200 epochs with an initial learning rate set at 0.001. Adam is used

for optimization with beta parameters of {0.7, 0.999}. The learning rate scheduler

performs learning rate decay by applying a multiplicative factor of 0.1 on the learning

rate every 60 epochs. An L2 regularization factor of 0.0002 is used.

2D Semantic Segmentation Model - Pri3D. We employ the Pri3D model

variant that uses a ResNet50 encoder and initialize the model using pre-trained

weights encompassing view-invariant and geometric priors. Then, we fine-tune the

weights of the model by training the model on the ScanNet Frames 25k dataset.

For fine-tuning, we use a batch size of eight RGB images resized to dimensions of

[240, 320] for a total of 80 epochs with an initial learning rate set at 0.1. Stochastic

gradient descent is used for optimization with a momentum parameter of 0.9. The

learning rate scheduler performs learning rate decay by applying a polynomial decay

rate of 0.9 over the total number of epochs.

3D Instance Segmentation Model - SoftGroup. For all SoftGroup experi-

ments, we train the model using a batch size of eight for a total of 128 epochs with an

initial learning rate set at 0.002. The Adam optimizer is used with beta parameters

set to {0.9, 0.999}. After epoch 50, we use a cosine annealing learning rate schedule

that starts with the initial learning rate and then decreases it to a value of 1e−6
before increasing the learning rate back to its initial value.

5.2 Results from the Early-Fusion Experiments

We explain the findings of our early-fusion experiments in this section. We begin by

discussing our baselines and the initial tests of using ImageNet features extracted from

the ScanNet images to perform early-fusion. Next, we analyze the results of fusing

model-based outputs (i.e., the image-based fusion vectors) and the results of fusing

non-model-based outputs into SoftGroup. From these analyses, we discuss the im-

portance of the 2D semantic segmentation performance on post-fusion performance.

Lastly, we discuss the importance of point-to-pixel alignment on the post-fusion per-

formance that led us to design our Guided Multi-Frame PointPainting algorithm.

CHAPTER 5. EXPERIMENTS 49

Method First Conv Encoder mAP50 mIoU3D

SoftGroup (Repr) [43] F F 67.3 72.0
SoftGroup U F 68.0 -
SoftGroup U U 65.5 -

+ Sem. 2D Labels U F 75.0 -
+ Sem. 2D Labels U U 81.8 87.9

+ ImageNet Feats U F 67.1 -
+ ImageNet Feats U U 67.7 70.1

+ 3x3 RGB U U 64.9 -
+ 5x5 RGB U U 64.9 -
+ 3x3 RGBD U U 65.9 -
+ 5x5 RGBD U U 66.2 68.4

+ ENet Encodings U U 65.3 -
+ ENet Scores U U 66.4 70.5
+ ENet Logits U U 65.8 -
+ ENet Feats U U 66.0 -

+ Pri3D Encodings U U 63.9 -
+ Pri3D Scores U U 64.4 68.1
+ Pri3D Scores R R 57.3 -
+ Pri3D Logits U U 63.9 -
+ Pri3D Feats U U 63.7 -

Table 5.1: Early-fusion 3D instance segmentation results evaluated on ScanNet v2
validation set where values are bolded for the best performing experiment in each ex-
periment set. Repr is our reproduced SoftGroup trained from scratch using two V100
GPUs. F stands for frozen weights initialized with HAIS [14] pre-trained weights,
U stands for unfrozen weights initialized with HAIS pre-trained weights, and R
stands for unfrozen weights that are randomly initialized. The second column de-
notes whether the weights of the first convolutional layer of the model is frozen or
unfrozen. The third column denotes whether the weights of the rest of the SoftGroup
encoder, excluding the first convolutional layer of the encoder, is frozen or unfrozen.
Corresponding 3D semantic segmentation results are generated for the reproduced
baseline and the best-performing experiment for each experiment set. We observe
that, in general, higher semantic segmentation performance correlates with higher
instance segmentation performance.

5.2.1 Baselines

We generated three baselines to compare with the early-fusion experiments, as shown

in the first three rows of Table 5.1. SoftGroup was reproduced on our hardware

by following the original weight initialization procedure designed by the authors of

the model. Specifically, the weights of the SoftGroup encoder were initialized with

the weights of a pre-trained HAIS encoder. Then, those weights were frozen during

CHAPTER 5. EXPERIMENTS 50

training. Freezing of weights refers to the practice of fixing the parameters of the

model, which prevents them from being modified during the training process. This

proves valuable in preserving the acquired knowledge of a pre-trained model, such

as the pre-trained HAIS model. Unfrozen weights refer to parameters that can be

adjusted during the training process. Hence, the original SoftGroup training process

only adjusts the weights of the decoder. However, in early fusion, the input size of

each point in the point cloud is increased by the length of the image-based fusion

vector. Consequently, it is necessary to unfreeze either the SoftGroup encoder or, at

the very minimum, the input convolutional layer of the model to accommodate the

processing of the extra input channels. Therefore, we trained two additional baselines:

one that unfreezes the weights of the first convolutional layer while keeping the rest

of the encoder frozen and another baseline that unfreezes the weights of the entire

encoder, including the first convolutional layer.

We observed that for the original SoftGroup model, having a fully frozen encoder

significantly improved performance compared to using an unfrozen encoder during

training. Surprisingly, we also observed that unfreezing the first convolutional layer

while keeping the rest of the encoder frozen resulted in improved performance com-

pared to the original SoftGroup architecture that trained with a fully frozen encoder.

This suggests that the weights of the first layer in the neural network have a signifi-

cant impact on the overall performance. This is likely because the features extracted

from the first layer impact all subsequent layers in the network. Hence, in general,

it may be beneficial to unfreeze the first layer of an encoder when initializing with

pre-trained weights.

5.2.2 Fusing Model-Based Outputs

We conducted an initial test to assess the potential improvements of image-based

fusion into SoftGroup (see the third set of experiments in Table 5.1). We utilized

an off-the-shelf pre-trained UNet, trained on the ImageNet dataset, to generate per-

pixel features. These features were then appended to each point in the input point

cloud using Algorithm 1. The resulting augmented point cloud was used to train

SoftGroup on the ScanNet dataset. From this test, we observed that, in early fusion,

fully unfreezing the encoder yielded better performance than only unfreezing the first

input convolutional layer. This is likely because unfreezing the entire encoder provides

more model capacity that is necessary to process the additional image-based data.

Consequently, for the subsequent early-fusion experiments, all model weights were

CHAPTER 5. EXPERIMENTS 51

unfrozen during training. Additionally, we noticed a slight performance boost when

fusing with ImageNet-trained features compared to the reproduced baseline. This

promising result led us to hypothesize that using 2D model outputs trained on the

same dataset (i.e., ScanNet) instead of ImageNet would further enhance performance.

We found that the performance of the experiments that fused ENet or Pri3D out-

puts with SoftGroup surpassed the performance of the baseline with a fully unfrozen

encoder, but these experiments did not surpass its performance with a fully frozen

encoder. We also observed that for both ENet-fused and Pri3D-fused experiments,

“soft” information (i.e., semantic scores) yielded the highest post-fusion performance,

while “hard” information (i.e., one-hot encoded predictions) often yielded the lowest

post-fusion performance. Semantic scores are considered “soft” information because

the scores provide a probability distribution over all classes, allowing for uncertainty

in the predictions of the model. One-hot encoded predictions are considered “hard”

information because all values are set to zero except for one value that is set to one,

so these encodings do not provide any uncertainty information. Our finding that

soft information provides better performance than hard information aligns with the

findings outlined in the knowledge distillation paper by Hinton et al. [21]. Knowledge

distillation is a model compression technique where a smaller model is trained to

replicate the predictions of a larger model by training the smaller model to predict

the soft targets (i.e., the softmax scores) of the larger model. The authors found

that when the soft targets have high entropy, they provide much more information

compared to hard targets, so the smaller model can be trained on much less data

than the larger model and use a much higher learning rate. The SoftGroup paper

also demonstrates the prevailing trend that soft information is more effective than

hard for transferring information. As we recall from Section 3.2, the main innovation

achieved by SoftGroup, elevating its performance above HAIS, was its associatiation

of each point with multiple semantic classes instead of just a single one. This ap-

proach helped reduce the errors of semantic segmentation that would propagate to

instance segmentation predictions.

One more observation we made was that initializing the SoftGroup encoder with

the pre-trained HAIS encoder weights was crucial for performance. Comparing the

Pri3D scores experiments with randomly initialized weights versus pre-trained HAIS

weights in Table 5.1, we observed a significant drop in performance for the experiment

with randomly initialized weights. Both experiments had all model weights unfrozen

during training. This shows that even when weights are unfrozen during training,

the initialization of pre-trained weights significantly outperforms the initialization of

CHAPTER 5. EXPERIMENTS 52

random weights.

5.2.3 Fusing Non-Model-Based Outputs

(a) RGB Image (b) Depth Map

Figure 5.1: Example of an RGB image and depth map [7].

In addition to fusing with model-based outputs extracted from ENet or Pri3D, we

also explored the fusion of non-model-based outputs by following a method similar to

LIF-Seg. LIF-Seg [47], as discussed in Section 3.3, demonstrated successful improve-

ments in 3D semantic segmentation performance using the nuScenes outdoor dataset

by appending RGB values (i.e., non-model-based outputs) from the images to the

points directly. Following a similar approach, we conducted the experiments in Ta-

ble 5.1 using either a 3x3 or a 5x5 window of RGB or RGB-D values to determine the

effect on 3D instance segmentation performance using the ScanNet indoor dataset.

The RGB-D-fused experiments performed better than their RGB-fused counterparts,

which indicates that the additional depth value is useful for segmentation. Depth

information plays a valuable role in segmentation tasks due to the typically narrow

range of depth measurements across all pixels belonging to the same object. For

example, humans can intuitively discern objects based on a depth map, as illustrated

in Figure 5.1. Our experiments revealed that a 5x5 window yielded marginally bet-

ter performance than a 3x3 window. Similar to the ENet and Pri3D experiments,

the RGB-D-fused experiments surpassed the performance of the baseline with a fully

unfrozen encoder but had lower performance than with a fully frozen encoder.

There are a few potential reasons for the difficulty in gaining post-fusion improve-

ments in our experiments compared to the post-fusion improvements observed in prior

work. First, prior work evaluated cross-modal data fusion on outdoor datasets, which

tend to consist of sparse point clouds. As we recall from Section 3.3, the results from

CHAPTER 5. EXPERIMENTS 53

PointPainting had the largest improvement on classes which often had fewer points on

them, such as traffic cones. Therefore, dense image data can be more effectively uti-

lized to complement sparse point clouds. In contrast, we are using an indoor dataset

that consists of dense reconstructed point clouds, so the dense image data may not

have as large an impact on performance improvements. Second, prior work using vari-

ants of the PointPainting algorithm have primarily concentrated on tasks such as 3D

object detection and semantic segmentation. These tasks are of a higher-level nature

compared to the more detailed task of instance segmentation, making it potentially

more challenging to attain significant improvements after the fusion process. Last, in

prior work, the 2D semantic segmentation model demonstrated strong performance

compared to a 3D model with relatively weak performance. However, in our work,

the 3D instance segmentation model performs well and the 2D semantic segmentation

model does not perform notably better than the 3D model. Consequently, any en-

hancements in post-fusion performance may be relatively modest. The findings in the

PointPainting paper also indicated that after the fusion process, improvements were

less significant on classes where the 2D semantic segmentation model exhibited lower

recall, so the relative performance between the 2D and 3D model is an important

factor for post-fusion performance. In the following subsection, we further analyze

the class-wise metrics of the experiments and discuss two of the main factors that

affect post-fusion performance.

5.2.4 Main Factors that Impact Post-Fusion Performance

We compared the quality of predictions obtained from each 2D semantic segmentation

model to gain deeper insights into the modest improvements from the early-fusion

approach. The results of this comparison are showcased in Table 5.2. In the second

column of the table, we computed the 2D semantic segmentation performance of

each method. In the third column, we computed the 3D semantic segmentation

Method mIoU2D Projected mIoU3D

ENet 2D Preds 36.1 27.1
Pri3D 2D Preds 62.3 38.3
Sem. 2D Labels 100.0 61.9

Table 5.2: 2D semantic segmentation (mIoU) results evaluated on ScanNet Frames
25k validation set and 3D semantic segmentation results computed by back-projecting
the 2D predictions into 3D and directly computing the mIoU metrics.

CHAPTER 5. EXPERIMENTS 54

performance of each method if the 2D semantic segmentation predictions were back-

projected into 3D using Multi-Frame PointPainting. We made two key observations:

1. While Pri3D exhibited superior performance in semantic segmentation com-

pared to ENet (shown in Table 5.2), ENet-fused SoftGroup exhibited superior

performance in 3D instance segmentation compared to Pri3D-fused SoftGroup

(shown in Table 5.1). This outcome was unexpected and merited further inves-

tigation.

2. Comparing the second and third columns of Table 5.2, we observe that the mIoU

metric was significantly lower after the semantic segmentation predictions were

back-projected from 2D to 3D. This indicated inaccuracies in the point-to-pixel

matching algorithm when transitioning between the two modalities.

These two observations highlighted the need for a deeper analysis to understand the

factors influencing the performance of 3D instance segmentation after fusion.

C
H
A
P
T
E
R

5.
E
X
P
E
R
IM

E
N
T
S

55

Projection Source mIoU3D W
a
ll

F
lo
o
r

C
a
b
in
et

B
ed

C
h
a
ir

S
o
fa

T
a
b
le

D
o
o
r

W
in
d
ow

B
o
o
k
sh
el
f

P
ic
tu
re

C
o
u
n
te
r

D
es
k

C
u
rt
ai
n

R
ef
ri
g
er
a
to
r

S
.
C
u
rt
a
in

T
o
il
et

S
in
k

B
a
th
tu
b

O
th
er

F
u
rn
.

ENet 2D Preds 27.1 45.3 70.9 22.4 34.6 32.3 31.3 29.0 20.1 20.0 27.6 12.3 24.9 24.6 24.8 17.0 18.9 20.8 20.1 33.7 11.2
Pri3D 2D Preds 38.3 54.4 70.3 29.8 49.1 45.4 44.4 38.0 27.9 25.4 45.2 12.7 30.4 31.1 30.7 24.9 25.8 58.4 40.3 55.6 25.5
Sem. 2D Labels 61.9 63.4 79.0 58.8 69.5 66.4 71.3 66.4 49.0 45.0 57.3 35.2 62.7 59.7 52.7 57.7 65.4 71.6 63.3 75.3 67.8

Sem. Seg. Method mIoU3D

SoftGroup (Repr) [43] 72.0 85.3 95.0 64.7 80.1 89.2 78.7 74.6 63.9 65.4 76.9 31.1 65.3 67.6 72.4 59.9 71.1 91.8 63.9 85.1 59.0
+ ENet Logits 70.8 83.6 95.0 66.3 79.7 88.8 77.4 73.9 60.5 62.9 75.5 25.5 64.8 65.8 73.2 55.2 65.3 93.1 62.7 87.9 58.0
+ Pri3D Logits 68.7 83.0 94.6 58.9 80.1 88.8 75.2 73.3 59.5 59.6 77.1 30.2 56.6 62.4 67.7 52.8 69.5 88.5 62.7 80.7 53.1
+ Sem. 2D Labels 87.9 92.6 96.8 90.0 92.2 95.0 94.9 92.6 83.1 87.2 93.5 51.6 80.7 89.6 88.8 78.9 90.6 95.1 82.3 92.6 90.3

Inst. Seg. Method mAP50

SoftGroup (Repr) [43] 67.3 - - 60.0 77.2 84.6 69.5 75.9 53.8 52.7 67.7 57.4 35.5 58.9 52.8 74.7 73.8 100.0 68.6 86.6 62.1
+ ENet Logits 65.8 - - 62.2 74.5 85.8 71.0 77.7 52.0 50.0 52.7 48.6 37.1 60.8 54.7 66.2 74.9 100.0 69.4 86.9 59.3
+ Pri3D Logits 63.9 - - 57.1 79.8 83.3 67.3 74.6 49.2 50.1 60.9 51.3 30.1 52.5 61.4 60.5 68.1 99.8 65.8 85.4 52.3
+ Sem. 2D Labels 81.8 - - 79.8 95.1 86.8 83.6 91.9 61.2 74.8 78.6 57.0 75.7 85.5 70.5 87.5 95.8 100.0 76.6 94.1 77.3

Table 5.3: All results are evaluated on the ScanNetv2 validation set using early fusion and point-pixel matching is performed
using Multi-Frame PointPainting with a skipping strategy of ten frames. The first set of results is computed by back-projecting
2D semantic segmentation predictions or ground-truth labels into 3D and directly computing 3D semantic segmentation metrics.
The second set of experiments computes the 3D semantic segmentation metrics for the reproduced baseline and the experiments
which fuse the 2D logits or labels into the input point cloud. The last set of results computes the corresponding 3D instance
segmentation metrics for the same experiments as the second set of experiments. Bolded values represent the higher performing
metric compared between the ENet and Pri3D experiments for each of the three sets of results. In general, we observe that for
both aggregated and class-wise metrics, 3D instance segmentation improves when 3D semantic segmentation improves.

CHAPTER 5. EXPERIMENTS 56

Observation 1: Importance of 2D Semantic Segmentation Quality

Our initial investigation focused on understanding the relationship between 2D se-

mantic segmentation quality and its impact on post-fusion 3D instance segmentation.

In particular, from the first key observation, we wanted to understand why there was a

reversal in relative performance between ENet and Pri3D before and after fusing with

SoftGroup. We hypothesized that a small number of classes might have performed

much more poorly with Pri3D compared to ENet, resulting in a reduced aggregated

metric. To verify this hypothesis, we generated class-wise metrics in Table 5.3. The

first set of results gives the aggregated and class-wise metrics for 3D semantic segmen-

tation when the 2D predictions are back-projected into 3D. As with the aggregated

metric, we observe that most of the classes have higher scores for the predictions

from Pri3D than those from ENet. The second set of results shows the metrics for 3D

semantic segmentation after fusing ENet or Pri3D logits with SoftGroup. We observe

that ENet-fused SoftGroup outperforms Pri3D-fused SoftGroup across all classes, ex-

cept for the classes of bed, bookshelf, picture, and shower curtain. This contradicts

our initial hypothesis that a subset of classes within the Pri3D-fused SoftGroup pre-

dictions would perform notably worse than the ENet-fused SoftGroup predictions,

causing the overall metric for the Pri3D experiment to be lower than ENet.

We performed an additional experiment fusing 2D ground-truth semantic labels

with SoftGroup to gain further insights into the impact that 2D semantic segmenta-

tion quality has on post-fusion 3D instance segmentation performance. The results

are also presented in Table 5.3. We observed significant improvements across all

classes. Interestingly, although the back-projected ground-truth labels performed

worse pre-fusion (i.e., 61.9 mIoU) compared to the baseline SoftGroup (i.e., 72.0

mIoU), we observed a significant post-fusion improvement (i.e., 87.9 mIoU). This in-

dicates that the network learned additional relationships from the augmented input

and did not solely perform an identity function to replicate the predictions from the

back-projected ground-truth labels. This finding also suggests that fusing outputs

from higher-performing 2D semantic segmentation models would greatly enhance 3D

instance segmentation post-fusion.

We revise our initial hypothesis and propose that the relationship between the

quality of 2D semantic segmentation and the post-fusion performance of 3D instance

segmentation is generally proportional. However, when the 2D semantic segmentation

quality is slightly below the threshold that would begin enhancing instance segmen-

tation post-fusion, there can be a slight degradation in post-fusion performance. One

potential explanation for this phenomenon could be attributed to our early-fusion ar-

CHAPTER 5. EXPERIMENTS 57

Figure 5.2: From PointPainting [42]. The PointPainting dependency on segmentation
quality. The Painted PointPillars object detection performance, as measured by mean
average precision (mAP) on the nuScenes [6] validation split, is compared with respect
to the quality of the semantic segmentation network used in the painting step, as
measured by mean intersection over union (mIoU). The oracle uses the 3D bounding
boxes as semantic segmentation.

chitecture, wherein the entire model (including the encoder) remains unfrozen during

training. When the entire model is unfrozen during training, many parameters require

tuning. Consequently, in situations where the 2D and 3D models exhibit comparable

levels of performance, the model may face challenges in discerning which predictions

to favour with higher confidence and a larger number of adjustable parameters could

exacerbate this problem. Figure 5.2 from PointPainting [42] demonstrates a similar

trend where 3D object detection performance obtained from using early fusion gen-

erally increases as 2D semantic segmentation quality improves except for the middle

region of the graph. In the middle region, the authors of PointPainting also observe

that higher segmentation quality can slightly decrease performance post-fusion.

Observation 2: Importance of Point-to-Pixel Alignment

We began our investigation of the accuracy of point-to-pixel alignment by visualizing

the results of the correspondences found by the Multi-Frame PointPainting algorithm

(described in Algorithm 1) with a skip strategy of ten frames (shown in Figure 5.3).

Pixel correspondences with a correct semantic label are shown in light grey. Corre-

spondences with an incorrect semantic label are shown in black. Points that could

not find a pixel correspondence are shown in dark grey. In this visualization, 91.2% of

points are matched to pixel correspondences with a correct semantic label, 6.0% are

matched to pixel correspondences with an incorrect semantic label, and 2.8% could

not find a matching pixel correspondence. We observe that a majority of points

with incorrect semantic labels are situated along object boundaries, which would

CHAPTER 5. EXPERIMENTS 58

have a significant adverse effect on segmentation accuracy after fusion. Our proposed

Guided Multi-Frame PointPainting algorithm (described in Algorithm 2) with a skip-

ping strategy of three frames significantly reduces the number of incorrect semantic

labels. In this specific scene, using Guided Multi-Frame PointPainting with a skipping

strategy of three frames yielded the following results: 97.2% of pixel correspondences

exhibited the correct semantic label (an increase of 6.0%); 2.2% of correspondences

had an incorrect semantic label (a decrease of 3.8%); and only 0.6% of points failed

to find a pixel correspondence (a decrease of 2.2%).

CHAPTER 5. EXPERIMENTS 59

Figure 5.3: Visualization of the correspondences found using Multi-Frame Point-
Painting with a skipping strategy of ten frames. 91.2% of points are matched to
pixel correspondences with a correct semantic label (shown in light grey); 6.0% are
matched to pixel correspondences with an incorrect semantic label (shown in black);
and 2.8% could not find a matching pixel correspondence (shown in dark grey). Most
of the points with incorrect semantic labels are at object boundaries which can have
an adverse effect on segmentation. By using Guided Multi-Frame PointPainting with
a skipping strategy of ten frames, 94.8% of points have correct pixel correspondences,
2.4% have incorrect correspondences and 2.8% could not find a correspondence. By
using Guided Multi-Frame PointPainting with a skipping strategy of three frames,
97.2% of points have correct pixel correspondences, 2.2% have incorrect correspon-
dences and 0.6% could not find a correspondence.

C
H
A
P
T
E
R

5.
E
X
P
E
R
IM

E
N
T
S

60

Projection Source mIoU3D W
a
ll

F
lo
o
r

C
a
b
in
et

B
ed

C
h
a
ir

S
o
fa

T
a
b
le

D
o
o
r

W
in
d
ow

B
o
o
k
sh
el
f

P
ic
tu
re

C
o
u
n
te
r

D
es
k

C
u
rt
a
in

R
ef
ri
g
er
a
to
r

S
.
C
u
rt
a
in

T
o
il
et

S
in
k

B
a
th
tu
b

O
th
er

F
u
rn
.

ENet Preds (G3) 32.1 51.0 77.4 25.0 43.7 42.7 37.1 38.8 23.3 18.3 32.2 10.6 30.1 31.0 22.3 20.3 22.5 26.6 26.5 48.2 14.0
Pri3D Preds (G3) 43.7 58.4 77.0 34.5 56.0 57.3 50.4 48.4 30.3 22.1 46.1 7.5 38.7 38.6 26.7 29.5 30.2 71.9 45.9 69.5 34.6
Sem. 2D Labels (G3) 67.7 70.7 87.9 61.5 72.8 78.7 74.8 79.2 53.2 44.4 61.3 33.6 70.7 70.9 44.6 63.2 65.4 85.7 72.4 89.8 73.6

Sem. Seg. Method mIoU3D

SoftGroup (Repr) [43] 72.0 85.3 95.0 64.7 80.1 89.2 78.7 74.6 63.9 65.4 76.9 31.1 65.3 67.6 72.4 59.9 71.1 91.8 63.9 85.1 59.0
+ ENet Logits (G3) 70.1 83.5 94.9 61.3 79.3 88.4 77.0 70.5 59.0 64.1 76.6 29.7 62.9 63.5 76.3 53.8 71.5 92.3 61.6 82.9 53.3
+ Pri3D Logits (G3) 69.5 83.6 94.7 62.4 80.5 88.6 77.7 74.3 63.6 61.1 76.3 24.9 55.6 63.7 66.9 53.6 67.2 91.3 62.9 82.1 57.9
+ Sem. 2D Labels (G3) 90.9 94.2 97.6 91.9 94.0 96.6 95.6 94.8 84.3 86.7 94.2 67.1 87.7 92.5 88.3 89.8 94.3 96.5 85.5 94.5 92.3

Inst. Seg. Method mAP50

SoftGroup (Repr) [43] 67.3 - - 60.0 77.2 84.6 69.5 75.9 53.8 52.7 67.7 57.4 35.5 58.9 52.8 74.7 73.8 100.0 68.6 86.6 62.1
+ ENet Logits (G3) 66.3 - - 61.5 76.1 84.1 61.6 77.7 48.9 52.6 58.9 52.6 40.4 65.5 57.4 69.6 73.2 98.3 67.9 89.6 58.2
+ Pri3D Logits (G3) 64.9 - - 62.0 74.8 84.4 71.1 72.7 51.9 52.5 66.1 44.2 36.0 52.6 62.1 54.4 76.8 100.0 64.0 86.2 56.0
+ Sem. 2D Labels (G3) 84.2 - - 80.0 93.8 88.3 87.3 95.7 64.4 76.0 76.8 65.4 73.6 85.0 76.0 98.2 96.4 100.0 79.6 99.5 80.2

Table 5.4: All results are evaluated on the ScanNetv2 validation set using early fusion; point-to-pixel matching is performed
using Guided Multi-Frame PointPainting with a skipping strategy of three frames which is denoted by G3. The first set of results
is computed by back-projecting 2D semantic segmentation predictions or ground-truth labels into 3D and directly computing
3D semantic segmentation metrics. The second set of experiments computes the 3D semantic segmentation metrics for the
reproduced baseline and the experiments which fuse the 2D logits or labels into the input point cloud. The last set of results
computes the corresponding 3D instance segmentation metrics for the same experiments in the second set. Bolded values
represent metrics which are higher than the baseline.

CHAPTER 5. EXPERIMENTS 61

Method Input Conv Backbone mAP50

SoftGroup (Repr) [43] F F 67.3
SoftGroup U F 68.0
SoftGroup U U 65.5

+ ENet Logits F F 67.0
+ ENet Logits (G3) F F 67.3
+ Pri3D Logits F F 66.5
+ Pri3D Logits (G3) F F 67.1
+ Sem. 2D Labels F F 70.0
+ Sem. 2D Labels (G3) F F 71.2

Table 5.5: Mid-fusion 3D instance segmentation results evaluated on ScanNet v2
validation set. The mid-fusion method concatenates the 2D and 3D features after
the 3D encoder backbone and processes the concatenated 2D and 3D features with
a feedforward layer. G3 denotes point-pixel matching using Guided Multi-Frame
PointPainting while experiments with no suffix use Multi-Frame PointPainting. Repr
is our reproduced SoftGroup trained from scratch using two V100 GPUs. F stands
for frozen weights initialized with HAIS [14] pre-trained weights and U stands for
unfrozen weights initialized with HAIS pre-trained weights.

We demonstrate that Guided Multi-Frame PointPainting considerably enhances

the alignment between points and pixels. This improvement is evident when com-

paring the first set of experiments presented in Table 5.4 with the corresponding

experiments in Table 5.3. We also observe that the increase in alignment accuracy

has a positive impact on the fusion experiments, resulting in improvements across

all the instance segmentation results and most of the semantic segmentation results.

The best-performing ENet-fused SoftGroup experiment surpasses the baseline that

trains with a fully unfrozen encoder but even with the improvements, it still does not

outperform the baseline with a fully frozen encoder. This suggests that the frozen

pre-trained weights of the SoftGroup encoder obtained from the pre-trained HAIS

perform very well on the ScanNet dataset and should be retained if possible. In our

early-fusion experiments, we were unable to keep the encoder frozen because the ad-

dition of image-based fusion vectors necessitates changes to the input layer size of the

encoder. However, our mid-fusion approach appends the image-based fusion vectors

after the encoder, which allows us to keep the encoder weights frozen during training.

We discuss our mid-fusion experiments in the following section.

CHAPTER 5. EXPERIMENTS 62

5.3 Results from the Mid-Fusion Experiments

One notable observation from Table 5.1 is that training SoftGroup with a fully frozen

encoder outperforms training with a fully unfrozen encoder. This can be attributed to

the fact that the HAIS pre-trained weights are already highly optimized to produce

latent features beneficial for the instance segmentation task. However, in the case

of early-fusion, where an image-based fusion vector is appended to each point in

the input point cloud, the encoder needs to be unfrozen to process the additional

dimensions introduced by the fusion. To fully leverage the features generated by

the encoder without unfreezing the pre-trained weights, we explored the mid-fusion

approach by fusing the image-based fusion vectors at the output of the 3D encoder.

As mentioned in Chapter 4, this is achieved by concatenating the image-based fusion

vector with the pre-fusion 3D semantic segmentation logits produced by the frozen

3D encoder. Then, a feed-forward layer is used to process the concatenated features

into the post-fusion 3D semantic segmentation logits.

The instance segmentation metrics for the mid-fusion experiments are presented

in Table 5.5. Similar to early fusion, we observe that employing Guided Multi-Frame

PointPainting (denoted as G3) outperforms regular Multi-Frame PointPainting (de-

noted without a suffix). Additionally, the mid-fusion experiments with ENet and

Pri3D yield higher results than the early-fusion experiments. The best-performing

experiment using mid-fusion matches the performance of the frozen baseline of Soft-

Group.

C
H
A
P
T
E
R

5.
E
X
P
E
R
IM

E
N
T
S

63

Sem. Seg. Method mIoU3D W
a
ll

F
lo
o
r

C
a
b
in
et

B
ed

C
h
a
ir

S
o
fa

T
a
b
le

D
o
o
r

W
in
d
ow

B
o
o
k
sh
el
f

P
ic
tu
re

C
o
u
n
te
r

D
es
k

C
u
rt
a
in

R
ef
ri
g
er
a
to
r

S
.
C
u
rt
a
in

T
o
il
et

S
in
k

B
a
th
tu
b

O
th
er

F
u
rn
.

SoftGroup (Repr) [43] 72.0 85.3 95.0 64.7 80.1 89.2 78.7 74.6 63.9 65.4 76.9 31.1 65.3 67.6 72.4 59.9 71.1 91.8 63.9 85.1 59.0
+ ENet Logits (G3) 72.1 85.3 95.0 64.8 80.4 89.2 79.6 73.9 64.4 66.1 78.0 31.7 65.5 66.8 72.4 58.5 70.3 92.1 63.8 85.2 59.4
+ Pri3D Logits (G3) 72.6 85.2 94.9 66.0 80.3 89.7 80.7 74.7 64.2 65.6 78.7 31.8 64.5 68.0 71.9 60.4 72.3 93.1 64.8 84.7 60.2
+ Sem. 2D Labels (G3) 82.8 89.5 96.9 79.4 83.0 93.6 90.4 88.5 73.8 74.7 83.1 45.5 86.8 85.2 80.6 75.8 80.2 96.6 81.7 93.0 76.9

Inst. Seg. Method mAP50

SoftGroup (Repr) [43] 67.3 - - 60.0 77.2 84.6 69.5 75.9 53.8 52.7 67.7 57.4 35.5 58.9 52.8 74.7 73.8 100.0 68.6 86.6 62.1
+ ENet Logits (G3) 67.3 - - 62.6 74.4 83.8 68.4 77.5 52.5 52.8 63.9 57.6 39.4 56.4 54.1 74.1 75.3 100.0 70.0 86.6 62.5
+ Pri3D Logits (G3) 67.1 - - 63.0 73.0 83.9 67.7 76.2 51.7 54.0 65.9 59.2 37.1 56.0 51.9 74.7 73.4 100.0 71.0 86.7 62.2
+ Sem. 2D Labels (G3) 71.2 - - 67.5 76.9 84.3 69.5 80.2 53.5 57.0 68.8 60.2 46.1 61.8 52.6 79.2 92.4 100.0 77.0 87.8 67.2

Table 5.6: Class-wise mid-fusion results on semantic and instance segmentation. All results are evaluated on the ScanNetv2
validation set using mid-fusion; point-to-pixel matching is performed using Guided Multi-Frame PointPainting with a skip
strategy of three frames which is denoted by G3. The first set of experiments computes the 3D semantic segmentation metrics
for the reproduced baseline and the mid-fusion experiments. The second set of results computes the corresponding 3D instance
segmentation metrics for the same experiments in the first set. Bolded values are metrics that are higher than the baseline.

CHAPTER 5. EXPERIMENTS 64

Even though there was no enhancement in instance segmentation performance,

we remained curious about the potential for improved semantic segmentation per-

formance through mid-fusion. Initially, we conducted a statistical analysis on the

validation set to estimate the maximum performance enhancement for 3D semantic

segmentation using the mid-fusion approach. This statistical analysis compared the

accuracy of the 3D semantic segmentation predictions produced by the frozen 3D

encoder with those of the 2D semantic segmentation predictions back-projected into

3D space. We found that for 2D predictions extracted from ENet:

• 46.1% of points have the correct semantic class from both the back-projected

2D and the 3D predictions.

• 21.2% of points only have the correct semantic class from the 3D predictions.

• 1.9% of points only have the correct semantic class from the back-projected 2D

predictions.

• 30.7% of points have an incorrect semantic class from both back-projected 2D

and 3D predictions.

We found that for the 2D predictions extracted from Pri3D:

• 52.5% of points have the correct semantic class from both the back-projected

2D and the 3D predictions.

• 14.9% of points only have the correct semantic class from the 3D predictions.

• 2.1% of points only have the correct semantic class from the back-projected 2D

predictions.

• 30.5% of points have an incorrect semantic class from both back-projected 2D

and 3D predictions.

Therefore, if the network was able to retain all of the correct predictions from the 3D

encoder but also accept the correct 2D predictions when the 3D predictions are incor-

rect, then the maximum semantic segmentation performance boost from mid-fusion

would be approximately 2%. We present the class-wise 3D semantic and instance seg-

mentation metrics for the top-performing mid-fusion experiments in Table 5.6. Based

on these results, while there is no improvement in instance segmentation performance

through mid-fusion, semantic segmentation performance exhibits enhancements of

+0.1 mIoU with ENet and +0.6 with Pri3D.

CHAPTER 5. EXPERIMENTS 65

Input Encoder mAP50

XYZRGB [43] F 67.3
XYZ F 46.2
RGB F 25.3
Channel Masking F 66.9
Point Masking F 66.3

XYZRGB U 65.5
XYZ U 66.1
RGB U 27.8
Channel Masking U 66.2
Point Masking U 65.5

Table 5.7: Masking augmentation comparison with 3D instance segmentation results
evaluated on ScanNet v2 validation set using the SoftGroup model. F stands for
frozen weights initialized with HAIS [14] pre-trained weights and U stands for un-
frozen weights initialized with HAIS pre-trained weights. Channel masking refers to a
50% probability of masking either XYZ or RGB channels with equal probability (i.e.
50% XYZRGB, 25% XYZ, 25% RGB). Point masking refers to a 20% probability of
masking the entire point (i.e. 80% XYZRGB, 20% 000000).

5.4 Ablation Study from Masking Augmentation

Experiments

In this final section, we conduct an ablation study to assess the importance of ge-

ometry information compared to colour information for 3D instance segmentation

performance. In Table 5.7, we present a comparison based on training SoftGroup

with two input channel configurations: one utilizing exclusively the XYZ channels

(with RGB values set to zero) and the other using only the RGB channels (with

XYZ values set to zero). During the data preprocessing stage, RGB values undergo a

transformation to bring them to a scale spanning from -1 to 1, while the XYZ points

are normalized by the mean of all the points within the point cloud. Consequently,

when the RGB values are set to zero, this action is analogous to positioning them at

the midpoint of their range, while setting the XYZ points to zero equates to setting

them to the mean of the points. This analysis allows us to determine the contribution

of each component towards downstream performance.

We observe that using only XYZ channels contributes nearly double the perfor-

mance (i.e., 46.2 mAP50) compared to using only RGB channels (i.e., 25.3 mAP50)

when the encoder is frozen. Surprisingly, when the 3D encoder is unfrozen, using

only XYZ channels (i.e., 66.1 mAP50) surpasses using both XYZ and RGB channels

CHAPTER 5. EXPERIMENTS 66

together (i.e. 65.5 mAP50). This implies that in the context of the 3D instance seg-

mentation task, raw RGB values might be viewed as less reliable and more susceptible

to noise compared to the geometric information derived from the XYZ channels. The

susceptibility to variations in RGB values under different lighting conditions could

be a contributing factor. Relying exclusively on geometric information could offer a

more distinguishing input for segmenting distinct objects, particularly in cases where

the shapes of object classes exhibit significant differences, such as distinguishing be-

tween a table and a chair. Conversely, colour information may prove advantageous

in segmenting between object classes that possess similar shapes but have different

colours, such as discriminating between a window and a picture frame.

We also conducted experiments involving two types of input masking to assess

whether different masking augmentations could enhance the robustness and general-

izability of the SoftGroup model. These results are also presented in Table 5.7. In

channel masking, for each input point cloud, we randomly assigned a 50% chance of

using the full XYZRGB channels, a 25% chance of only using XYZ channels, and a

25% chance of only using RGB values. In point masking, we introduced a probability

of masking 20% of the points in the point cloud with zero values, while retaining

the full XYZRGB channels for the remaining 80% of points. The motivation be-

hind channel masking and point masking was to expose the model to examples with

reduced feature dimensions or fewer points, thereby encouraging the model to maxi-

mize feature extraction from the given input data. We observed that channel masking

outperformed point masking. However, although it outperformed all other ablation

experiments when the encoder was unfrozen, it did not surpass the performance of

the baseline SoftGroup model when the encoder was frozen.

5.5 Summary

This chapter described our experimental settings and the findings from our early-

fusion, mid-fusion and masking augmentation experiments. We analyzed our early-

fusion experiments, which fused different representations of the image-based fusion

vectors into SoftGroup, and found that fusing with soft information (i.e., softmax

scores) provided higher post-fusion performance than fusing with hard information

(i.e. one-hot encoded predictions). From these early-fusion experiments, we observed

that initializing the weights of the 3D encoder with pre-trained weights provided much

higher performance compared to randomly initialized weights. We also observed that

fusing with non-model-based inputs such as RGB and RGB-D values can improve

CHAPTER 5. EXPERIMENTS 67

performance compared to the unfrozen SoftGroup baseline. In particular, we found

that the additional depth value from RGB-D images provided a significant boost in

performance compared to only using RGB values. Subsequently, we explored the

importance of 2D semantic segmentation quality on post-fusion 3D instance segmen-

tation performance. In general, we found that, except for a middle region, post-fusion

3D instance segmentation performance improves as 2D semantic segmentation quality

increases. Then, we discussed the importance of point-to-pixel alignment accuracy

on post-fusion performance. We described how our Guided Multi-Frame PointPaint-

ing algorithm significantly improved the alignment accuracy of correspondences and

showed that the increased accuracy resulted in improved post-fusion performance.

We observed that training SoftGroup with a fully frozen encoder led to superior

results than training it with a fully unfrozen encoder. This observation motivated us

to explore our mid-fusion approach, which allowed the model to preserve the frozen

weights of the encoder, unlike the early-fusion approach. The mid-fusion experi-

ments consistently outperformed their early-fusion counterparts. Notably, among the

mid-fusion experiments, Pri3D-fused SoftGroup achieved the highest 3D instance seg-

mentation performance. However, it still only matched the 3D instance segmentation

performance of the baseline model equipped with a fully frozen encoder. Nonethe-

less, our investigation revealed that Pri3D-fused SoftGroup, employing the mid-fusion

approach, improved post-fusion 3D semantic segmentation and surpassed the 3D se-

mantic segmentation performance of the baseline model with a fully frozen encoder

by 0.6 mIoU. We also conducted a statistical analysis to estimate the upper limit of

performance enhancement achievable in post-fusion semantic segmentation through

the mid-fusion approach. This statistic can serve as a valuable reference for future

research employing our approach by helping to assess the potential effectiveness of

the fusion method.

We also conducted an ablation study by selectively masking either the XYZ or

RGB input channels to assess the impact of each set of channels on performance.

We found that the XYZ channels contributed significantly more to the 3D instance

segmentation performance compared to the RGB channels. This is likely attributed

to the sensitivity of RGB values to varying lighting conditions, potentially introducing

noise that adversely affects the performance of the model. We proposed that XYZ

data is important for objects with different shapes, while RGB data is valuable for

objects with similar shapes but different colours. In the final chapter, we will discuss

our contributions, the limitations of our approach and the potential improvements.

Chapter 6

Conclusion

Reconstructed point clouds are valuable for encoding geometric information without

occlusions, but they tend to be sparse and expensive to annotate. Images are easier

to label and provide dense colour information, but they suffer from incomplete single-

view information. These characteristics motivated us to propose a method for fusing

image-based information from indoor scenes into a 3D instance segmentation model

to further enhance the performance of the model.

6.1 Contributions

Throughout our study, we explored two key aspects: where to fuse the image-based

information—its location—and what information to fuse—its type. For fusion lo-

cation, we investigated the effects of early fusion at the input of the 3D encoder

and mid-fusion at the output of the 3D encoder. In terms of types, we considered

windowed RGB/RGB-D values, ImageNet features and outputs from 2D semantic

segmentation models such as features, logits, scores, and one-hot encoded predic-

tions. Furthermore, we conducted experiments utilizing Multi-Frame PointPainting

and enhanced the alignment accuracy of point-to-pixel correspondences by introduc-

ing Guided Multi-Frame PointPainting. Finally, we compared the significance of XYZ

values versus RGB values for the 3D instance segmentation task. By exploring these

various aspects, we aimed to leverage the strengths of both point clouds and images

and investigate their fusion for improved performance in 3D instance segmentation.

The primary contribution of this work lies in the application of sequential fusion

for 3D instance segmentation specifically tailored for indoor scenes. Previous works

have primarily concentrated on simpler tasks such as object detection or semantic seg-

mentation. Moreover, prior research has mainly focused on outdoor datasets, which

68

CHAPTER 6. CONCLUSION 69

often exhibit one-to-one or few-to-one correspondences between pixels and points. We

introduced Guided Multi-Frame PointPainting, a novel approach that enhances point-

to-pixel matching, particularly in scenarios involving many-to-one correspondences,

a situation more prevalent with 3D indoor datasets than outdoor ones.

Our study yielded several key findings. First, we discovered that soft information,

such as softmax scores, provided stronger performance in post-fusion results than hard

information, such as one-hot encoded predictions. This is because softmax scores with

higher entropy contain more information for the model to interpret. Additionally,

images are susceptible to lighting conditions, so having a measure of confidence in

the form of softmax scores was essential to maximize performance.

Second, we found that the choice of fusion location had an impact on perfor-

mance. Mid-fusion yielded better results than early fusion and, even though instance

segmentation did not improve, semantic segmentation showed improvements after us-

ing the mid-fusion approach. However, early fusion performed better when fusing

ground-truth labels, so it remains inconclusive which fusion location is superior when

more advanced 2D semantic segmentation models become available in the future. We

also provided a method to compute an estimated maximum performance boost using

mid-fusion that can be useful for future work to determine the potential gains of this

fusion method.

Third, we determined that geometry data contributed significantly more to 3D

instance segmentation performance compared to colour data. Our hypothesis is that

geometry information serves as a stronger discriminator than colour information when

object classes have distinct shapes, which is often the case. However, colour informa-

tion can be valuable in specific scenarios where object classes share the same shape.

Nonetheless, such cases are generally uncommon in the ScanNet dataset [16], so im-

provements from image-based information were limited.

Lastly, we established that high-quality 2D semantic segmentation and accurate

point-to-pixel alignment are crucial factors for the success of this sequential fusion

method. Our results demonstrated that post-fusion results improved with more

precise alignment. Furthermore, while high-quality 2D semantic segmentation (i.e.,

ground truth labels) led to significant improvements in post-fusion results, having a

stronger 2D semantic segmentation model (i.e., Pri3D) did not outperform a weaker

2D semantic model (i.e., ENet). We propose the hypothesis that if the 2D semantic

segmentation model has a comparable level of performance to the 3D instance segmen-

tation model, the fusion-based training process could face difficulties in determining

which model predictions to prioritize.

CHAPTER 6. CONCLUSION 70

6.2 Limitations and Potential Improvements

Previous research, such as PointPainting [42], demonstrated successful enhancements

to 3D object detection models by using sequential fusion evaluated on outdoor datasets.

Image-based fusion with 3D models may work better for outdoor datasets because

outdoor datasets tend to consist of point cloud frames that are sparse, so they can

fully benefit from the dense image features. In contrast, indoor datasets tend to use

reconstructed point cloud maps much denser than point cloud frames and so the per-

formance enhancements from fusing with dense image features may be limited. This

hypothesis is supported by the fact that PointPainting [42] improved most for classes

that often have few points on them.

The sequential fusion method proposed in this thesis was also limited by the

performance of the 2D semantic segmentation model relative to the performance of

the 3D instance segmentation model. Despite Pri3D being one of the state-of-the-

art models for 2D semantic segmentation on the ScanNet benchmark, it did not

provide significant post-fusion improvements. In contrast, fusing with ground-truth

labels yielded substantial improvements, highlighting the potential for future higher-

performing 2D semantic segmentation models to enhance post-fusion results using

this method.

Lastly, the accuracy of point-to-pixel alignment also limited the effectiveness of

this fusion approach. In future work, we suggest investigating joint training of a model

on 2D and 3D data for 3D instance segmentation in indoor scenes. Although joint

fusion requires a more complex optimization process, joint fusion would allow the

network to predict an alignment offset vector. The predicted alignment offset vector

could be used to improve the point-to-pixel alignment, thereby improving downstream

fusion performance. Nonetheless, given the many-to-one correspondences between

pixels and points in indoor datasets, joint fusion is likely to incur higher computational

costs than sequential fusion. Consequently, computational considerations must be

factored in when pursuing this approach.

Bibliography

[1] Iro Armeni et al. “3D Semantic Parsing of Large-Scale Indoor Spaces”. In:

Conference on Computer Vision and Pattern Recognition. 2016, pp. 1534–1543.

[2] Iro Armeni et al. “Joint 2D-3D-Semantic Data for Indoor Scene Understand-

ing”. In: arXiv preprint arXiv:1702.01105 (2017).

[3] Timothy D. Barfoot. State Estimation for Robotics. Cambridge University Press,

2017.

[4] Jens Behley et al. “SemanticKITTI: A Dataset for Semantic Scene Understand-

ing of LiDAR Sequences”. In: International Conference on Computer Vision.

2019, pp. 9297–9307.

[5] Serge Beucher. “Use of Watersheds in Contour Detection”. In: International

Workshop on Image Processing. 1979, pp. 17–21.

[6] Holger Caesar et al. “nuScenes: A Multimodal Dataset for Autonomous Driv-

ing”. In: Conference on Computer Vision and Pattern Recognition. 2020, pp. 11618–

11628.

[7] Jun Cen et al. “SAD: Segment Any RGBD”. In: arXiv preprint arXiv:2305.14207

(2023).

[8] Soravit Changpinyo et al. “Conceptual 12M: Pushing Web-Scale Image-Text

Pre-Training To Recognize Long-Tail Visual Concepts”. In: Conference on Com-

puter Vision and Pattern Recognition. 2021, pp. 3558–3568.

[9] R. Qi Charles et al. “PointNet: Deep Learning on Point Sets for 3D Classi-

fication and Segmentation”. In: Conference on Computer Vision and Pattern

Recognition. 2017, pp. 77–85.

[10] Liang-Chieh Chen et al. “DeepLab: Semantic Image Segmentation with Deep

Convolutional Nets, Atrous Convolution, and Fully Connected CRFs”. In: IEEE

Transactions on Pattern Analysis and Machine Intelligence 40.4 (2017), pp. 834–

848.

71

BIBLIOGRAPHY 72

[11] Liang-Chieh Chen et al. “Encoder-Decoder with Atrous Separable Convolution

for Semantic Image Segmentation”. In: European Conference on Computer Vi-

sion. 2018, pp. 801–818.

[12] Liang-Chieh Chen et al. “Rethinking Atrous Convolution for Semantic Image

Segmentation”. In: arXiv preprint arXiv:1706.05587 (2017).

[13] Liang-Chieh Chen et al. “Semantic Image Segmentation with Deep Convolu-

tional Nets and Fully Connected CRFs”. In: International Conference on Learn-

ing Representations. 2015.

[14] Shaoyu Chen et al. “Hierarchical Aggregation for 3D Instance Segmentation”.

In: International Conference on Computer Vision. 2021, pp. 15467–15476.

[15] Özgün Çiçek et al. “3D U-Net: Learning Dense Volumetric Segmentation from

Sparse Annotation”. In: Medical Image Computing and Computer-Assisted In-

tervention. 2016, pp. 424–432.

[16] Angela Dai et al. “ScanNet: Richly-Annotated 3D Reconstructions of Indoor

Scenes”. In: Conference on Computer Vision and Pattern Recognition. 2017,

pp. 2432–2443.

[17] Mihir Garmella and Prathik Naidu. “Beyond the Pixel Plane: Sensing and

Learning in 3D”. In: The Gradient (2018).

[18] Andreas Geiger, Philip Lenz, and Raquel Urtasun. “Are We Ready for Au-

tonomous Driving? The KITTI Vision Benchmark Suite”. In: Conference on

Computer Vision and Pattern Recognition. 2012, pp. 3354–3361.

[19] Roger Grosse. University of Toronto CSC321 Lectures. 2017.

[20] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: Con-

ference on Computer Vision and Pattern Recognition. 2016, pp. 770–778.

[21] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. “Distilling the Knowledge in a

Neural Network”. In: arXiv preprint arXiv:1503.02531 (2015).

[22] Ji Hou, Angela Dai, and Matthias Nießner. “3D-SIS: 3D Semantic Instance Seg-

mentation of RGB-D Scans”. In: Conference on Computer Vision and Pattern

Recognition. 2019, pp. 4421–4430.

[23] Ji Hou et al. “Pri3D: Can 3D Priors Help 2D Representation Learning?” In:

International Conference on Computer Vision. 2021, pp. 5693–5702.

BIBLIOGRAPHY 73

[24] Tengteng Huang et al. “EPNet: Enhancing Point Features with Image Semantics

for 3D Object Detection”. In: European Conference on Computer Vision. 2020,

pp. 35–52.

[25] Li Jiang et al. “PointGroup: Dual-Set Point Grouping for 3D Instance Segmen-

tation”. In: Conference on Computer Vision and Pattern Recognition. 2020,

pp. 4866–4875.

[26] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Opti-

mization”. In: arXiv preprint arXiv:1503.02531 (2017).

[27] Alexander Kirillov et al. “Segment Anything”. In: arXiv preprint arXiv:2304.02643

(2023).

[28] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet Classi-

fication with Deep Convolutional Neural Networks”. In: Advances in Neural

Information Processing Systems. Vol. 25. 2012.

[29] Tsung-Yi Lin et al. “Focal Loss for Dense Object Detection”. In: International

Conference on Computer Vision. 2017, pp. 2980–2988.

[30] Jonathan Long, Evan Shelhamer, and Trevor Darrell. “Fully Convolutional Net-

works for Semantic Segmentation”. In: Conference on Computer Vision and

Pattern Recognition. 2015, pp. 3431–3440.

[31] J. MacQueen. “Some Methods for Classification and Analysis of Multivariate

Observations”. In: Proceedings of the Fifth Berkeley Symposium on Mathemat-

ical Statistics and Probability, Volume 1: Statistics. Vol. 5.1. 1967, pp. 281–298.

[32] Anas Mahmoud, Jordan S. K. Hu, and Steven L. Waslander. “Dense Voxel

Fusion for 3D Object Detection”. In: Winter Conference on Applications of

Computer Vision. 2023, pp. 663–672.

[33] Anas Mahmoud and Steven L. Waslander. “Sequential Fusion via Bounding

Box and Motion PointPainting for 3D Objection Detection”. In: Conference on

Robots and Vision. 2021, pp. 9–16.

[34] Edwin G. Ng et al. “Understanding Guided Image Captioning Performance

across Domains”. In: Conference on Computational Natural Language Learning.

2021, pp. 183–193.

[35] Adam Paszke et al. “ENet: A Deep Neural Network Architecture for Real-Time

Semantic Segmentation”. In: arXiv preprint arXiv:1606.02147 (2016).

BIBLIOGRAPHY 74

[36] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep

Learning Library”. In: Conference on Neural Information Processing Systems.

Vol. 32. 2019.

[37] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-Net: Convolutional

Networks for Biomedical Image Segmentation”. In: International Conference

on Medical Image Computing and Computer Assisted Intervention. Vol. 9351.

2015, pp. 234–241.

[38] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. “Learn-

ing Representations by Back-Propagating Errors”. In: Nature 323.6088 (1986),

pp. 533–536.

[39] Olga Russakovsky et al. “ImageNet Large Scale Visual Recognition Challenge”.

In: International Journal of Computer Vision 115 (2015), pp. 211–252.

[40] Piyush Sharma et al. “Conceptual Captions: A Cleaned, Hypernymed, Image

Alt-text Dataset For Automatic Image Captioning”. In: Association for Com-

putational Linguistics. 2018, pp. 2556–2565.

[41] Karen Simonyan and Andrew Zisserman. “Very Deep Convolutional Networks

for Large-Scale Image Recognition”. In: International Conference on Learning

Representations. 2015.

[42] Sourabh Vora et al. “PointPainting: Sequential Fusion for 3D Object Detec-

tion”. In: Conference on Computer Vision and Pattern Recognition. 2020, pp. 4603–

4611.

[43] Thang Vu et al. “SoftGroup for 3D Instance Segmentation on Point Clouds”.

In: Conference on Computer Vision and Pattern Recognition. 2022, pp. 2708–

2717.

[44] Chunwei Wang et al. “PointAugmenting: Cross-Modal Augmentation for 3D

Object Detection”. In: Conference on Computer Vision and Pattern Recogni-

tion. 2021, pp. 11789–11798.

[45] Fisher Yu and Vladlen Koltun. “Multi-Scale Context Aggregation by Dilated

Convolutions”. In: International Conference on Learning Representations. 2016.

[46] Zhengxin Zhang, Qingjie Liu, and Yunhong Wang. “Road Extraction by Deep

Residual U-Net”. In: IEEE Geoscience and Remote Sensing Letters 15.5 (2018),

pp. 749–753.

[47] Lin Zhao et al. “LIF-Seg: LiDAR and Camera Image Fusion for 3D LiDAR

Semantic Segmentation”. In: IEEE Transactions on Multimedia (2023).

	Introduction
	About Segmentation
	Motivation
	Contributions

	Background
	Contrasting Images with Point Clouds
	Representations for 2D and 3D Data
	Three-Dimensional Geometry
	Projective Geometry
	Tasks and Metrics for Scene Understanding
	Learning Algorithms
	Machine Learning Fundamentals
	Neural Networks and Deep Learning
	Convolutional Neural Networks

	Summary

	Related Work
	Semantic Segmentation in 2D
	Instance Segmentation in 3D
	Cross-Modal Data Fusion for 3D Scene Understanding
	Limitations
	Summary

	Methodology
	Models for Semantic Segmentation in 2D
	A Model for Instance Segmentation in 3D
	Cross-Modal Data Fusion
	Summary

	Experiments
	Experimental Settings
	ScanNet Dataset
	Evaluation Metrics
	Implementation Details

	Results from the Early-Fusion Experiments
	Baselines
	Fusing Model-Based Outputs
	Fusing Non-Model-Based Outputs
	Main Factors that Impact Post-Fusion Performance

	Results from the Mid-Fusion Experiments
	Ablation Study from Masking Augmentation Experiments
	Summary

	Conclusion
	Contributions
	Limitations and Potential Improvements

	Bibliography

