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In many modern autonomy applications, robots are required to operate safely and reliably within complex

environments, alongside other dynamic agents such as humans. To meet these requirements, localization al-

gorithms for robots and humans must be developed that can maintain accurate pose estimates, despite being

subjected to a range of adverse operating conditions. Further, the development of self-localization algorithms

that enable mobile agents to maintain an estimate of their own pose is particularly important for improved

autonomy. At the heart of self-localization is egomotion estimation, which is the process of determining the mo-

tion of a mobile agent over time using a stream of body-mounted sensor measurements. Body-mounted sensors

such as cameras and inertial measurement units are self-contained, lightweight, and inexpensive, making them

ideal candidates for self-localization. Traditional approaches to egomotion estimation are based on handcra�ed

models that achieve a high degree of accuracy while operating under a range of nominal conditions, but are

prone to failure when the assumptions no longer hold. In this dissertation, we investigate how data-driven,

or learned, models can be leveraged within the egomotion estimation pipeline to improve upon existing clas-

sical approaches. In particular, we develop a number of hybrid and end-to-end systems for inertial and visual

egomotion estimation. �e hybrid systems replace bri�le components of classical egomotion estimators with

data-driven models, while the end-to-end systems solely use neural networks that are trained to directly map

from sensor data to egomotion predictions. We employ these data-driven systems for self-localization in pedes-

trian navigation, urban driving, and unmanned aerial vehicle applications. In these domains, we benchmark our

systems on several real-world datasets, including a pedestrian navigation dataset that we collected at the Uni-

versity of Toronto. Our experiments demonstrate that, in challenging environments where classical estimation

frameworks fail, data-driven systems are viable candidates for maintaining self-localization accuracy.
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Epigraph

I have approximate answers, and possible beliefs,
and di�erent degrees of certainty about di�erent
things, but I’m not absolutely sure of anything.

Richard P. Feynman
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Notation

a : Non-bold, non-capitalized symbols are real scalars.
a : Bold, non-capitalized symbols are real column vectors.
A : Bold, capitalized symbols are real matrices.
In : An n× n identity matrix.

0n×m : An n × m matrix of zeros. �e subscript is optional as the dimensionality can o�en be
inferred from context.

1n×m : An n×m matrix of ones.
N (µ,R) : Normally distributed random variable with mean vector µ and covariance matrix R.

E [·] : �e expectation operator.
F−→a : A reference frame in three dimensions.
pcba : A vector from point b to point c (denoted by the superscript) and expressed in F−→a (denoted

by the subscript).
Rab : �e 3× 3 rotation matrix that transforms vectors from F−→b to F−→a.
Tab : �e 4× 4 transformation matrix that transforms homogeneous points from F−→b to F−→a.
(·)∧ : An operator associated with the Lie algebra for rotations and poses. It produces a matrix

from a column vector.
(·)∨ : �e inverse operation of (·)∧.

˙(·) : �e time derivative of a scalar, vector, or matrix.
a⊕ b : A composition operator that represents the addition operator for vectors and the product

operator for rotations.
a� b : �e Hadamard (or element-wise) product, �, is used for element-wise multiplication be-

tween two vectors or matrices.
π(·) : �e pinhole camera projection model that maps a 3D point to its 2D pixel coordinate

within an image. See Equation (2.75) for its de�nition and Equation (2.76) for the inverse
projection model, π−1(·).

viii



Chapter 1

Introduction

You step into the Road, and if you don’t keep
your feet, there is no knowing where you might
be swept o� to.

J.R.R. Tolkien

Localization—the process of determining the pose (i.e., the position and orientation) of a robot or other mov-
ing body relative to a �xed external reference frame—is fundamental to mobile autonomy. Robust localization is
essential for safe and reliable navigation, a key requirement for the wide-scale deployment of autonomous robots
in the near future and beyond (Cadena et al., 2016). In many situations, mobile robots must operate alongside
other dynamic agents, such as humans, in complex environments. For these applications, algorithms for reliable
localization of robots and humans will play a critical role in e�cient and safe mobile autonomy solutions.

Self-localization is the ability of a robot to maintain an estimate of its own pose. A fundamental part of self-
localization is egomotion estimation. Egomotion, or the motion of a body relative to its surrounding environment,
is typically estimated with respect to a �xed origin, using measurements from sensors mounted on the body.1 By
relying only on a set of self-contained sensors, egomotion estimation does not require the presence of external
infrastructure. �is form of relative pose estimation is particularly useful when global navigation aids, such as
global navigation satellite system (GNSS) signals, are unavailable (e.g., when indoors, underground, or some-
times when travelling through urban areas). Furthermore, egomotion estimation is a fundamental component
of simultaneous localization and mapping (SLAM) systems (Durrant-Whyte and Bailey, 2006).

Among the sensors that are available for egomotion estimation, inertial measurement units (IMUs) and cam-
eras are popular choices; they are inexpensive, lightweight, and capable of producing six degree-of-freedom
(DOF) pose estimates. Body-mounted (or strapdown) inertial sensors provide speci�c force and angular velocity
measurements, which can be integrated over time through a process known as dead reckoning to update the
body pose relative to a previously known pose. Egomotion estimation through (inertial) dead reckoning is a
localization strategy for human (i.e., pedestrian) navigation (Hou and Bergmann, 2020). Visual egomotion esti-
mation (i.e., visual odometry), alternatively, is a well-known self-localization strategy used by a wide variety of
autonomous systems (Aqel et al., 2016). Cameras are able to capture a rich visual representation of the environ-
ment at a high frame rate. Egomotion estimation is usually performed by detecting environmental landmarks in
each camera image frame (i.e., visual features) and tracking the landmarks between frames. �e joint estimation

1Herein, we use the term ‘body’ generically to represent any mobile agent, such as a vehicle, robot, or human.
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2 Chapter 1. Introduction

of environmental landmark positions and camera motion de�nes the structure from motion (SfM) problem that
appears frequently in computer vision literature; an optimal batch solution can be obtained using the bundle
adjustment algorithm (Triggs et al., 1999).

Inertial and visual sensors can also be employed together in systems where data are fused online for im-
proved egomotion estimation (Gui et al., 2015). Such visual-inertial systems have a number of advantages due
to the complementary nature of the sensors. Visual measurements mitigate the signi�cant error build-up that
occurs during IMU-based dead reckoning, while the IMU measurements help maintain accuracy during periods
when vision is degraded. Furthermore, the availability of metric information (i.e., distances relative to a known
reference) in the IMU measurements allows for the true scale of the camera motion (and scene geometry) to
be recovered. Without the inclusion of IMU measurements, (monocular) vision-only systems are only able to
determine egomotion up to an unknown scale.

Algorithms for inertial, visual, and visual-inertial egomotion estimation are traditionally based on �ltering
or optimization frameworks that produce a probabilistic estimate of the relevant system state from a stream
of (noisy) sensor measurements (Gui et al., 2015). �e state estimate, at minimum, includes the body pose,
but may also incorporate other useful quantities such as the body velocity and certain sensor parameters (e.g.,
calibration values). Traditional algorithms all rely on modelling assumptions to make the estimation problem
tractable. Although these simpli�cations are reasonable when operating under ‘nominal’ conditions, there is
an increasing need to deploy navigation systems in more challenging se�ings. Within these more complex
environments (e.g., involving dynamic objects, poor illumination conditions, or sensors being subjected to rapid
motions), assumptions may fail to hold, resulting in a failure to maintain an accurate state estimate over time.

�is thesis investigates how data-driven, or learned, models can improve the robustness and accuracy of
inertial and visual egomotion estimation algorithms. Herein, we identify key failure modes of classical systems
and determine how we can augment or replace these bri�le components with robust, data-driven alternatives.
We develop and examine a number of self-localization algorithms based on inertial and visual egomotion es-
timation and demonstrate their utility (in both indoor and outdoor environments) for applications including
human and robot localization.

1.1 Background and Motivation

Navigation, the �eld of study that focuses on the process of monitoring and controlling the movement of a
body from one place to another, is a foundational part of mobility and mobile autonomous systems (Farrell,
2008). Being deeply rooted in seafaring2, advances in navigation were initially motivated by the need to safely
and accurately traverse large bodies of water, facilitating exploration and trade across the globe, and were tied
to the tools and technologies available to navigators. �ese tools were generally developed to determine one’s
position relative to other known locations of interest. As early as the ��h millennium BCE, Indigenous seafarers
of the Paci�c Northwest travelling in dugout canoes used the coastline as a visual reference for self-localization.
With the expansion of seafaring, spurred on by exploration and trade, more advanced tools for self-localization,
including the astrolabe, compass, and marine chronometer, were designed. By the 20th century, techniques
developed in the aviation industry led this �eld of navigation, with humans in the loop, to a point of maturity.
�e advent of space exploration—and the need for accurate navigation of unmanned systems—motivated the
development of self-navigation techniques, which apply self-localization algorithms to track the state of a body
(e.g., a rocket). A noteworthy example is the Kalman �lter (Kalman, 1960), which, among other applications,

2Navigation stems from the Latin word navigare, meaning to sail, go by sea, steer a ship, which in turn comes from navis, or ship.



1.1. Background and Motivation 3

was used to estimate the trajectory of the Apollo 11 Command Module on its journey to and from the Moon in
1969 (McGee, 1985). In recent years, modern sensing advances have been made in the domains of aviation, space
exploration, and robotics. Notably, global navigation satellite systems (GNSS) have been deployed by several
countries, enabling absolute positioning worldwide in many situations. A GNSS receiver is now a standard
instrument for navigation.

�e coverage provided by absolute positioning aids, however, is not ubiquitous (in space or time). For exam-
ple, systems such as GNSS are prone to experiencing periods of ‘dropout’ within urban canyons, inside buildings,
or when moving underground or underwater. During dropout, the current position (or pose) of a body can be
estimated through dead reckoning. Dead reckoning is a form of egomotion estimation that uses estimates of
velocity and orientation over time to extrapolate changes in position (or pose) relative to a previously known po-
sition. Modern dead reckoning typically relies on an inertial navigation system (INS) for egomotion estimation.
�e physical INS consists of an IMU that incorporates three orthogonally mounted accelerometers (produc-
ing speci�c force readings) and three orthogonally mounted gyroscopes (producing angular velocity readings).
�ese measurements are integrated through time (Woodman, 2007): orientation updates are produced via direct
integration of the angular velocity measurements; position updates are produced via double integration of the
speci�c force terms that have been transformed to the (gravity-aligned) world reference frame. Alignment rela-
tive to gravity is determined through the orientation estimate and is necessary to remove the e�ect of the Earth’s
gravity from the accelerometer measurements. An important characteristic of modern INSs is their ability to
provide pose updates at a very high rate, usually between 100 Hz and 1,000 Hz.

Recent advancements in micro electro-mechanical systems (MEMS) technology have led to the availability
of low-cost, lightweight IMUs, which are well suited for self-localization across a broad range of applications and
environments. �ese low-cost IMUs, however, are subject to a high degree of noise and sensor dri�. Continuous
integration of the measurement noise results in position estimates that accumulate a position error that grows
cubically with time (Skog et al., 2010b). Notably, this build-up of error can lead to navigation failure within a
ma�er of seconds. To mitigate error growth, the INS must incorporate data from other measurement sources,
in a process known as ‘aiding,’ whereby the state (positioning) estimate is constrained more precisely.

1.1.1 Aided Inertial Navigation

�e process of correcting the inertial state estimate by incorporating measurements from additional sensors
is called aided inertial navigation. Aiding is required to maintain accuracy over long periods of time or long
distances. GNSS-aided navigation has been well studied (Farrell, 2008). As previously discussed, however, GNSS
measurements are subject to dropout indoors and within urban environments (among others). Many localization
systems, instead, rely on a suite of sensors that may include cameras, radars, lidars, and wheel encoders. All of
these measurements are available for aided inertial navigation.

To use these measurements to improve the localization (or state) estimate, the relationship between each
sensor measurement and the state variables of interest (e.g., position, velocity, or orientation) must be accurately
modelled. For direct measurements of global position from GNSS, for example, this mapping is trivial. For other
modalities, however, the relationship between raw sensor data and the state variables may be challenging to
model. For example, in vision-aided navigation, modelling the entire distribution of possible sensor readings as
a function of the state (i.e., position in the world) is not feasible. Instead, simplifying assumptions are necessary
to make the problem tractable. In the case of visual aiding, speci�cally, simpli�cations are made by incorporating
a front-end preprocessing stage that identi�es and extracts features from images to reduce the dimensionality
of the measurements. Features are stable environmental landmarks that have a consistent appearance when
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Table 1.1: Comparison of some key characteristics of classical and learned visual and inertial egomotion estimation methods.

Characteristic Classical Models Learned Models

Required Domain Knowledge High — models must be carefully cra�ed using
domain knowledge Low — models are learned from data

Number ofModelling Assumptions High Low

Number of Tunable Parameters Many test-time parameters that a�ect
performance Few at test-time1

Flexibility Low — constrained by modelling assumptions High

Generalization Capability High — but additional parameter tuning required Low — with potential to improve

Accuracy High — when modelling assumptions hold Moderate — with potential to improve

1 Learned models do have many hyperparameters that require manual tuning, but these only need to be determined prior to training. �e
resulting model, properly trained, requires li�le to no parameter tuning at test-time.

viewed under limited camera perspective changes. By observing the same features in multiple (nearby) images,
feature correspondences can be determined and applied for egomotion estimation (Aqel et al., 2016).

Measurement models must be carefully cra�ed in order to faithfully represent the relationship between
sensor outputs and the states in question. �ese ‘handcra�ed’ models have a number of downsides. First, they
require a signi�cant amount of domain knowledge to create. Second, being sensor- and application-speci�c,
handcra�ed models o�en employ a number of tuning parameters whose values must be properly selected for
the model to operate reliably under di�erent conditions. �ird, the number of simplifying assumptions used
within these models can result in bri�le behaviour, where localization is accurate under nominal conditions
but prone to failure when the assumptions are violated, sometimes even only slightly. �ese limitations must
be addressed in order for egomotion estimation to be a viable form of self-localization in modern applications,
where algorithms must be robust to failure in a wide operating range.

1.1.2 Data-Driven Egomotion Estimation

�e emergence of deep learning (Goodfellow et al., 2016) has resulted in a surge of data-driven systems being
proposed for a range of applications. In the �eld of computer vision, for example, deep learning has improved
the state of the art in a number of tasks such as image-based object classi�cation and detection (Voulodimos
et al., 2018). Inspired by these recent successes, a nascent application involves the use of deep learning within
visual and inertial localization pipelines. Work in this area generally falls within one of two broad categories:
end-to-end systems that involve the complete replacement of the localization system with one or more neural
networks, or hybrid systems that merge data-driven models with existing localization pipeline components.

End-to-end learned systems for localization obviate the need for carefully designed (handcra�ed) models.
Instead, neural networks parameterize a direct mapping from sensor to state, and are trained (through super-
vised or self-supervised learning) to minimize a loss function across a training dataset. Recently, end-to-end
systems have been proposed for camera relocalization (Kendall et al., 2015), SLAM (Teed and Deng, 2021), and
visual (Wang et al., 2017), inertial (Chen et al., 2018), and visual-inertial (Clark et al., 2017) egomotion estimation.
Table 1.1 lists a number of key characteristics that di�erentiate these end-to-end systems from their classical
counterparts. Notably, end-to-end systems require less domain knowledge to build, rely on fewer modelling
assumptions, and have fewer tunable parameters in general. Importantly, owing to the large modelling capacity
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of neural networks (i.e., the ability to �t a wide variety of functions), the �exibility of end-to-end systems is
superior: neural networks can be trained to model highly complex relationships that do not have known analyt-
ical solutions. Accordingly, there is a strong motivation to utilize these networks within robust self-localization
algorithms. �ere are, however, some limitations that have prevented their widespread deployment. Namely,
under nominal operating conditions where classical modelling assumptions do hold, end-to-end systems gener-
ally have been unable to match the accuracy of classical approaches. In addition, generalization to new data (i.e.,
environments) beyond the initial training distribution continues to be an outstanding issue for neural networks.

Alternatively, hybrid systems augment (rather than replace) classical estimators with learned components.
For example, as part of the visual egomotion estimation pipeline, Yang et al. (2020) couple a learned depth
estimator with an optimization-based back-end; Peretroukhin et al. (2017) incorporate a learned model to esti-
mate illumination direction and limit orientation dri�; and Clement and Kelly (2018) and Tomasi et al. (2021) use
learned models within the front-end of their visual localization pipelines to improve image quality. By combining
learning with classical techniques, these hybrid algorithms aim to retain the interpretability and transferability
of traditional estimation frameworks while leveraging the capacity and �exibility of data-driven models to im-
prove accuracy and robustness. We draw inspiration from the success of these hybrid approaches and follow a
similar strategy of preserving well-modelled classical components while replacing the bri�le components with
learned models.

1.2 �esis Contributions

Herein, we investigate how data-driven models can be incorporated into classical egomotion estimation pipelines
to improve their overall performance. By leveraging the capacity and �exibility of learned models, our goal is
to design robust egomotion estimators that are accurate under a wide range of challenging conditions where
classical systems fail. Figure 1.1 depicts the general structure of the systems described in this thesis. We focus on
self-localization for two key navigation applications: pedestrian navigation and autonomous vehicle navigation.
Our approach is based on the aided inertial navigation paradigm. We present two data-driven models: a learned
zero-velocity update model for aided pedestrian navigation (Foxlin, 2005) and a learned egomotion measurement
model for self-localization of autonomous vehicles. Finally, we describe a novel visual-inertial estimator that
uses our learned egomotion measurement model for aiding. We place an emphasis on self-supervised learning
techniques, which facilitate lifelong learning by allowing our models to be retrained as new data is acquired.
Our contributions are summarized below:

1. Robust zero-velocity detection for foot-mounted inertial navigation
�e zero-velocity-aided INS is a well-studied and popular solution for IMU-based pedestrian navigation
(Foxlin, 2005; Nilsson and Handel, 2014). During bipedal locomotion, a foot-mounted IMU repeatedly
passes through a stationary phase, at which point the pose estimation error can be corrected by apply-
ing a ‘zero-velocity update.’ When correctly identi�ed by a zero-velocity detector, which uses IMU mea-
surements to estimate when the foot is stationary, the zero-velocity updates can signi�cantly improve
localization accuracy. However, false-positive detections cause the length of the wearer’s trajectory to
be underestimated, while false-negative detections (i.e., missed detections) lead to rapid and unbounded
error growth.

We present two novel, data-driven techniques for detecting zero-velocity events to improve zero-velocity-
aided inertial localization. Our �rst technique augments a classical zero-velocity detector by incorporating
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Egomotion SensorsNavigation Applicat ions Data-Dr iven Measurement Models

Zero-Velocity Measurements

Visual Egomotion Measurements

Aided Iner t ial Navigation

Pedestrians Inertial Sensing

Autonomous Vehicles Visual Sensing

Figure 1.1: An overview of our approach for robust egomotion estimation through aided inertial navigation. We inves-
tigate how data-driven, or learned, measurement models can augment the baseline INS. Speci�cally, we develop a learned
zero-velocity measurement model for aided pedestrian navigation and a learned visual egomotion measurement model for
autonomous vehicle localization.

a motion classi�er that adaptively updates a threshold parameter within the detector. Our second tech-
nique uses a recurrent neural network to classify zero-velocity events from raw inertial data. �is is in
contrast to the majority of zero-velocity detection methods that rely on statistical hypothesis testing. We
demonstrate that our data-driven detectors outperform traditional handcra�ed detectors on challenging
indoor navigation datasets consisting of walking, running, and stair-climbing motions.

2. Improvements to the learned structure from motion pipeline
Recent e�orts have been made to formulate a data-driven solution to structure from motion (SfM), by
using convolutional neural networks (CNNs) to parameterize a direct mapping from pixels to scene depth
and camera motion. When training this learned SfM system, consisting of depth and egomotion neural
networks, a self-supervised loss formulation (Zhou et al., 2017) has become increasingly popular, mainly
because it obviates the requirement for ground truth labels and can facilitate lifelong learning. Despite
their popularity, the existing egomotion networks have failed to yield the same level of accuracy as clas-
sical estimators.

We make several contributions to the learned SfM pipeline to improve its overall accuracy, robustness, and
generalizability. First, as a proof-of-concept approach to motivate the self-supervised training pipeline,
we extend the method of Peretroukhin and Kelly (2018) by training a self-supervised, deep pose correc-

tion network that can remove systematic errors from a classical visual egomotion estimator. Second, we
investigate how to address the scale ambiguity in monocular systems that has previously been shown
to be detrimental to the self-supervised training procedure (Bian et al., 2019). We do so by providing a
method for self-supervised scale recovery that forces the measured camera height (over the ground plane)
be similar to an a priori known camera height. Our �nal contribution in this domain is a novel network
architecture that properly couples the depth and egomotion networks; this tightly coupled framework
facilitates a mutually consistent notion of scale between the two networks and signi�cantly improves
convergence during training as well as accuracy and generalizability at test time.

3. A self-supervised, di�erentiable Kalman �lter for visual-inertial egomotion estimation
Finally, having made substantial improvements to the learned SfM pipeline, we investigate how this sys-
tem can be incorporated as a robust measurement model for a hybrid vision-aided INS. Building on the
work of Li and Waslander (2020), our approach uses a di�erentiable Kalman �lter with an IMU-based
process model and a robust, neural-network-based relative-pose-measurement model. �rough the data
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e�ciency of self-supervised learning, we show that our system signi�cantly outperforms the original su-
pervised system, while enabling online retraining. Further, we demonstrate the robustness of our system
within visually degraded environments. Notably, we �nd that in cases where classical estimators consis-
tently diverge, our estimator does not su�er from a signi�cant reduction in accuracy.

�e remainder of the thesis is organized as follows. In Chapter 2, we provide the background and context for
our contributions. In Chapter 3, we introduce our zero-velocity-aided INS and demonstrate the advantages of
aided navigation using data-driven zero-velocity updates. Chapter 4 provides an overview of visual egomotion
estimation techniques and introduces the learned SfM system, which consists of two networks: one for predict-
ing depth and one for predicting egomotion. �e two subsequent chapters discuss our own improvements to the
learned SfM pipeline: Chapter 5 describes our solution for resolving the scale ambiguity inherent in monocular
systems; Chapter 6 demonstrates how proper coupling of the depth and egomotion network structures is cru-
cial for accuracy and robustness. Finally, in Chapter 7, we describe our self-supervised framework for training a
hybrid visual-inertial egomotion estimator that incorporates an IMU-based process model and a learned visual
measurement model.

1.3 Associated Publications

�is thesis is comprised of work from the following �rst-author publications:

1. Wagsta�, B., Peretroukhin, V., and Kelly, J. (2017). Improving foot-mounted inertial navigation through
real-time motion classi�cation. In Proc. IEEE Int. Conf. Indoor Position. Indoor Navig. (IPIN)

2. Wagsta�, B. and Kelly, J. (2018). LSTM-based zero-velocity detection for robust inertial navigation. In
Proc. IEEE Int. Conf. Indoor Position. Indoor Navig. (IPIN)

3. Wagsta�, B., Peretroukhin, V., and Kelly, J. (2019). Robust data-driven zero-velocity detection for foot-
mounted inertial navigation. IEEE Sens. J., 20(2):957–967

4. Wagsta�, B., Peretroukhin, V., and Kelly, J. (2020). Self-supervised deep pose corrections for robust visual
odometry. In Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pages 2331–2337

5. Wagsta�, B. and Kelly, J. (2021). Self-supervised scale recovery for monocular depth and egomotion esti-
mation. In Proc. Conf. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS), pages 2620–2627

6. Wagsta�, B., Peretroukhin, V., and Kelly, J. (2022a). On the coupling of depth and egomotion networks for
self-supervised structure from motion. IEEE Robot. Autom. Le�. (RAL), 7(3):6766 – 6773

7. Wagsta�, B., Wise, E., and Kelly, J. (2022b). A self-supervised, di�erentiable Kalman �lter for uncertainty-
aware visual-inertial odometry. In Proc. IEEE 2022 Conf. Adv. Intell. Mechatron. (AIM)



Chapter 2

Background

�ere are several fundamental concepts that underlie the contributions described in this thesis. We begin with
some mathematical preliminaries, focussing on how rigid-body rotations (a basic concept in 3D pose estimation)
can be represented. �en, we provide a brief introduction to the �eld of state estimation, where we discuss the
extended Kalman �lter. Following this, we outline our mathematical models for inertial and visual sensors.
Finally, we discuss the essentials of deep learning.

2.1 Preliminaries

Here, we introduce some of the key concepts that are useful for describing the pose (consisting of the position
and orientation) of a rigid body in space. Where applicable, our notation is largely consistent with that of Barfoot
(2017).

2.1.1 Coordinate Frames

To describe the position of an object in 3D (Euclidean) space, we must introduce the concept of a reference

frame. Any point p = [x, y, z]> can be expressed within a coordinate, or reference frame F−→, which consists
of an orthogonal triad of vectors. In Figure 2.1, the vectors from the origin of two coordinate frames, F−→i and
F−→v , to a 3D point p are r−→

pi and r−→
pv , respectively. �ese vectors, without being expressed in any particular

reference frame, are related through

r−→
pi = r−→

vi + r−→
pv. (2.1)

Each vector can be expressed in any reference frame. Choosing to express the vectors in F−→i gives

rpii = rvii + rpvi , (2.2)

= rvii + Civr
pv
v . (2.3)

In this expression, Civ is a 3 × 3 matrix that rotates coordinates from F−→v to F−→i (without accounting for the
translation between the origins of the two reference frames).

Our goal will be to estimate the pose of a rigid body with respect to a �xed, world navigation frame using
inertial and/or visual sensing. �e measurements produced by each sensor are expressed within the sensor’s

8
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Figure 2.1: Visualization of the world and vehicle reference frames, along with a 3D point p whose location can be expressed
with respect to either frame.

own reference frame, which is a�ached to (and moves with) the sensor. We will use three reference frames:

• the world reference frame F−→i, which is treated as an inertial reference frame (i.e., non-accelerating and
non-rotating) whose vertical (z) axis is aligned with the direction of gravity;1

• the vehicle reference frame F−→v , which we assume (for convenience) is aligned with the IMU refer-
ence frame, and therefore is the frame in which the speci�c force and angular velocity measurements are
expressed;

• the camera reference frame F−→c, which is located at the optical centre of the camera, with its z-axis
aligned with the camera’s optical axis.

2.1.2 Rotation Parameterizations

�e 3 × 3 rotation matrices used to describe the relative orientation of one reference frame with respect to
another are members of the matrix Lie group SO(3), or the special orthogonal group in three dimensions. �e
four group properties of SO(3) are:

Closure: C1C2 ∈ SO(3) | ∀C1,C2 ∈ SO(3), (2.4a)

Associativity: C1(C2C3) = (C1C2)C3 | ∀C1,C2,C3 ∈ SO(3), (2.4b)

Identity: CI3 = I3C = C | ∀C ∈ SO(3), (2.4c)

Invertibility: C−1 ∈ SO(3) | ∀C ∈ SO(3). (2.4d)

As a Lie group, SO(3) is also a di�erentiable manifold. Additionally, elements of SO(3) are noncommutative

(C1C2 6= C2C1) and orthonormal (C21 = C−1
12 = C>21). When applying the group action of SO(3) (i.e., matrix

1Note that in reality, owing to the rotation of the earth, this frame is non-inertial, but the approximation has a negligible e�ect on our
systems over the time scales involved.
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multiplication) to 3D (Euclidean) vectors, it is both a length-preserving (C>C = CC> = I3) and orientation-

preserving (det (C) = 1) transform.2

�e SO(3) group has an associated Lie algebra, a vector space consisting of the set of skew symmetric
matrices so(3) = {Φ = φ∧ ∈ R3×3 | φ ∈ R3}. Here, the skew-symmetric operator, (·)∧ is applied, which
operates on a 3D vector φ ∈ R3 as

φ∧ =

φ1

φ2

φ3


∧

=

 0 −φ3 φ2

φ3 0 −φ1

−φ2 φ1 0

 . (2.5)

�e skew-symmetric operator can be used to compute the cross product between vectors a and b,

a× b = a∧b = −b∧a. (2.6)

�e Lie algebra represents the tangent space of the Lie group at the identity, and a vector in the Lie algebra,
φ, can be mapped to SO(3) through the exponential map

C = exp
(
φ∧
)

=

∞∑
n=0

1

n!
(φ∧)n ≈ I + φ∧. (2.7)

�e Lie algebra vector, or rotation vector (Barfoot, 2017), is closely associated with the axis-angle representation
of rotations that parameterizes a rotation as φ = φa. �is vector encodes a rotation by the angle φ about the
unit-norm axis a. Rodrigues’ rotation formula de�nes the relationship between a rotation matrix C ∈ SO(3)

and the axis-angle representation,

C = cosφI + (1− cosφ)aa> + sinφa∧, (2.8)

= I + sinφa∧ + (1− cosφ)a∧a∧, (2.9)

which is equivalent to the exponential map. In contrast to the rotation matrix representation, the axis-angle
representation is constraint-free (whereas elements of SO(3) have six constraints imposed by the orthogonality
condition, CC> = I). �e tradeo�, however, is that any three-parameter rotation representation gives a map-
ping to SO(3) that is surjective but non-injective. �e inverse mapping (Solà et al., 2018), called the logarithmic
map, is therefore only de�ned when restricting the domain to 0 < φ < π,

φ = log (C)
∨

=
φ (C−C>)∨

2 sinφ
, (2.10)

where

φ = cos−1(
tr (C)− 1

2
). (2.11)

Here, the (·)∨ operator is the inverse of the (·)∧ operator. Note that when φ = 0 and φ = π, φ is unde�ned in

2A rotation matrix with a determinant of −1 is part of the orthogonal group, but is an improper rotation: it rotates a vector about an
axis, while also re�ecting it about a plane perpendicular to the axis of rotation. �e set of orthogonal matrices having a positive determinant
(+1) make up the special subgroup, and consist of proper rotations only.
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Equation (2.10). When φ ≈ 0, a �rst-order approximation can be used instead to improve numerical stability:

φ ≈ (C− I)∨. (2.12)

Poisson’s kinematical equation, or the strapdown equation (Stevens et al., 2015), de�nes the time derivative
of the rotation matrix,

Ċ(t) = C(t)ω(t)∧. (2.13)

Here,ω(t) is the instantaneous angular velocity of the system expressed within the local (body or vehicle) frame.

�e Unit�aternion Representation

An alternative rotation representation is the unit quaternion. Within this section we provide a brief introduction
to quaternions and de�ne a number of quaternion operations that are relevant to this thesis. We generally follow
the notation from Solà (2015) and refer to their work for additional details.

�aternions are composed of a real number component and three imaginary components,

Q = a+ bi+ cj + dk, (2.14)

where {a, b, c, d} are real numbers and {i, j, k} are imaginary (unit) numbers that have the following properties:

i2 = j2 = k2 = ijk = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j. (2.15)

Herein, we represent a quaternion as a vector q ∈ R4 with the real component, qw , preceding the imaginary
component, qv :

q =
[
qw q>v

]>
=
[
qw qx qy qz

]>
. (2.16)

�e quaternion product operator, ⊗, compounds two quaternions together to yield another quaternion

r = p⊗ q =

[
pwqw − p>v qv

pwqv + qwpv + pv × qv

]
. (2.17)

Alternatively, the quaternion product can be evaluated through matrix multiplication using the bracket opera-
tors [q]L and [q]R, de�ned as

[q]L = qwI +

[
0 −q>v

qv q∧v

]
, [q]R = qwI +

[
0 −q>v

qv −q∧v

]
, (2.18)

which map a quaternion to a 4× 4 matrix. �ese operators are used for quaternion multiplication through

q1 ⊗ q2 = [q1]Lq2 = [q2]Rq1. (2.19)

�e set of unit quaternions (‖q‖ =
√
q2
w + q2

x + q2
y + q2

z = 1) forms a Lie group with elements covering the
unit-sphere, S3, embedded within R4 (Solà et al., 2018). Similar to SO(3), there is an exponential map from an
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axis-angle rotation φ ∈ R3 to a unit quaternion. �e exponential map is de�ned as

q = exp(
φa

2
) =

[
cos φ2
a sin φ

2

]
, q ∈ S3. (2.20)

�ere is a slight abuse of notation here, since in reality the rotation vector is represented as a pure quaternion (a
quaternion with qw = 0) prior to applying the exponential mapping (see Solà et al. (2018) for additional details).
�e unit quaternion can be used to rotate a 3D vector from x ∈ R3 to x′, through[

0

x′

]
= q⊗

[
0

x

]
⊗ q∗. (2.21)

�e rotation operation requires the quaternion conjugate q∗ =
[
qw −q>v

]>
. For unit quaternions, this conju-

gate is equivalent to the quaternion inverse, q∗ = q−1. Note that the rotation operation preserves the Euclidean
length of the vector when it is transformed from x to x′ (which requires that the real component of the output
quaternion remains zero).

�ere is also a direct transformation from q to an equivalent rotation matrix, C. Following the same notation
as Solà (2015), we use C{q} to represent the rotation matrix built from q,

q⊗ x⊗ q∗ ←→ C{q}x, C{q} = (q2
w − q>v qv)I3 + 2qvq

>
v + 2qwq∧v . (2.22)

Note that the group of unit quaternions forms a double cover of SO(3)—by observing Equation (2.22), the double
cover is apparent through C{q} = C{−q}.

�e time derivative of the unit quaternion is

q̇(t) =
1

2
q(t)⊗

[
0

ω(t)

]
, (2.23)

where ω(t) is the instantaneous angular velocity vector. �is equation, analogous to Equation (2.13), is also
known as Poisson’s kinematical equation (in quaternion form). See Stevens et al. (2015) for its derivation.

2.1.3 Rigid-Body Transformations

A straightforward way of expressing the pose of a rigid body is in the form of a homogeneous pose matrix

or homogeneous transformation matrix. A transformation matrix Tiv applies a translation and rotation to the
homogeneous representation of a 3D vector,

[
r> 1

]>
, e�ectively implementing Equation (2.2) in matrix form,

[
rpii
1

]
= Tiv

[
rpvv

1

]
, Tiv =

[
Civ rvii
01×3 1

]
. (2.24)

Transformation matrices are members of the special Euclidean Lie group, SE(3), de�ned as

SE(3) =

{
T =

[
C r

01×3 1

]
∈ R4×4 | C ∈ SO(3), r ∈ R3

}
. (2.25)
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�e inverse can be determined by

T−1 =

[
C> −C>r

01×3 1

]
. (2.26)

�e Lie algebra of SE(3) is se(3) =
{

Ξ = ξ∧ ∈ R4×4 | ξ ∈ R6
}

. Note that, in this context, (·)∧ is an
overloaded version of the skew-symmetric operator,

ξ∧ =

[
ρ

φ

]∧
=

[
φ∧ ρ

01×3 0

]
∈ R4×4, φ,ρ ∈ R3. (2.27)

�e exponential mapping from ξ to an element in SE(3) is de�ned as

exp
(
ξ∧
)

=

[∑∞
n=0

1
n! (φ

∧)n J`ρ

01×3 1

]
, (2.28)

≈ I4 + ξ∧. (2.29)

Here, the J` term,

J` =

∞∑
n=0

1

(n+ 1)!
(φ∧)n, (2.30)

is the le� Jacobian of SO(3) with its inverse

J−1
` =

φ

2
cot

φ

2
I +

(
1− φ

2
cot

φ

2

)
aa> − φ

2
a∧. (2.31)

�e inverse has singularities at φ = 2πm, with m being a positive integer.

Transformation matrices are well suited for propagating the pose of a rigid body through time using newly
acquired egomotion measurements. Starting from the previous body pose Tivk−1

at the discrete timestep k− 1,
the egomotion estimate between the previous timestep and the current timestep, Tvkvk−1

, can be compounded
to produce an updated pose at timestep k with

Tivk = Tivk−1
T−1
vkvk−1

, (2.32)

= Tivk−1
Tvk−1vk . (2.33)

2.2 Estimation�eory

To obtain an optimal estimate of the state of a dynamic system, we utilize estimation theory (Maybeck, 1982)
as our framework. In our case, the state of interest is the current pose of a rigid body (among other quantities),
which we model as a vector random variable, x, with a joint probability density function (PDF) p(x). In recursive
estimation, Bayesian inference is applied to update the state estimate as new measurements become available
over time. At the heart of Bayesian inference is Bayes’ rule, which produces an a posteriori estimate, or belief,
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p(x |y), by incorporating measurements drawn from the distribution y with an associated PDF, p(y):

p(x |y) =
p(y |x)p(x)

p(y)
. (2.34)

Note that we require a measurement model, p(y |x), that de�nes the likelihood of the measurement y given
the state estimate x. In the next section, we formally de�ne our system and derive the Bayes �lter, which uses
Bayes’ rule to recursively update the state belief when new information (i.e., sensor measurements) arrives. We
then introduce the Kalman �lter, which is a variant of the Bayes �lter that relies on simplifying assumptions to
produce a closed-form solution for the state posterior distribution.

2.2.1 �e Bayes Filter

Formally, our goal is to determine the distribution (belief) over the state xk at time tk , using all previously avail-
able information (the initial a priori distribution x̌0, all known inputs to the system, u1:k , and all measurements,
y0:k , from timesteps 0 to k):

p(xk | x̌0,u1:k,y0:k). (2.35)

As new sensor measurements are acquired, the Bayes �lter recursively updates this posterior estimate through
a two-step process. First, in the prediction step, the state belief is propagated forward in time via a process model,
based on the most recent input to the system. �en, in the correction (or update) step, a measurement is received
and the state is updated to produce a new posterior estimate. Starting from Equation (2.35), we derive this
recursive form, which relies on a number of assumptions that are detailed next.

Under the assumption that all of the measurements are statistically independent, Equation (2.35) can be
expressed as

p(xk | x̌0,u1:k,y0:k) = η p(yk |xk) p(xk | x̌0,u1:k,y0:k−1), (2.36)

where η is a normalization factor that preserves the axiom of total probability,
∫
p(xk)dxk = 1. �en, by

introducing a hidden state xk−1, the �nal term in Equation (2.36) can be de�ned as

p(xk | x̌0,u1:k,y0:k−1) =

∫
p(xk,xk−1 | x̌0,u1:k,y0:k−1)dxk−1. (2.37)

�rough the chain rule of probability, and under the Markov assumption3, the following relations hold:

p(xk,xk−1 | x̌0,u1:k,y0:k−1) = p(xk |xk−1, x̌0,u1:k,y0:k−1)p(xk−1 | x̌0,u1:k,y0:k−1),

p(xk |xk−1, x̌0,u1:k,y0:k−1) = p(xk |xk−1,uk, ),

p(xk−1 | x̌0,u1:k,y0:k−1) = p(xk−1 | x̌0,u1:k−1,y0:k−1).

(2.38)

Finally, substituting the terms from Equation (2.38) into Equation (2.37), and in turn substituting Equation (2.37)

3�e Markov assumption is that the Markov property holds for the system in question. �e Markov property for a stochastic process
dictates that future states are conditionally independent from past states, when they are conditioned on the current state, e.g., p(x3 |x0:2) =
p(x3 |x2).
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into Equation (2.36), the Bayes �lter is

p(xk | x̌0,u1:k,y0:k) = η p(yk |xk)︸ ︷︷ ︸
measurement model

∫
p(xk |xk−1,uk)︸ ︷︷ ︸

process model

p(xk−1 | x̌0,u1:k−1,y0:k−1)︸ ︷︷ ︸
prior belief

dxk−1. (2.39)

In general, propagating an arbitrary PDF through the �lter is intractable due to the (typically) nonlinear process
and measurement models. �erefore, simpli�cations (approximations) must be made; the (extended) Kalman
�lter (EKF) is one such simpli�ed version of the Bayes �lter.

2.2.2 �e (Extended) Kalman Filter

�e linear Kalman �lter is a variant of the Bayes �lter that assumes all distributions are Gaussian, that is, the
state belief and all noise introduced to the system are assumed to be normally distributed. �is simpli�cation
allows for a closed-form expression to be found in Equation (2.39). When dealing with a system that is linear and
Gaussian, the Kalman �lter produces an optimal estimate with a covariance that models the true uncertainty
of the system (Barfoot, 2017). In practice, however, nonlinearities are present when modelling most real-world
systems. �e extended form of the Kalman �lter handles these nonlinearities through linearization: a �rst-
order approximation is used to propagate the Gaussian PDF through each nonlinear function. Below, we show
the linearization procedure for the process and measurement models, and demonstrate how this leads to the
canonical EKF equations. For further details, we refer the reader to Barfoot (2017).

In line with the Bayes’ �lter, the EKF estimates the PDF of a (multivariate) state vector xk ∈ Rn at timesteps
k ∈ 1, 2, · · · ,K . �e state belief is represented by a Gaussian PDF p(xk) ∼ N

(
x̂k, P̂k

)
, where x̂k represents

the mean of the distribution and P̂k ∈ Rn×n is the state covariance matrix. �e EKF propagates/updates the
state through prediction and correction (or measurement update) steps. In the prediction step, a nonlinear
process model is used to propagate the state, which incorporates process noise wk ∼ N (0,Qk):

xk = f(xk−1,uk,wk). (2.40)

�e �rst-order Taylor series approximation (about the current posterior mean x̂k−1) is used for covariance
propagation through the nonlinear function

f(xk−1,uk,wk) ≈ x̌k + Φk−1(xk−1 − x̂k−1) + w′k, (2.41)

where x̌k = f(x̂k−1,uk,0), Φk−1 = ∂f(xk−1,uk,wk)
∂xk−1

∣∣∣
x̂k−1,uk,0

, and w′k = ∂f(xk−1,uk,wk)
∂wk

∣∣∣
x̂k−1,uk,0

wk . �e
resulting PDF, when passed through f , is

p(xk |xk−1,uk) ≈ N
(
x̌k + Φk−1(xk−1 − x̂k−1),Q′k

)
, (2.42)

where Q′k = E
[
w′kw

′>
k

]
. �e same linearization process can be applied to the nonlinear measurement model,

h(xk,nk) ≈ y̌k + Hk(xk − x̌k) + n′k, (2.43)

which incorporates measurement noise nk ∼ N (0,Rk). Here, y̌k = h(x̌k,0), Hk = ∂h(xk,nk)
∂xk

∣∣∣
x̌k,0

, and

n′k = ∂h(xk,nk)
∂nk

∣∣∣
x̌k,0

nk . Using the Equation (2.43) linearized measurement model, the measurement likelihood
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is

p(yk |xk) ≈ N
(
y̌k + Hk(xk − x̌k),R′k

)
, (2.44)

where R′k = E
[
n′kn

′>
k

]
. Finally, the analytical solution for the new posterior, found by solving Equation (2.39)

a�er substituting Equation (2.42) and Equation (2.44), is4

p(xk | x̌0,u1:k,y0:k) = N

x̌k + Kk(yk − y̌k)︸ ︷︷ ︸
x̂k

, (I−KkHk)(Φk−1P̂k−1Φ
>
k−1 + Q′k)︸ ︷︷ ︸

P̂k

 . (2.45)

Here, Kk is known as the Kalman gain. �e canonical EKF formulation for producing the Equation (2.45)
posterior is

P̌k = Φk−1P̂k−1Φ
>
k−1 + Q′k,

x̌k = f(x̂k−1,uk,0),

Kk = P̌kH
>
k

(
HkP̌kH

>
k + R′k

)−1

,

P̂k = (I−KkHk) P̌k,

x̂k = x̌k + Kk (yk − h(x̌k,0)) .

(2.46)

One important source of error in the EKF manifests when the operating point used in the linearization of the
measurement model (to produce Hk and R′k) is signi�cantly di�erent from the true state. Since the EKF uses the
predicted state as an operating point for linearization, any error present within the previous posterior, or within
the nonlinear motion model, can lead to linearization error. One way to help mitigate this issue is to repeat the
linearization and recompute the �nal three equations of Equation (2.46), while using the new posterior estimate
as the operating point. �is process can be repeated until convergence (i.e., when further relinearization results
in insigni�cant changes to the posterior). �is extension to the EKF is called the iterated EKF (IEKF).

2.2.3 Representing Rotation Uncertainty

To represent uncertainty in our system, perturbations must be applied to each quantity within the state. Our state
contains unconstrained vector quantities (such as translation and velocity) and constrained quantities (namely,
rotation matrices or unit quaternions to represent orientation). Although it is straightforward to perturb an
unconstrained quantity, it is more challenging to apply a perturbation to a constrained quantity such as a rotation
matrix or unit quaternion while ensuring that all constraints are still satis�ed. Perturbing unit quaternions or
rotation matrices through addition, for example, yields quantities that are no longer valid elements of the S3

and SO(3) groups, respectively. To address this problem for rotation matrices, we represent a random variable
in SO(3) as

C = C̄ exp
(
δφ∧

)
. (2.47)

Here, C consists of a nominal (error free) component C̄, perturbed by a noise component δφ ∈ R3. If δφ is a
random variable sampled from a PDF (e.g., zero-mean, normally distributed through δφ ∼ N (0,Σ)), it can be

4We forego the full derivation for the sake of brevity.
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injected onto SO(3) through Equation (2.47) to produce the random variable C (i.e., Equation (2.47) induces a
valid PDF p(C) on SO(3) with a mean of C̄ and an associated covariance of Σ).

Orientation uncertainty is similarly represented for unit quaternions. A perturbation vector with the same
properties (i.e., δφ ∼ N (0,Σ)) can be represented in S3 using Equation (2.20) (i.e., the quaternion exponential
map),

δq = exp

(
δφ

2

)
≈
[

1
δφ
2

]
, (2.48)

and compounded with a nominal orientation, q̄, to produce a PDF over the quaternion manifold,

q = q̄⊗ δq. (2.49)

�e �nal expression for δq in Equation (2.48) is produced by applying the small angle approximations cos(φ) ≈ 1

and sin(φ) ≈ φ within the exponential map. Lastly, we note that these perturbations (for unit quaternions and
rotation matrices) are both applied on the right side of the nominal component. Perturbations can alternatively
be applied on the le� or in the ‘middle’ (see Barfoot (2017) for more).

2.3 Mathematical Models of Visual and Inertial Sensors

In this section, we present our mathematical models for IMUs and camera sensors. �ese models describe how
latent information (i.e., egomotion for the IMU or scene structure for the camera) is encoded within—and can
be extracted from—the raw sensor measurements.

2.3.1 Inertial Measurements

An IMU produces angular velocity and speci�c force measurements, uτ =
[
ω>m,τ a>m,τ

]>
. �e angular veloc-

ity measurement, ωm,τ ∈ R3, is modelled as

ωm,τ = ωvτ ivτ + bωτ + wω,τ , (2.50)

where the true angular velocity, ωvτ ivτ , is expressed in the vehicle frame F−→v at the discrete timestep τ . Addition-
ally, there are two noise terms. First, there is a time-varying bias term, bωτ , the dynamics of which are modelled
as a random walk process,

ḃω,τ = wbω,τ , wbω,τ ∼ N (0, σbωI3) . (2.51)

Second, there is an additive white noise term, wω,τ ∼ N (0, σωI3). �e required quantity for dead reckoning
is ωvτ ivτ , which is isolated from the other terms before being integrated to provide orientation updates through

ωvτ ivτ = ωm,τ − baτ −wω,τ . (2.52)

Accelerometers measure speci�c force, which is the non-gravitational force per unit mass. �e speci�c force,
having units of ms2 , is actually a measure of acceleration—speci�cally, the proper acceleration of the IMU, or the
acceleration relative to free fall. When the IMU is stationary (with respect to Earth’s surface), it will report a
reading with a magnitude equal to that of the Earth’s gravity, in the direction of the local vertical but away from
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the centre of the Earth. �e measurement is zero in free fall. �e speci�c force measurement, am,τ ∈ R3, is
modelled as

am,τ = avτ ivτ + Cvτ i gi + baτ + wa,τ . (2.53)

Note the presence of gravity gi ≈
[
0 0 9.81

]>
, which we treat as a positive ‘quantity’ and whose direction

is aligned with the vertical axis of F−→i, but measured in the current vehicle frame, F−→vτ , as Cvτ i gi. Similar to the
gyroscope measurement, there is a time-varying bias term, baτ , and a white noise term, wa,τ ∼ N (0, σaI3).
�e bias dynamics are modelled by a random walk process,

ḃa,τ = wba,τ , wba,τ ∼ N (0, σbaI3) . (2.54)

�e required quantity for dead reckoning is the linear acceleration, avτ ii , which is integrated to provide velocity
and position updates. �is quantity must be isolated from the other terms (namely, the measured gravity and
the sensor bias and noise terms):

avτ ii = Civτ avτ ivτ ,

= Civτ (am,τ −Cvτ igi − baτ −wa,τ ),

= Civτ (am,τ − baτ −wa,τ )− gi.

(2.55)

Next, we introduce the discrete-time integration methods used to propagate orientation, velocity, and position
estimates using IMU measurements. Solà (2015) provides additional details.

Angular Rate Integration

For inertial navigation, orientation updates are determined by integrating the angular rate outputs from the IMU.
We derive a zeroth-order integration model, which is used to produce orientation updates from discrete-time
angular velocity measurements. �is derivation begins with the Taylor series expansion of a rotation matrix
Cτ+1 at time tτ+1, evaluated by making use of the current orientation Cτ ,5

Cτ+1 = Cτ + Ċτδt+
1

2!
C̈τδt

2 +
1

3!

…
Cτδt

3 + . . . , (2.56)

where δt = tτ+1 − tτ is the time interval between discrete timesteps τ and τ + 1. Using Poisson’s kinematical
equation to express the derivative terms on the right side of Equation (2.56) in terms of the current rotation and
the instantaneous angular velocity, ωτ , we have

Ċτ = Cτω
∧
τ , (2.57)

C̈τ = Cτ ω̇
∧
τ + Ċτω

∧
τ (2.58)

= 0 + Cτ (ω∧τ )2, (2.59)
…
Cτ = Cτ (ω̇∧τ )2 + Ċτ (ω∧τ )2, (2.60)

= Cτ (ω∧τ )3. (2.61)

5Here, we simplify the rotation matrix representing the orientation of a body at time tτ , relative to a �xed reference frame at time t0,
Ctτ t0 , as Cτ .
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Note that this zeroth-order approximation assumes that the angular velocity is constant throughout the interval
between measurements (i.e., ω̇ = 0). Substituting these terms gives

Cτ+1 = Cτ + Cτω
∧
τ δt+

1

2!
Cτ (ω∧τ )2δt2 +

1

3!
Cτ (ω∧τ )3δt3 + . . . , (2.62)

= Cτ

(
I + ω∧τ δt+

1

2!
(ω∧τ )2δt2 +

1

3!
(ω∧τ )3δt3 + . . .

)
. (2.63)

�e expression within the brackets is equivalent to the exponential map de�ned in Equation (2.7), which we
incorporate to yield the following expression for discrete-time orientation integration,

Cτ+1 = Cτexp(δtω∧τ ), (2.64)

= Cτexp (δt(ωm,τ − baτ −wω,τ )∧) . (2.65)

�e second line comes from substituting Equation (2.52) into the angular velocity term. A similar derivation for
quaternions exists,

qτ+1 = qτ ⊗ exp(
ωτδt

2
), (2.66)

= qτ ⊗
[

cos(‖ωτ‖δt2 )
ωτ
‖ωt‖ sin(‖ωτ‖δt2 )

]
, (2.67)

which is the result of expanding q(tτ + δt) and applying Equation (2.23), the quaternion form of Poisson’s
kinematical equation.

Linear Acceleration Integration

�e relationship between the continuous-time linear acceleration, a(t), and the rate of change in velocity, v,
and position, r, is

ṙ(t) = v(t), (2.68)

v̇(t) = a(t). (2.69)

�ese di�erential equations can be integrated over a discrete time interval to produce the discrete-time kinemat-
ics model used in dead reckoning. Beginning with the velocity term, continuous-time integration of the linear
acceleration can determine the velocity at time t+ δt, using the known velocity at time t, as

v(t+ δt) = v(t) +

∫ t+δt

t

a(s)ds. (2.70)

In practice, this integral cannot be solved in closed form since the linear acceleration measurements are only
available at discrete timesteps. We use the �rst-order Runge-Ku�a method (also known as Euler integration) to
approximate the solution to the integral by assuming the linear acceleration is constant across the interval δt:

v(t+ δt) = v(t) + a(t)δt. (2.71)
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Optical axis

Image Plane  Pinhole

Figure 2.2: Frontal projection model for a pinhole camera with a focal length, f , and principal point (cu, cv).

Assuming that tτ = τδt, and that vτ = v(tτ ), with τ being a non-negative integer, we can rewrite Equa-
tion (2.71) as

vτ+1 = vτ + aτδt. (2.72)

Substituting Equation (2.55), the velocity update is expressed with respect to the IMU measurement, am,τ , as6

vτ+1 = vτ + (Cτ (am,τ − bτ −wa,τ )− g) δt. (2.73)

We can subsequently derive the kinematic equation for position by integrating the velocity, where both the
linear acceleration and the velocity are treated as constant across the interval. �e resulting expression for
position is

rτ+1 = rτ + vτδt+
1

2
(Cτ (am,τ − bτ −wa,τ )− g) δt2. (2.74)

2.3.2 Visual Measurements

Cameras capture a rich representation of the 3D environment in the form of 2D images. A pinhole camera is
an idealized camera model used to relate the locations of 3D coordinates in the scene to their positions within
the image. Light rays from these 3D points are projected onto the image sensor behind the pinhole, and the
resulting planar representation of the scene is inverted in the process. It is easier (and equivalent) to place a
virtual image plane in front of the pinhole, as shown in Figure 2.2, to avoid dealing with the inverted image. In
this frontal projection model, the image plane is placed at a distance f from the pinhole, along the optical axis,
which in this case is aligned with the z-axis of the camera reference frame, F−→c. �e optical axis intersects the
image plane at the principal point (cu, cv) (relative to the image plane coordinate origin at the upper-le� corner

of the plane). A 3D point in space, p =
[
x y z

]>
, can be projected to the pixel coordinates u =

[
u v

]>
6Note that we remove the reference frame notation for simplicity. Here, Ck refers to the rotation matrix that transforms from the current

IMU reference frame to the global reference frame that the velocity and gravity vector are expressed within.
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through the projection model π(p) de�ned by

π(p) =

uv
1

 =

fu 0 cu

0 fv cu

0 0 1

 1

z
p, (2.75)

where (fu, fv) are the camera focal lengths in the horizontal and vertical directions, respectively. Here, we
observe that the projection results in a loss of depth information. �is loss of information leads to the problem
of scale ambiguity in monocular systems: a single camera can be used to estimate egomotion and scene structure,
but these estimates will only be accurate up to some unknown scale factor. If a depth estimate z̃ (e.g., measured
with any type of depth sensor) for u exists, the inverse projection model determines the 3D coordinates p from
u as

p = π−1(u, z̃) = z̃
[
u−cu
fu

v−cv
fv

1
]>

. (2.76)

Modelling Assumptions

�e pinhole projection model does not account for the lens distortion e�ects that are present in all cameras
in practice. Lens distortions introduce discrepancies between the observed coordinates of image plane points
and the idealized projection that would result from applying the pinhole model. Various distortion models exist
(Brown, 1966). Herein, we assume that images are undistorted prior to using them within our visual egomotion
pipeline. Further, we assume the camera calibration parameters (i.e., the camera intrinsic parameters, fu, fv ,
cu, cv , and the static SE(3) transform between the camera, F−→c, and the IMU, F−→v , reference frames) are known.
Finally, we assume the camera has a global shu�er (and omit any discussion of the rolling shu�er alternative).

2.4 An Overview of Deep Learning

Recent advancements in deep learning have given rise to a number of cu�ing-edge machine learning techniques
for training data-driven parametric models (LeCun et al., 2015). We employ a number of these techniques to learn
robust measurement models for aided navigation. In this section, we provide a brief introduction to deep neural
networks and the methods used to train them, but we refer the reader to Goodfellow et al. (2016) for a more
comprehensive introduction to deep learning.

At the heart of deep learning is the feedforward neural network, which is a parameterized model designed
to approximate a target function f∗ : RM → RN that maps input data to a desired output. A neural network
fθ(xk) with a set of tunable parameters, θ, can be trained to approximate f∗ through supervised learning to
obtain a set of weights, θ∗, that minimizes the error between the true function f∗ and the network output
across a set of training data. Individual samples within the training set consist of an input vector xk , and the
corresponding output from f∗, yk . Since the true output distribution of f∗ is generally unknown (which is why
we desire to approximate it with a neural network in the �rst place), the desired outputs, or labels, must be
acquired through an ‘expert’ labelling scheme (hence the term supervised learning). With a dataset of labelled
inputs, Dtrain, the goal of supervised learning is to train the neural network to minimize an error, L, between
the target labels and the network output:

θ∗ = argmin
θ

∑
{xk,yk}∈Dtrain

L (fθ(xk),yk,θ) . (2.77)
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Figure 2.3: A two-layer fully connected network with input x, intermediate (hidden) vector z0, and output z1. We illustrate
the connections between a three-dimensional input and a �ve-dimensional intermediate output.

Network training is accomplished in practice through gradient-based optimization, which we describe in the
next section.

�e general form of the feedforward network is a series of functions that progressively transforms the input
into the desired output. �e term feedforward stems from this unidirectional �ow of information through the
network (without any form of feedback). �e term network is used because the model consists of a number of
functions that are composed together,

fθ(xk) = (fθL ◦ fθL−1
· · · fθ1

◦ fθ0
)(xk), (2.78)

where the composition operator, ◦, represents the passing of the output from one network layer into the next,
(f ◦ g)(x) = f(g(x)). �e learnable parameters of each function are combined to form θ = {θ1,θ2, . . .θL, }.
Finally, the term neural stems from the similarity between these parameterized models and neurons within the
brain.7 In deep networks, being deep refers to the use of a large number of sequentially composed layers. One of
the more recent breakthroughs in machine learning was the discovery that increasing the number of network
layers almost always leads to improved performance.

2.4.1 Fully Connected Networks

�e standard form of feedforward network is the fully connected (FC) network illustrated in Figure 2.3. In a
FC layer, a function fθ` maps the input vector, z`−1 to an output vector, z` through the following nonlinear
function:

z` = fθ`(z`−1), (2.79)

= φ (W`z`−1 + b`) , (2.80)

7Note that neural networks have been used to model/understand brain function but are not actually representative of the biological
functionality of the brain.
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where the tunable parameters, θ` = {W`,B`}, consist of the linear weight matrix W` ∈ RL`×L`−1 and a bias
vector b`. Note that this type of layer is fully connected because the weight matrix generates output elements
that are a function of all elements from the previous layer (see Figure 2.3 for an illustration). Following this linear
transformation, a nonlinear activation function, φ, is applied (nonlinearity is essential). A common activation is
the recti�ed linear unit (ReLU),

φ(z) = max(0, z), (2.81)

applied element-wise to each unit, z. A number of variants exist, including the leaky ReLU (Maas et al., 2013),
or the exponential linear unit (ELU) (Clevert et al., 2016),

φ(z) =

{
z z > 0,

α(ez − 1) z ≤ 0.
(2.82)

�e choice of activation function is in general a network design decision and is an ongoing area of research. We
refer the reader to Nwankpa et al. (2018) for additional details.

At the �nal network layer, the choice of activation (or lack thereof) is particularly important to allow the
network to properly match the desired output. For an unconstrained regression task, no activation function is
required. For a classi�cation task, the so�max activation can be used to regress a normalized class probability
for each output class zi through

zi =
ezi∑M
j=0 e

zj
. (2.83)

�e element-wise sigmoid activation,

σ(z) =
1

1 + e−z
. (2.84)

restricts all elements of the output vector to be within the range [0, 1].

2.4.2 Network Training

�e usual way to train a network (i.e., ful�lling Equation (2.77)) is through gradient-based optimization. �e
training procedure, called gradient descent, performs a number of optimization steps that update the individ-
ual network weights θi in such a way that the overall loss, L, is minimized. Each step updates the network
parameters as

θi ← θi − ε
∂L
∂θi

. (2.85)

�e step size, ε, known as the learning rate, dictates how much the weights should change with each gradient
descent step. To carry out gradient descent, the derivative of the loss with respect to all learnable parameters
must be computed. �ese gradients are determined using the chain rule of calculus to backpropagate the gradient
from the loss, through the network, to the speci�c parameter. For example, with a two layer network z =
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(gφ ◦ fθ)(x) having scalar weight parameters φ and θ, backpropagation with the chain rule is:

∂L
∂φ

=
∂L
∂g

∂g

∂φ
,

∂L
∂θ

=
∂L
∂g

∂g

∂f

∂f

∂θ
. (2.86)

Note that, in practice, due to the vast size of modern training datasets, it is intractable to compute a gradient
step with respect to the composite loss across all training samples. Rather, training is broken into minibatches

of randomly sampled training samples. A forward pass is computed for all samples in the minibatch, and a
gradient descent step is performed that reduces the loss value across this subset of data. A training epoch is
complete once the full training set has been sampled; multiple training epochs are generally required before the
network weights converge. �is technique is called stochastic gradient descent (SGD). More advanced optimizers
are available that build on SGD. �e Adam optimizer (Kingma and Ba, 2014), for example, controls parameter-
speci�c learning rates during training to improve convergence.

With modern deep learning frameworks such as PyTorch (Paszke et al., 2017), implementing a network-based
system has become more straightforward over the last decade. �is is in part due to automatic di�erentiation

(or autograd), which is a built-in feature of PyTorch (and other so�ware tools) that can automatically track the
gradient �ow through network layers. Autograd allows for rapid implementation of network architectures and
loss functions without having to manually compute the complicated derivatives required for backpropagation.
We use the PyTorch framework in Python to implement and train our deep networks.

Generalization and Over�tting

�e goal of machine learning is to produce a generalizable model, that is, a model that achieves a high level
of performance on data that exists outside of the training dataset. To properly generalize, models must be
prevented from over��ing to the training data, which can happen when the weights are overtuned to ‘memorize’
the target outputs across the training dataset. Many regularization techniques have been designed to prevent
over��ing. Early stopping, for example, prevents over��ing by stopping training when the accuracy on a held-
out validation set begins to decrease. Other generalization techniques exist, such as increasing the amount
of training data available, for example, by collecting more data (with labels) or augmenting the current data,
can improve generalization. Augmentation involves applying transformations that change the input without
impacting the label (or by applying a transformation that impacts the label in a known way). Other methods
for regularization include, for example, weight decay (i.e., penalizing large weight values in an auxiliary loss),
dropout (Srivastava et al., 2014), and batch normalization (Io�e and Szegedy, 2015).

Loss Functions

Our work employs deep networks for classi�cation and regression. Classi�cation networks are constrained to
output a class prediction from a set of possible discrete labels. For binary classi�cation (i.e., choosing one of two
labels), the binary cross entropy (BCE) loss is used,

LBCE = − 1

K

K∑
k=1

yk log fθ(xk) + (1− yk) log (1− fθ(xk)) . (2.87)

�e BCE minimizes the error between the training labels yk = {0, 1} and the 1D network output, fθ(xk). Note
that the network’s �nal layer is a sigmoid or so�max activation that constrains the output to be within [0, 1]. �e
output is considered to be the ‘con�dence’ that the input corresponds to the positive class label (i.e., p(yk = 1)).
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�e BCE loss is a speci�c instance of the negative log likelihood loss, which can be used for multi-class problems.

Regression tasks involve producing unconstrained network outputs that approximate the target values. Two
common loss functions for regression tasks are the mean squared error (MSE) and the L1 loss,

LMSE =
1

2K

K∑
k=1

‖fθ(xk)− yk‖22 , (2.88)

LL1
=

1

2K

K∑
k=1

|fθ(xk)− yk| . (2.89)

Self-Supervised Learning

As an increasing amount of raw (unlabelled) data becomes available, there is potential to incorporate a vast
amount of information to improve the overall e�ectiveness of deep networks. �e primary limitation of super-
vised learning is that it requires these data to be accurately labelled in order to minimize the losses described
above. Acquiring labels can be time consuming and expensive; it is o�en infeasible when millions of training
samples may exist. An alternative and popular strategy is self-supervised learning. Self-supervised learning in-
volves the automatic generation of training labels from data. Although this label generation process requires
some form of domain knowledge, it is a more scalable process than supervised labelling techniques, since there
is no upper limit on the amount of data that can be incorporated. Self-supervision is commonly achieved by
leveraging the known structure of the data. For example, a network, given the lower half of an image, can be
trained to predict (or generate) the upper half of the image. Similarly, given an image at one point in time, a
network can be trained to predict temporally adjacent images. Since the targets in these cases are pixels that are
already available, the labelling is done ‘for free.’ Alternatively, when multiple sensors are available, labels can
be generated from one source of data in order to train a network that takes as its input an alternative source of
data. For example, on a robotic platform, a lidar sensor can generate per-pixel depth labels, which can be used
to train an image-based depth network that only requires a monocular camera to operate at test time.

2.4.3 Specialized Network Architectures

�ere are many alternatives to the standard fully connected network architecture that are speci�cally designed
for certain data types. Next, we outline two important network structures: the convolutional neural network
for images, and the recurrent neural network for time-series data.

Convolutional Neural Networks

Convolutional neural networks (CNNs) are designed to process 2D ‘grids’ of data; they are consequently well
suited for image processing and computer vision tasks. Layers within the CNN apply convolutions to the input
with a learned kernel that transforms the 2D input into a ‘feature map’. By applying a series of convolutions,
these feature maps are progressively transformed into lower-dimensional representations of the input. �e
representations can be used for a number of computer vision tasks such as image classi�cation, object detection,
or semantic segmentation. With the availability of visual sensors on robotic platforms, CNNs are being applied
within the domain of robotics for numerous tasks including visual localization.
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Figure 2.4: Illustrating discrete, 2D convolutions over a volume. Here, three convolutional kernels (K`,c,k ∈ R3×3) are
applied to the two-channel input Z`−1 to produce the three-channel output Z`. No padding is used, resulting in a reduction
to the spatial resolution.

�e convolution operator applied to a continuous function, f(x), is

f(x) ∗K(x) =

∫ ∞
−∞

f(s)K(x− s)ds, (2.90)

=

∫ ∞
−∞

f(x− s)K(s)ds, (2.91)

whereK(x) is de�ned to be the kernel function operating on f(x). In practice, CNN layers operate on �nite and
discrete 2D inputs, using the discrete-time version of the convolution operator. For a single-channel 2D input,
Z`−1 ∈ RH×W×1, the discrete convolution with the kernel K` ∈ RW×W produces8

Z`(u, v) = (Z`−1 ∗K`)(u, v) =
∑
i

∑
j

Z`−1(u+ i, v + j)K`(i, j). (2.92)

�e weights in each kernel are the learnable parameters in the CNN layer. With only a small number of weights
(kernels are o�en only 3×3 or 5×5 in size), convolutions signi�cantly reduce the number of trainable parameters
per layer compared with the fully connected variant as they utilize weight sharing by applying the same low-
dimensional kernel to every element of the layer’s input. A fully connected layer, in contrast, requires a speci�c
weight between every element in the input and every element in the output. �e use of CNN layers leads to a
reduction in memory requirements and an improvement in e�ciency during training compared with the fully
connected layers when operating on 2D data.

Convolutions are typically applied to a volume of data, since multiple input channels can exist (a colour
image, for example, has three channels of 2D data). At each layer, an arbitrary number of kernels can be applied
to the input (in order to extract a richer set of features from the input), which progressively increases the number

8�is expression is actually the cross-correlation function, which is the convolution operator without a �ipped kernel. Cross-correlations
do not possess the commutative property, i.e., (Z ∗K)(u, v) = (K ∗ Z)(u, v), that convolutions have, but this does not impact neural
network design.
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Figure 2.5: Diagram of VGG16 (Simonyan and Zisserman, 2014), one of the initial deep CNNs that pushed the state of
the art for image classi�cation. Five convolutional blocks (consisting of multiple convolution layers with ReLU activations)
are applied, with max pooling (shown in red) applied a�er every block to reduce the spatial resolution by a factor of two.
Following the convolution blocks, the output is reshaped, and then three fully connected layers (fc) are applied. Finally, a
so�max activation is used for classi�cation.

of output channels. �e convolution to an input volume extends the 2D convolution from Equation (2.92) to

Z`,k(u, v) =
∑
c

∑
i

∑
j

Z`−1,c(u+ i, v + j) K`,c,k(i, j). (2.93)

Here, in layer `, kernel K`,k,c is applied to the cth channel of the input and combined with all of the other
kth kernels to produce the kth output channel. �is process is visualized in Figure 2.4. Here, we see that the
convolution operators reduce the input dimensionality. To maintain the original spatial resolution, the border
of the inputs can be padded (typically with zeros) prior to applying the convolution.

CNN Architecture Overview Figure 2.5 visualizes VGG16 (Simonyan and Zisserman, 2014), one of the orig-
inal deep CNN architectures. A series of convolutions (followed by nonlinear activations and pooling layers) are
chained together in the network. �e role of the pooling layer is to reduce the spatial resolution of the output
feature map by condensing the information within a window of features into a smaller output. Max pooling,
for example, returns the maximum value within a square window of samples. Pooling over a 2 × 2 window of
the feature map e�ectively halves the spatial resolution without removing a substantial amount of information
from the feature map.9 With each applied pooling operation, the spatial resolution of the feature map decreases,
which causes the receptive �eld (the number of input units represented by each element of the current feature
map) to increase. �e increasing receptive �eld results in a hierarchical feature representation; as the network
depth increases, the feature maps represent higher-level characteristics of the image. Importantly, these image-
level feature representations can be produced using only local convolutions that operate on a small subset of
the feature maps. At the end of the network, the low-dimensional feature representation can be utilized for
regression or classi�cation. In the case of VGG16, a fully connected layer is a�ached to the �nal convolutional
layer output and a so�max activation is used for image classi�cation. During training, the weights within all of
the convolution kernels can be updated through gradient descent. Like the fully connected network, gradient
descent uses the chain rule to backpropagate gradients from the loss to each individual kernel weight. We omit
the full derivation of the backpropagation equations for convolutional layers.

9Alternatively, a strided convolution can be used to reduce the spatial resolution.
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Figure 2.6: Network diagram for the U-Net. �is type of network is composed of an encoder and a decoder. Feature
maps from the encoder (brought forward through skip connections) are merged with feature maps in the decoder. �e
spatial resolution of the output is similar (or equal) to that of the input, making this type of network suitable for per-pixel
classi�cation or regression tasks. (Figure adapted from https://nchlis.github.io/).

U-Net A particularly important type of CNN architecture that we employ in our system is the U-Net (Ron-
neberger et al., 2015). �is type of network, which takes as input a 2D image, is designed to output dense, or
per-pixel, predictions that match the spatial resolution of the input. �e architecture is particularly useful for
computer vision tasks such as image segmentation or object detection. We use U-Net for visual depth estimation
within our learned SfM system, as described in the la�er half of the thesis. �e U-Net, illustrated in Figure 2.6,
is composed of an encoder and a decoder. �e encoder is a conventional CNN, which produces feature maps
that decrease in spatial resolution and increase in channel dimensionality towards the ‘bo�leneck’. Following
the bo�leneck is the decoder, which increases the resolution of the feature maps either through bilinear inter-
polation, or through transposed convolutions (Zeiler et al., 2010). �e other unique components of the U-Net are
the skip connections that directly connect feature maps from layers in the encoder to layers in the decoder.

Recurrent Neural Networks

Recurrent neural networks (RNNs) are a class of neural networks that leverage the temporal correlations that
exist in sequential data. RNNs propagate a hidden ‘memory’ state through time, passing temporal information
from prior states to aid the current prediction. �e hidden state vector hk is propagated by combining the previ-
ous hidden state hk−1 with the current input xk , and passing the weighted sum through a nonlinear activation
function, φ(·),

hk = φ(Whxxk + Whhhk−1). (2.94)

Here, Whx and Whh are matrices that contain the learnable weights. Note that the same weight matrices are
applied at all timesteps in the sequence.

�e backpropagation through time (BPTT) algorithm (Werbos, 1990) is used to train RNNs by passing gra-
dient information from the current timestep to previous timesteps. BPTT enables the networks to learn how to
exploit temporal relationships within the data. Although e�ective with shorter sequence lengths, BPTT with
the basic RNN network structure is known to produce vanishing or exploding gradients when a�empting to
backpropagate through longer sequences. �is problem limits the overall e�ectiveness of the vanilla RNN. To
address the instability, alternative network structures have been proposed that are more e�ective at learning

https://nchlis.github.io/
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Figure 2.7: �e long short-term memory (LSTM) recurrent neural network structure. �e various gates with sigmoid ac-
tivations control how the internal state is updated, by ‘learning’ and ‘forge�ing’ information. (Graphic inspired by Colah’s

Blog https://colah.github.io/posts/2015-08-Understanding-LSTMs/).

long-term relationships. �e long short-term memory (LSTM) network, in particular, is a popular alternative
to the vanilla RNN. Here, we provide a brief description and refer the reader to Lipton et al. (2015) for a more
detailed review of the theory of LSTM networks.

�e LSTM, illustrated in Figure 2.7, avoids the exploding and vanishing gradient problems by incorporating
a second internal state s(t), which acts as a ‘direct’ connection between timesteps and allows for gradient values
to be propagated through time without signi�cantly changing in value. �e LSTM equations for processing
sequential data are

gk = tanh(Wgxxk + Wghhk−1 + bg),

ik = σ(Wixxk + Wihhk−1 + bi),

fk = σ(Wfxxk + W�hk−1 + bf),

ok = σ(Woxxk + Wohhk−1 + bo),

sk = gk � ik + sk−1 � fk,

hk = tanh(sk)� ok.

(2.95)

�e functions ik , fk , and ok form the input, forget, and output gates respectively. �ese functions determine
which elements from hk−1 and xk compose the internal state sk and the hidden output hk . A sigmoid activation
function σ(·) restricts the gate outputs to be within 0 and 1, which causes data elements to be passed through
the gate (if the gate value is close to 1) or rejected (if the gate value is close to 0).

https://colah.github.io/posts/2015-08-Understanding-LSTMs/ 


Chapter 3

Learned Zero-Velocity Detection for
Robust Inertial Navigation

Pedestrian navigation systems that use wearable sensors for pose estimation are a popular alternative to infra-
structure-based methods such as GNSS (Hou and Bergmann, 2020). By relying solely on body-mounted sensors,
these systems are standalone and can be rapidly deployed to provide localization estimates for humans in both
indoor and outdoor environments. Notably, pedestrian navigation systems are important for coordinating per-
sonnel in �rst-response scenarios. For teams of �rst responders such as �re�ghters, the ability to track team
members’ locations in real time facilitates more e�ective response strategies and expedites personnel extrac-
tion in case of unexpected events or injuries (Fischer and Gellersen, 2010). �ese systems, moreover, have the
potential to coordinate the movements of humans and mobile robots within a shared space.

Pedestrian navigation systems o�en utilize a body-mounted inertial sensor for dead reckoning, producing
relative pose estimates with respect to a previous pose. Pedestrian dead reckoning (PDR) systems, by relying on
a single IMU (and no other sensors) are ideal for pedestrian navigation, since IMUs are low cost, lightweight, low
power, and straightforward to deploy without requiring the wearer to modify their behaviour. However, with
relatively inexpensive inertial sensors that employ microelectromechanical systems (MEMS), PDR systems are
only accurate for short durations, as sensor biases and noise quickly lead to estimates of progressively poorer
quality. Position error, notably, grows cubically with time (Skog et al., 2010b) and some form of additional
correction is necessary for accurate long-duration inertial odometry.

To combat inertial sensor dri�, one a�ractive technique (that does not require an external aid or extant
maps) is to mount the IMU on the foot of an individual and rely on zero-velocity updates. �ese updates are
pseudo-measurements of the velocity state that occur during midstance, that is, the portion of the human gait
during which the foot is �at on the ground and stationary relative to the navigation frame (see Figure 3.1 for
an illustration of the gait cycle). By incorporating such pseudo-measurements into the INS through a Bayesian
�lter such as an extended Kalman �lter (EKF), dead reckoning is limited to the intervals between footfalls, as
opposed to over the entire tracked motion (Foxlin, 2005). As a result, PDR systems based on the zero-velocity-
aided INS are capable of providing accurate position estimates and have been deployed in a number of se�ings
(Foxlin, 2005; Godha and Lachapelle, 2008; Nilsson and Handel, 2014; Jiménez et al., 2010).

To successfully apply zero-velocity measurements, the stationary phases of the human gait must �rst be
accurately identi�ed. If the stationary phases are correctly identi�ed, zero-velocity updates can signi�cantly
improve localization estimates. However, false-positive detections cause the length of the wearer’s trajectory to
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Figure 3.1: �e phases of the human gait cycle. During the midstance phase, the foot is stationary with
respect to the ground (and to the �xed navigation frame). A foot-mounted INS can utilize this information
to apply zero-velocity measurements during the midstance phase. Image from tekscan.com/blog/medical/
gait-cycle-phases-parameters-evaluate-technology

be underestimated, while false-negative detections (i.e., missed detections) lead to rapid and unbounded error
growth. A range of zero-velocity detectors have been proposed to identify these stationary periods in order
to appropriately apply zero-velocity pseudo-measurements. �e detectors rely on statistical likelihood-ratio
tests (LRTs) to estimate how similar the current IMU measurements are to those produced by a stationary IMU
(Skog et al., 2010b). ‘Classical’ approaches based on the LRT, however, require careful tuning of a threshold
parameter, the value of which is heavily based on the user’s motion type. As the threshold parameter must
be manually assigned, these classical detectors cannot be generalized to a broad range of human locomotion
pa�erns. �erefore, achieving robust zero-velocity detection—that is, accurately detecting zero-velocity events
across many ‘styles’ of locomotion—remains an open research problem.

In this chapter, we present our contributions to improve zero-velocity-aided inertial navigation. Speci�cally,
we develop two robust, data-driven solutions to zero-velocity detection that are designed to operate consistently
across di�erent movement types. �e �rst approach to zero-velocity detection introduces a learning-based mo-
tion classi�er that identi�es a wearer’s motion type. �e proposed zero-velocity detector uses this information to
adjust its threshold to be optimal for the current motion. �e second learned approach to zero-velocity detection
replaces the classical zero-velocity detector with an LSTM neural network that directly classi�es zero-velocity
events. �is approach e�ectively obviates the need for threshold tuning at test time. In this chapter, we introduce
the zero-velocity-aided INS and discuss our contributions to the system. �ese contributions are summarized
below:

1. we develop a motion-adaptive zero-velocity detector that uses a motion classi�er to optimally select its
threshold, given the current predicted motion type; to update the motion prediction, we use our own
multiclass support vector machine (SVM) motion classi�er that takes foot-mounted IMU data as input
and distinguishes between common motion types (e.g., walking, running, stair-climbing);

2. we develop an LSTM-based zero-velocity detector trained to predict zero-velocity events in an end-to-end
manner; this detector does not require a threshold parameter and operates independently of the wearer’s
motion type;

3. we incorporate these detectors within a zero-velocity-aided INS (based on an EKF) to provide robust zero-
velocity pseudo-measurements;

4. we collect several kilometres of foot-mounted inertial data and ground-truth position information to eval-
uate our system and demonstrate that our data-driven approaches consistently outperform a number of
common ‘classical’ zero-velocity detectors on walking, running, stair-climbing, and mixed-motion trajec-
tories.

tekscan.com/blog/medical/gait-cycle-phases-parameters-evaluate-technology
tekscan.com/blog/medical/gait-cycle-phases-parameters-evaluate-technology
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Figure 3.2: �e norm of the angular velocity vector of a foot-mounted IMU during various motions. �e angular velocity
pro�le is highly dependent on the motion type.

3.1 Related Work

Zero-velocity detection can be formulated as a binary classi�cation problem that, given a window of IMU mea-
surements, zτ = {uτ , . . .uτ+W }, involves choosing between one of two hypotheses:

H0 : the IMU is moving,

H1 : the IMU is stationary.
(3.1)

A good detector should maximize the probability of a true detection while ensuring the risk of a false detection
is reasonably low. Skog et al. (2010b) show that a likelihood-ratio test based on the Neyman-Pearson theorem
can be used to classify zero-velocity intervals. �e LRT, de�ned as

L(zn) =
p(zτ |H1)

p(zτ |H0)
> γ. (3.2)

indicates a zero-velocity detection when the likelihood, L(zn), exceeds a threshold, γ.
A range of statistical tests for zero-velocity detection have been proposed and studied (Skog et al., 2010a,b;

Olivares et al., 2012), each based on speci�c assumptions or heuristics that make the terms in Equation (3.2)
tractable. �e stationary probability, p(zn|H1), is typically based on one (or both) of two heuristic conditions
that reasonably model the IMU measurements as the foot enters midstance: (1) that the measured speci�c force
of the IMU is equal in magnitude and opposite in direction to the local gravity vector; and/or (2) that the norm
of the measured angular velocity is zero. �e PDFs satisfying these conditions can be modelled as normal dis-
tributions centred on the expected output for a stationary IMU (e.g., for a window of gyroscope measurements,
the stationary probability is zero-mean and normally distributed, with a variance proportional to the noise asso-
ciated with the gyroscope readings).1 We introduce a range of LRT detectors that are based on these heuristics
in Section 3.2.2.

A key requirement of all zero-velocity detectors, regardless of the heuristics on which they are based, is
the selection of the zero-velocity threshold, γ. Choosing the threshold is not trivial; a threshold that is too low
leads to a failure to report detections when the foot is in fact stationary (i.e., false negatives), while a threshold
that is too high leads to false reports of zero-velocity events when the foot is still moving (i.e., false positives).
Both cases result in irreversible error accumulation (Nilsson et al., 2012). To ensure localization accuracy, the

1Modelling the moving hypothesis, p(zn|H0), on the other hand, is not as straightforward because there is a complex relationship
between the wide range of typical human gait pa�erns and their resulting IMU readings. Since the stationary hypothesis is easier to de�ne,
the moving hypothesis can simply be modelled as a uniform distribution.
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threshold parameter is typically tuned by selecting the value that leads to the minimum position error across a
training set (Skog et al., 2010a) and then is subsequently �xed during future operation. Although this threshold
selection strategy is reasonable for a limited range of motion (with the motion being consistent between the
training and test set), the e�ectiveness of a �xed-threshold detector is limited during motions that are ‘dynamic’
in nature.2 Dynamic motions result in varied acceleration and varied angular rate pro�les when the foot makes
contact with the ground (see Figure 3.2 for an illustration of angular rate variations as a function of motion
type and Chan and Rudins (1994) for an analysis of impact forces during locomotion). By observing Figure 3.2,
it is apparent that no threshold is su�cient to ensure accurate zero-velocity detection across all motion types;
a low threshold is su�cient for walking and stair-climbing but would not detect midstance when running.
Conversely, a higher threshold would be more suitable for running motions but would result in false-positive
detections during walking or stair-climbing.

To improve upon �xed-threshold zero-velocity detectors, several methods in the literature have a�empted to
set a varying threshold that adapts to the motion of the wearer. For example, by assuming a Bayesian detection
model, the threshold can be factored into a time-varying prior on the zero-velocity hypothesis and a time-varying
loss for missed detections (Wahlstrom et al., 2019). Alternatively, the threshold can be modelled explicitly as a
function of gait frequency (Tian et al., 2016), estimated linear velocity (Walder and Bernoulli, 2010; Ren et al.,
2016), or estimated angular velocity (Ma et al., 2017). However, developing a handcra�ed model that applies
a proper threshold for all types of motion remains challenging. In our work, we a�empt to remedy this by
using data to learn the relationship between raw inertial data and latent variables such as the motion type of
the wearer or the velocity state of the IMU. In line with our approach, others (Park et al., 2016; Rantanen et al.,
2018) use data-driven motion classi�cation to adaptively update the zero-velocity threshold. Our motivation for
the use of learning stems in part from other work that successfully applies learning-based methods to process
inertial data. For example, Hannink et al. (2018) present a method to train a deep CNN to predict human stride
length from inertial measurements; Chen et al. (2018) use an LSTM network to directly estimate a trajectory
from raw inertial data; and Cortés et al. (2018) train a CNN to regress velocities from IMU outputs.

3.2 Methodology

To create robust zero-velocity detectors, our approach utilizes learned classi�ers, which have achieved state-
of-the-art results in many domains. We present two classi�cation-based methods for zero-velocity detection
and describe straightforward ways to generate training labels for each that facilitate supervised learning. First,
we train an SVM to classify the motion type of a wearer from a short sequence of IMU data; given the known
motion type, we update the threshold of an existing zero-velocity detector to a prede�ned value optimized for
that motion type. Second, we adopt a purely learning-based strategy by training a recurrent neural network to
directly classify when the IMU is stationary. Given a sequence of inertial data, our network outputs a binary
prediction of the velocity state of the IMU (i.e., whether the IMU is stationary or moving). �e network is trained
with a loss function that compares the network prediction to zero-velocity ground truth. Both approaches,
illustrated in Figure 3.3, are data-driven, as they augment or replace the classical zero-velocity detector with
models that are learned. �e incorporation of these data-driven components within a �lter-based INS results in
a hybrid system that yields high-accuracy pose estimates.

First, in Section 3.2.1, we introduce the zero-velocity-aided INS, which consists of an error state Kalman

2Here, we de�ne dynamic motions to be those that change in type (e.g., walking to running, to stair-climbing, to crawling, etc.) or
intensity (e.g., slow walking versus fast walking, and jogging versus sprinting).
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Figure 3.3: Our localization pipeline uses learning-based classi�ers to improve zero-velocity detection: the motion classi�er
actively updates the threshold of an existing zero-velocity detector to be optimal for the current motion type, while the
zero-velocity classi�er replaces the zero-velocity detector with a LSTM network.

�lter (ESKF) with a zero-velocity measurement model. �en, in Section 3.2.2, we describe a number of classical,
threshold-based zero-velocity detectors from the literature. We follow this with descriptions of our data-driven
zero-velocity detection approaches in Sections 3.2.3 and 3.2.4.

3.2.1 �e Zero-Velocity Aided INS

Our system uses an ESKF to estimate the trajectory of a foot-mounted IMU. �e �lter state at the discrete timestep
τ (and corresponding time tτ ) is

xτ =

rvτ ii

vvτ ii

qivτ

 , (3.3)

and consists of the IMU position, rvτ ii , velocity, vvτ ii , and orientation (parameterized as a unit quaternion),
qivτ , all expressed within the world navigation frame F−→i. �e inputs to the system are the IMU measurements

uτ =
[
a>m,τ ω>m,τ

]>
, which we assume contain additive, zero-mean noise,

wτ =

[
wa,τ

wω,τ

]
∼ N (0,Q) , Q =

[
σ2
aI3 0

0 σ2
ωI3

]
. (3.4)

�e state does not incorporate accelerometer or gyroscope biases (although in theory they are observable within
a zero-velocity-aided system) because, as discussed in Nilsson et al. (2012), inaccuracies resulting from the zero-
velocity assumption are the dominant error source (i.e., we assume that the IMU is exactly stationary during
midstance, when in reality it always has a small, but non-zero, velocity).
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�e ESKF, in parallel, tracks an error-free (or nominal) state, x̄τ , alongside an error state, δxτ . �e error
state propagates the errors and perturbations to the system:

x̄τ =

 r̄vτ ii

v̄vτ ii

q̄ivτ

 , δxτ =

δr
vτ i
i

δvvτ ii

δφivτ

 . (3.5)

As discussed in Section 2.2.3, the orientation error state, δφivτ , is parameterized as a vector in the Lie algebra.
�e nominal state and error state is combined through composition to form the true state estimate,

xτ = x̄τ ⊕ δxτ , (3.6)rvτ ii

vvτ ii

qivτ

 =

 r̄vτ ii + δrvτ ii

v̄vτ ii + δvvτ ii

q̄ivτ ⊗ exp(
δφivτ

2 )

 . (3.7)

In the prediction step of the ESKF, both the nominal and the error state are propagated independently using
separate process models. �e nominal state—which consists of the ‘large signal’ terms propagated through
time using the standard dead reckoning motion model—is considered to be error-free and is not incorporated
within the ESKF. Rather, only the ‘small signal’ error-state terms are �ltered. Within the prediction step of the
ESKF, the (Gaussian) error state and its associated covariance are propagated using a linear error-state process
model. �en, with the incorporation of zero-velocity measurements, the error state is rendered observable; the
measurement update step produces the corrected (a posteriori) error-state terms, which are injected back into
the nominal state to re�ne the current estimate. A�er each measurement update, the error state is reset back to
zero. In the next sections we discuss the prediction and measurement steps of the ESKF. We refer to Appendix
C for the full derivation of the nominal/error state process models and covariance propagation model. We also
refer to Solà (2015) for an in-depth explanation of the ESKF.

Prediction Step

Outside of the �lter, the discrete-time motion model f(xτ ,uτ ,0) is used to propagate the nominal state using
the IMU inputs without taking into consideration the noise components:

xτ+1 =

r
vτ+1i
i

v
vτ+1i
i

qivτ+1

 =


rvτ ii + vvτ ii δt+ 1

2

(
C{qivτ }am,τ − gi

)
δt2

vvτ ii +
(
C{qivτ }am,τ − gi

)
δt

qivτ ⊗
[

cos(
‖ωm,τ‖δt

2 )
ωm,τ
‖ωm,τ‖ sin(

‖ωm,τ‖δt
2 )

]
 . (3.8)

See Section 2.3.1 for a derivation of this process model based on Euler integration. As IMU measurements are
received, the non-linear process model is used to propagate the state posterior through time according to

x̌τ+1 = f(x̂τ ,uτ ,0). (3.9)

�e error state, on the other hand, is estimated within the ESKF. �e discrete-time error state process model
is linear with respect to the error state. De�ned below, this model uses Φτ+1,τ , the linear error state transition
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matrix, to propagate the error state during the prediction step

δxτ+1 = Φτ+1,τδxτ + w′τ , (3.10)

w′τ ∼ N
(
0,Q′

)
, Φτ+1,τ =

I3 I3δt 0

0 I3 −C{q̂ivτ }(am,τ )∧δt

0 0 I3 − (ωm,τ )∧δt

 . (3.11)

For covariance propagation within the prediction step, the a posteriori state covariance P̂τ is propagated through
Equation (3.10) to produce P̌τ+1,

P̌τ+1 = Φτ+1,τ P̂τΦ
>
τ+1,τ + Q′, Q′ ≈ GQG>δt, G =

 0 0

−I3 0

0 −I3

 . (3.12)

We provide a more complete derivation of Equations (3.10) and (3.12) in Appendix C. Next, we discuss how zero-
velocity measurements are incorporated within the update step of the �lter to re�ne the error state estimates.

Measurement Update Step

�e zero-velocity measurement model, h(xτ ,nτ ), is

yτ = h(xτ ,nτ ), (3.13)

= vvτ ii + nτ . (3.14)

Being a direct measurement of velocity, this model is e�ectively linear with respect to the state and with re-
spect to the measurement noise, nτ ∼ N (0,R). We use a homoscedastic (constant) measurement covariance,
R = σvI3. To perform the measurement update within the EKF, the measurement Jacobian H = ∂h(xτ ,nτ )

∂δxτ
is

required,

H =
[
0 I3 0

]
, H ∈ R3×9. (3.15)

Upon the arrival of a zero-velocity measurement, the predicted error state and its covariance are updated as

Kτ = P̌τH
>
(
HP̌τH

> + R
)−1

, (3.16)

P̂τ = (I9 −KτH) P̌τ , (3.17)

δx̂τ = Kτ (yτ − h(x̌τ ,0)) . (3.18)

�e corrected error state is then compounded with the nominal state,

x̂τ = x̌τ ⊕ δx̂τ , (3.19)

to produce the updated state posterior. Finally, a�er the composition step, the error state is reset to zero.
As previously discussed, the zero-velocity measurements should only be applied when the foot-mounted

IMU is stationary (i.e., during the midstance phase of the gait cycle). In our system, we detect these stationary
intervals using a zero-velocity detector. Next, we introduce a number of popular classical zero-velocity detectors
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and subsequently introduce our proposed data-driven zero-velocity detection approaches.

3.2.2 �reshold-Based Zero-Velocity Detection

Below, we provide brief descriptions of �ve threshold-based detectors. �e �rst four are existing LRT-based
detectors from the literature. �e �nal one is a custom zero-velocity detector that we implement using a Vi-
con motion capture system. �ese detectors all play a role in our data-driven zero-velocity detection frame-
work: our SVM-based motion classi�er (Section 3.2.3) can be paired with any of these detectors to produce a
motion-adaptive detector; and our data-labelling procedure (for training the learned zero-velocity detector in
Section 3.2.4) uses the output of these detectors to produce zero-velocity labels.

Stance Hypothesis Optimal Estimation (SHOE) Detector. �e SHOE detector (Skog et al., 2010b) uses
a small temporal window of IMU readings to either accept or reject the hypothesis that the sensor is mov-
ing relative to the navigation frame. �e hypothesis is rejected (and the alternate hypothesis—that the IMU is
stationary—is accepted) when the average of theL2-norm of the gravity-subtracted acceleration, combined with
an angular velocity term, falls below a threshold, γ. �e binary SHOE detector output is given by

yτ =

1, if 1
W

τ+W−1∑
n=τ

(
1
σ2
a

∥∥∥am,n − g ām
‖ām‖

∥∥∥2

+ 1
σ2
ω
‖ωm,n‖2

)
< γ,

0, otherwise.
(3.20)

�e two terms in the SHOE detector LRT are weighted by the variances of the linear acceleration and angular
velocity measurements, σ2

a and σ2
ω , respectively. �e term ām is the per-channel mean of the linear acceleration

over all of the samples within the current window of W samples and the term g is the norm of the gravity vector,
g = ‖gi‖.

Angular Rate Energy Detector (ARED). �e ARED (Skog et al., 2010b) shares the same angular velocity
detection component as the SHOE detector, but omits the linear acceleration term:

yτ =

1, if 1
W

τ+W−1∑
n=τ

‖ωm,n‖2 < γω,

0, otherwise.
(3.21)

Note that the trigger threshold, γω , is di�erent than that of the SHOE detector. �is detector is known to produce
false positives when the foot moves without rotating.

Acceleration-Moving Variance Detector (AMVD). �e AMVD (Skog et al., 2010b) identi�es zero-velocity
events by computing the variance of the linear acceleration measurements over W timesteps. A zero-velocity
event is detected when the acceleration variance falls below a prede�ned threshold, γv ,

yτ =

1, if 1
W

τ+W−1∑
n=τ

‖am,n − ām‖2 ≤ γv,

0, otherwise.
(3.22)

Memory-Based Graph �eoretic Detector (MBGTD). �e MBGTD (Olivares et al., 2012) is similar to the
AMVD in its use of linear acceleration values collected over a window. Rather than computing the variance of



38 Chapter 3. Learned Zero-Velocity Detection for Robust Inertial Navigation

the accelerometer signal, it computes the average Euclidean distance between samples within the window:

yτ =

1, if
(

maxτ≤i<j≤τ+W

∑j−1
l=i

∑τ+W
n=j ‖am,l−am,n‖

(j−i)(N−j+1)

)
≤ γm,

0, otherwise.
(3.23)

We refer the reader to Olivares et al. (2012) for a more detailed description.

Vicon-Based Zero-Velocity Detector. Vicon-based zero-velocity detection is an approach we developed to
acquire accurate zero-velocity labels for training our system. �is zero-velocity detection approach uses a
motion-tracking system to determine the position of the IMU accurately. �e position ground truth is then
used to estimate the IMU velocity through numerical di�erentiation. �e velocity norm (i.e., the foot speed) is
determined and a threshold, γv , is applied to detect when the foot velocity is nearly zero,

yτ =

1, if
∥∥∥ rτ−rτ−1

tτ−tτ−1

∥∥∥ < γv,

0, otherwise.
(3.24)

Our Vicon-based detector plays an important role in identifying midstance when the wearer’s foot is moving
directly upwards or downwards (e.g., when stair-climbing). During such a motion, the angular velocity and
linear acceleration of the foot are both small, which can cause classical detectors to report false positives. Since
the Vicon-based detector measures foot speed only, it is less likely to erroneously detect midstance during
upwards or downwards motions. With a nearly perfect velocity estimate, one would expect the Vicon-based
detector to be more accurate than other detectors that rely on the IMU measurements only. However, the
signi�cant impact forces associated with locomotion can cause the Vicon markers mounted to the IMU to vibrate,
which can result in a noisy Vicon-based velocity estimate during walking and running.

3.2.3 Motion Classi�cation for Adaptive Zero-Velocity �reshold Selection

Our approach for motion-adaptive zero-velocity detection incorporates a motion classi�er into the zero-velocity
detection pipeline, as illustrated in Figure 3.3. Since the optimal zero-velocity threshold is highly dependent
on motion type, we determine a motion-speci�c threshold for each motion type and use the motion classi�er
to adaptively update the threshold of a classical zero-velocity detector. In our experiments, we train a three-
motion support-vector machine (SVM) classi�er—capable of classifying walking, running, and stair-climbing—
for adaptive thresholding. �ese motions are chosen to encompass the general range of movement present
during locomotion within multiple-storey buildings.

�e SVM is a linear classi�er that can be trained to identify the hyperplane that maximally separates groups
of di�erently labelled data (Cervantes et al., 2020). Contrary to other linear classi�ers, SVMs can classify datasets
that are not linearly separable by using what is known as the kernel trick, transforming the inputs to a higher
dimensional feature space where they become linearly separable. We use a popular kernel function called the
radial basis function (RBF). SVMs are capable of learning a generalizable model using only a small amount of
data, and are therefore a popular choice of classi�er for small-scale learning applications. To train the SVM
we use a dataset whose individual samples consist of a window of IMU measurements with a consistent (and
known) motion type. We use the ‘one-against-one’ approach for multiclass classi�cation. Additional training
details are discussed in Section 3.3.2.

At test time, the SVM-based motion classi�er can adaptively update the threshold of a classical zero-velocity
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detector. We use the SHOE detector in our experiments but note that this method is amenable to any form
of threshold-based detection. To identify the optimal threshold for each motion type, we propose a threshold
optimization strategy that maximizes the Fβ score of the detector across a training dataset,

Fβ =
(
1 + β2

) PR

β2P +R
. (3.25)

In this F-measure, P refers to the detector precision and R to the detector recall, with respect to the ‘ground
truth’ zero-velocity signal measured by the Vicon-based zero-velocity detector. �e F score balances precision
and recall, with the β parameter controlling the importance of precision relative to recall. For β < 1, precision
is favoured over recall. Empirically, we �nd that precision is more important than recall, since false-positive
detections are detrimental to the system when the true IMU velocity is larger than zero.

3.2.4 LSTM-Based Zero-Velocity Classi�cation

Our second learning-based approach to zero-velocity detection removes most modelling assumptions (e.g., the
assumption that distinct motion classes exist) by entirely replacing the zero-velocity detector with an RNN. We
use a supervised learning approach to train a binary classi�er for zero-velocity detection from a dataset contain-
ing inertial measurements with zero-velocity labels. Inertial measurements are sequential and low-dimensional,
which makes them well suited for RNN sequence learning. In contrast to classical zero-velocity detection meth-
ods, which utilize a short sequence of data, an RNN is able to propagate its memory state across long input
sequences. �e network can therefore make use of temporal context during classi�cation and is able to exploit
the periodic nature of the human gait. We use the LSTM variant of RNNs for learned zero-velocity detection.

We employ a standard cross-entropy loss function to compare the predicted output, pi, with the target, yi,

LCE = − 1

N

N∑
i=1

yi log(pi) + (1− yi) log(1− pi). (3.26)

We generate our own binary zero-velocity labels (moving versus stationary) for every sequence within our
training dataset. While existing work has performed dataset labelling through pressure sensing (Skog et al.,
2010a) or manual annotation (Olivares et al., 2012), we leverage the �ve classical detectors from the previous
section that have been optimized to produce outputs that minimize the position error over a short movement
sequence of one motion type. For each motion trial, the threshold of each detector is varied (using a linear
search) to identify the optimal detector-speci�c value. �e zero-velocity output from the detector that produces
the lowest position error with our INS is used as the approximate zero-velocity ground truth for the trial. �is
zero-velocity labelling technique is based on the assumption that existing handcra�ed zero-velocity detectors
can produce optimal outputs if two conditions are met: (1) the wearer’s motion is of a �xed type and intensity and
(2) the zero-velocity threshold is optimized for the current motion. We ensure that the motion trials within the
training dataset satisfy these requirements, such that a �xed threshold detector can produce an (approximately)
optimal zero-velocity output over the full sequence.

3.3 Experiments

In this section, we describe the data collection and training procedures for the two proposed data-driven zero-
velocity detectors. �en, we benchmark the accuracy of our data-driven approaches by comparing them to
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Table 3.1: An overview of the foot-mounted inertial datasets that we collected. �e Vicon dataset is used to train our
learning-based classi�ers. �e remaining datasets are used for evaluation.

Dataset
(Relevant Section)

IMU
(Frequency)

Ground Truth

Method Type

Vicon
(Sections 3.3.1 to 3.3.2)

MicroStrain 3DM-GX3-25
(200 Hz)

Motion Tracking
(200 Hz) 3D Position

Hallway 1
(Sections 3.3.1 and 3.3.3)

VectorNav VN-100
(200 Hz)

Surveyed
(8 points) 3D Position

Hallway 2
(Section 3.3.5)

MIMU22BTP
(125 Hz)

Surveyed
(6 points) 3D Position

Stair-Climbing
(Section 3.3.3)

VectorNav VN-100
(200 Hz)

Surveyed
Floor Height

1D
(Vertical Only)

Infrared Camera
VICON Tracking Volume

Circular Test Area

≈5 m

Figure 3.4: �e Vicon motion capture area, used to collect foot-mounted inertial data with position ground truth.

existing classical zero-velocity detectors on several challenging indoor motion datasets.

3.3.1 Foot-Mounted Inertial Datasets

We collected training and evaluation datasets within three di�erent environments at the University of Toronto.
�e training data were collected in a room with a Vicon infrared motion tracking system to produce the position
labels for each inertial measurement. Following training, two additional evaluation datasets were collected: a
hallway dataset where the IMU wearer was performing walking and running motions, and a stair-climbing
dataset. Table 3.1 summarizes these datasets.

Vicon Dataset

�e Vicon dataset consists of 60 motion trials (amounting to a distance of approximately 1 km in total). All
trials were performed by a single person who had an IMU mounted to the top of their right foot, secured by
shoe laces. For the initial data collection, we used a LORD MicroStrain 3DM-GX3-25 IMU operating at 200 Hz.
�e motion trials primarily consisted of walking and running at a range of speeds, but also included �ve stair-
climbing trials and �ve crawling trials. Approximately ten trials involved irregular motions such as shu�ing,
walking backwards, or raising a foot vertically. Each motion trial was performed in our 5 m× 5 m Vicon motion
capture area (see Figure 3.4), where ground truth position updates at 200 Hz were available.

We ensured that the motion within each trial consisted of a �xed type and gait frequency for two reasons.
First, it simpli�ed the labelling procedure for our motion classi�er training, as all data within the trial could
be assigned the same motion class. Second, it allowed us to produce high-quality zero-velocity labels using
classical zero-velocity detectors with an optimized zero-velocity threshold (using the procedure described in
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Section 3.2.4). In summary, we optimized each detector threshold by minimizing the position error relative to
ground truth, and selected the zero-velocity output from the best-performing detector. A linear search was used
to identify the threshold that minimized the average position error. �ese labels were then used to train the
LSTM zero-velocity classi�er.

Table 3.2 details the number of times each detector (with its per-trial optimized threshold) resulted in the
lowest error for one of the 60 trials. �e SHOE detector produced the lowest average root-mean-square error
(ARMSE) in general. �e Vicon-based detector and the ARED were comparable to the SHOE detector in terms of
accuracy, while the MBGTD and the AMVD performed substantially worse. Table 3.2 also shows the threshold
range that resulted in the minimum error over the motion trials. �e wide range of the per-trial optimal threshold
indicates how dependent the threshold parameter is on the motion type and is further evidence that a single
threshold is not suitable for dynamic motions.

UTIAS Hallway Dataset

We evaluate our proposed data-driven zero-velocity detectors over longer trajectories by carrying out a series
of motion trials in the hallways (i.e., the Hallway 1 Dataset of Table 3.1) of our building at the University of
Toronto Institute for Aerospace Studies (UTIAS). Ground truth position information was obtained by surveying
the locations of a series of �at markers on the �oor using a Leica Nova MS50 MultiStation. We illustrate the
marker locations in Figure 3.5. Each marker consisted of an AprilTag (Olson, 2011) with a side length of 28
cm a�xed to the �oor. Although AprilTags are a visual �ducial system, we used only their outline to de�ne
the orthogonal coordinate axes of each marker frame, with the bo�om le� corner of the AprilTag de�ning the
marker itself. Because all of the markers were not visible from a single surveying location, we mapped pairs of
consecutive coordinate frames to de�ne frame-to-frame SE(3) transforms, and compounded them to compute
the coordinates of each marker in a single navigation frame.

For data collection in these experiments, we used a VectorNav VN-100 IMU operating at 200 Hz. Test subjects
were given a handheld trigger that they pressed every time their foot was directly on top of a �oor marker—this
allowed the INS position estimate at the current timestep to be compared with the known marker location. For
each hallway trial, we report the ARMSE between the estimated position and the ground truth position across
all markers along the trajectory. Data were collected from �ve di�erent test subjects. All subjects started and
ended at the same position on the test course. During each trial, a subject travelled approximately 110 m through
three di�erent hallways, turned around, and returned to the origin along the same path. We carried out three
di�erent types of trials: walking, running, and combined motion. For the walking and combined motion trials,
the test subjects recorded their position at every marker; for the running trials, only the corner markers were
used so that the test subjects did not need to slow down unnecessarily on straight sections of the course. For the
combined motion trials, test subjects alternated between walking and running along the course. �e path was

Table 3.2: Results for zero-velocity labelling of data from the 60 motion trials carried out within our Vicon motion capture
arena. Num. Trials refers to the number of trials in which the particular detector produced the lowest ARMSE a�er threshold
optimization.

Detector Avg. Error (m) Min. �resh. Max. �resh. Num. Trials

VICON 0.074 2.25× 10−2 8.25× 10−1 15
SHOE 0.068 4.75× 105 6.50× 108 30
AMVD 0.336 1.00× 10−3 1.95× 100 0
ARED 0.075 1.25× 10−2 2.70× 100 13

MBGTD 0.329 5.75× 10−3 9.75× 10−1 2
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Figure 3.5: �e hallway dataset used for evaluation of our data-driven zero-velocity detectors.

also extended to allow subjects to enter two rooms (identi�ed as Room 1 and Room 2 in Figure 3.5). In Room
1, there was an open space where the test subjects completed three circular laps while alternating between
walking and running. Subjects ascended six steps to enter Room 2 and then descended along a ramp, at which
point they re-entered the last hallway. �e �ve subjects repeated each trial three times, which resulted in a total
of 45 motion trials that covered approximately 6.6 km.

Stair Climbing Dataset

We also collected a stair-climbing dataset, acquired from a single test subject who ascended and descended eight
�ights of stairs within a single stairwell. We note that this dataset is unique compared with other methods in
the literature, which typically are only evaluated on planar surfaces. For each trial, the test subject started
and �nished at the same 3D position, allowing the 3D loop-closure error to be used as a performance metric.
Additionally, the test subject pressed a handheld trigger to indicate when they reached a new �ight of steps,
which enabled us to compute the vertical error on a per-�ight basis. �e highest �oor was approximately 16.5
m above the ground �oor. Every �ight consisted of 12 steps, each 17.1 cm in height, resulting in a spacing of
2.05 m between �oors.

�e test subject performed eight stair-climbing trials in total. �e �rst four trials consisted of ascending
from the 1st to the 3rd, 5th, 7th, and 9th �oors, respectively, followed by a return to the ground �oor. �e last four
trials reversed this order, with the user starting on the 9th �oor and descending to the 7th, 5th, 3rd, and 1st �oors,
respectively, followed by an ascent back to the 9th �oor. In total, 80 �ights of stairs were climbed, amounting to
960 steps and 164.6 m of vertical displacement.

3.3.2 Implementation Details

In this section, we discuss the training and implementation details for our data-driven classi�ers. First, we
discuss the training of the SVM motion classi�er. �en, we discuss the training of the LSTM-based zero-velocity
classi�er.
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SVM Details

We train two separate SVMs for motion classi�cation. �e �rst is a six-motion classi�er, which we use to
demonstrate the possibility of multiple-motion classi�cation. �e second is a three-class SVM, which we use for
motion-adaptive zero-velocity classi�cation. In both cases, we use data collected in our Vicon arena to train the
SVMs. We select motion-speci�c trials and generate training and validation samples from them; data from the
�rst half of the trial are used for training and data from the second half are used for validation. A total of 2,000
samples are generated per trial, with each sample consisting of one second of data. �e six IMU channels are
concatenated together across the window. Each sample is normalized by scaling the acceleration and angular
velocity channels to be of unit norm. Every generated sample is labelled with the known motion class of the
trial it originates from.

For the six-motion classi�er, we collected foot-mounted inertial data from �ve people, who each recorded six
separate motion trials that consisted of either walking, jogging, running, sprinting, crouch-walking, or ladder-
climbing within the Vicon area.3 In each trial, the users moved along a circular trajectory (with a radius of
approximately three metres) for ten laps. For the motion-adaptive zero-velocity classi�er, we use a subset of
the Vicon dataset from Section 3.3.1 (four walking trials and �ve running trials), along with six additional trials
from the stair-climbing dataset. We apply data augmentation by randomly rotating the speci�c force and angu-
lar velocity measurements within each sample to simulate additional arbitrary IMU orientations. Within each
sample, the same random rotation is applied to all measurements.

�e SVMs are trained using the Python scikit-learn library (Pedregosa et al., 2011). We choose a
radial basis function (RBF) kernel with a kernel coe�cient of 0.001. Figure 3.6 presents a confusion matrix
indicating the accuracies of the six-class and three-class SVM on the validation sets. For the six-class SVM, we
achieve high accuracies across all classes, which demonstrates that generalization of motion classi�cation across
multiple persons and multiple motions is possible. Our three-motion classi�er achieves accuracies of over 70%
for all three motions, but o�en mis-classi�es stair-climbing as walking and vice versa. We a�ribute this to a
number of factors: the similarity of walking and stair-climbing, the smaller amount of training data compared
with the six-motion SVM, and the randomization of the IMU orientation (which prevents the SVM from inferring
the motion type by observing the direction of the gravity vector). We note that this reduction in accuracy is
not detrimental to the zero-velocity-aided INS since the optimal thresholds for walking and stair-climbing are
similar.

Following training, we select optimal zero-velocity thresholds for each motion type by maximizing the Fβ
score, using β2 values of 0.16 and 0.4 for walking and running respectively. �resholds were sampled within
the range [102, 108] using a linear search. Since we do not have ground-truth zero-velocity labels for the stair-
climbing data, we manually select the threshold to be the same as the walking threshold. In the future, optimizing
the stair-climbing threshold could lead to additional improvements.

LSTM Details

Our LSTM network is composed of six layers, with 80 units per layer. �e �nal layer is fully connected and
reduces the number of outputs from the previous layer (80) to two. A so�max function bounds the two outputs
to be within zero and one; the �nal network output is the argmax of the so�max result, which indicates whether

3Note that this multiple-user dataset used to train our six-class SVM was supplementary to the datasets that were introduced in Sec-
tion 3.3.1.
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Figure 3.6: Our SVM-based motion classi�er results. We train a six-motion model as a proof of concept, and then use the
three-class (walking, running, and stair-climbing) within our motion-adaptive zero-velocity detector.

a zero-velocity or an in-motion prediction is more likely.4

We train the LSTM-based zero-velocity classi�er with the Vicon dataset described in Section 3.3.1. �e mo-
tion trials are split into training and validation sets (51 and 9 trials, respectively). We process the raw, labelled
inertial motion data into a form that is appropriate for training: 7,000 samples are extracted from each trial,
with each sample spanning a window of 100 timesteps. An individual sample, xi ∈ R100×6, is paired with the
zero-velocity label yi ∈ {0, 1} that indicates if the IMU is stationary at the �nal timestep in the window. To
ensure that the network is able to generalize to new inertial data, we apply three data augmentation techniques:
(1) we rotate each training sample by a random rotation; (2) we randomly scale each sample by a random factor
s ∈ [0.92, 1.02]; and (3) we add zero-mean Gaussian noise (σ = 0.075). �ese augmentation methods simu-
late angular velocity and linear acceleration readings from di�erent IMU orientations and motions to improve
generalization.

We implement our LSTM network in PyTorch and train it for 300 epochs on an NVIDIA Titan X GPU, using
the Adam optimizer to minimize the loss (Equation (3.26)). During training, we use gradient clipping (limiting
our gradient magnitude to be less than one) to avoid issues with exploding gradients. Our training parameters
include a learning rate of 5 × 10−3 (with its size reduced by half every 30 epochs), weight decay of 1 × 10−5,
and minibatch sizes of 800. At test time, we achieve real-time performance on a CPU.

3.3.3 Experimental Results

In this section, we demonstrate the e�ectiveness of our data-driven approaches by evaluating their performance
on the hallway and stair-climbing trials. We follow this with a short discussion of the bene�ts and drawbacks
of our system. Finally, we present the results of a domain adaptation experiment that extends our method to
generalize on di�erent (low-cost) IMUs without having to recollect new training data.

4�e number of false-positive zero-velocity classi�cations is reduced at test-time by removing all positive events whose con�dence level
falls below 0.85.
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Table 3.3: Position error results (3D ARMSE) from the hallway trials, comparing a �xed-threshold SHOE detector and
ARED against our motion-adaptive zero-velocity detector and LSTM-based zero-velocity classi�er. �e RMSE is computed
at several locations in the hallway where surveyed �oor markers were placed.

Motion ARMSE (m)

Type Subject ARED SHOE Motion-Adaptive1 LSTM

γwalk
(0.3)

γmid
(0.55)

γrun
(0.8)

γwalk
(1× 107)

γmid
(8.5× 107)

γrun
(3.5× 108) γwalk | γrun | γstair —

0 1.11 2.93 4.25 0.54 1.26 6.16 0.56 0.52
1 1.10 1.35 1.57 0.84 1.15 2.09 0.85 0.81

Walking 2 2.51 2.73 2.95 2.27 2.66 3.86 2.43 2.04
3 1.07 1.39 1.69 1.09 1.20 3.31 1.08 1.10
4 0.65 0.73 0.82 0.62 0.73 1.24 0.75 0.64

0 1.17 1.15 2.66 3.31 0.87 2.44 0.89 0.87
1 3.70 1.86 1.93 16.45 1.64 0.88 0.76 0.67

Running 2 1.47 1.31 1.43 1.64 1.32 2.43 1.36 0.86
3 0.62 1.33 1.54 1.04 1.29 1.31 0.67 0.62
4 1.25 15.01 15.91 1.29 1.17 2.04 1.96 0.93

0 1.15 1.72 2.42 1.05 1.25 3.59 1.00 0.90
1 2.29 2.02 2.20 2.00 1.73 2.31 1.35 1.20

Combined 2 2.47 2.97 3.30 2.09 2.75 3.91 2.35 1.65
3 1.11 1.28 1.37 1.10 1.22 2.37 1.10 1.07
4 2.57 2.66 2.64 2.51 2.63 1.60 1.00 1.24

Mean 1.52 2.48 3.03 2.38 1.44 2.81 1.14 0.97
1 For the motion-adaptive thresholds, the appropriate SHOE detector thresholds are used: γwalk = 1 × 107, γrun = 3.5 × 108, and
γstair = 1× 107.

Hallway Trial Results

For each trial, we evaluate our baseline INS with the SHOE detector, the ARED, our motion-adaptive detector,
and our LSTM-based zero-velocity classi�er. Table 3.3 shows the performance of these detectors for the hallway
trials. Results for the SHOE detector and the ARED are calculated using three �xed thresholds that are optimized
for walking (γwalk), running (γrun), and for achieving consistent performance across the mixed-motion Vicon
test dataset (γmid). On average, our LSTM detector achieves a 32.6% lower ARMSE than the most accurate �xed-
threshold detector (SHOE with γmid). Figures 3.7 and 3.8 illustrate the increase in accuracy that our LSTM-based
classi�er achieves for the hallway trials. Our motion-adaptive detector produces a similar accuracy as the LSTM
detector, but notably is not as accurate at height estimation (see Figure 3.8).

Stair-Climbing Results

Again, we compare the performance of the motion-adaptive detector and the LSTM-based zero-velocity classi-
�er to the SHOE detector and ARED. Both the SHOE detector and the ARED use �xed thresholds that, in this
case, are optimized to minimize the error on the Vicon test set. While a threshold optimized for stair-climbing
would produce more accurate results for the SHOE detector and for the ARED, we omit this from our compari-
son because optimizing for stair-climbing would substantially degrade detector performance for more common
motion types. Table 3.4 lists the results for the 3D and vertical loop-closure error and the vertical farthest-point
error, which we de�ne as the di�erence between the estimated height of the IMU and its known height at the
farthest point of the trajectory. In all cases, our data-driven detectors outperform the SHOE detector and the
ARED by a large margin. Figure 3.9 depicts the results from our stair-climbing experiments. Figures 3.9a and 3.9b
illustrate failure modes of the SHOE detector and the ARED: these hand-engineered detectors both overestimate
and underestimate vertical displacement to such a degree that even �oor-level accuracy cannot be a�ained. In
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Figure 3.7: INS trajectories (top-down view) for walking, running, and mixed-motion trials. �e proposed data-driven
detectors (the adaptive and LSTM-based methods) consistently outperform classical zero-velocity detectors that rely on
�xed thresholds.
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Figure 3.8: Vertical trajectory estimates for motion on a planar surface (a �at �oor). �e vertical o�sets are due entirely to
INS dri�.
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Figure 3.9: Results from the stair-climbing trials. �e LSTM-based zero-velocity detector outperforms existing detectors in
terms of the vertical position error.

Table 3.4: Results from the stair-climbing trials. Loop-closure error is computed at the end of the trajectory (when the user
returned to the origin).

# Flights Detector Position Errors (m)

Loop-Closure
(3D Error)

Loop-Closure
(Vertical Error)

Farthest-Point
(Vertical Error)

ARED 1.895 1.878 1.265
2 SHOE 1.014 1.001 0.703

Adaptive 0.091 0.055 0.109
LSTM 0.098 0.052 0.115

ARED 3.155 2.865 2.015
4 SHOE 1.841 1.18 1.526

Adaptive 0.321 0.199 0.146
LSTM 0.343 0.251 0.172

ARED 2.443 2.109 3.294
6 SHOE 1.833 1.499 2.945

Adaptive 1.124 0.513 0.931
LSTM 0.362 0.279 0.396

ARED 4.83 4.811 3.725
8 SHOE 2.312 2.244 2.963

Adaptive 0.853 0.648 0.665
LSTM 0.73 0.495 0.496

ARED 3.081 2.916 2.575
Mean SHOE 1.75 1.481 2.034

Adaptive 0.597 0.354 0.463
LSTM 0.384 0.269 0.295

contrast, our proposed detectors on average produce a vertical estimate that exceeds the accuracy required for
�oor level identi�cation. Figure 3.9c plots the vertical displacement error against the number of steps climbed
for all trials. �e proposed detectors maintain an accuracy of be�er than one metre over a range of 100 steps,
while the SHOE detector and the ARED exceed this error bound within 25 steps.

3.3.4 Discussion

Our proposed zero-velocity detectors operate consistently with �ve di�erent test subjects, while being trained
with data from a single subject only. Furthermore, the detectors operate largely independently of the orientation
of the IMU on the foot and are invariant to the location of the IMU on the shoe and to the shoe type in general (we
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Table 3.5: Operating frequencies for several zero-velocity detectors. Our proposed detectors run in real time on an Intel
i7-6700HQ CPU.

ARED SHOE Adaptive LSTM

Operating Frequency (kHz) 215 32.2 1.97 3.35
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Figure 3.10: A failure case for our LSTM, where the test subject’s velocity is outside of the training distribution.

did not specify where the IMU should be mounted or what type of shoe should be worn for data collection). �e
learning-based detectors are able to run on a CPU in real time; we report the operating frequencies in Table 3.5;
both of the proposed detectors, although slower than the classical detectors, are able to function at a frequency
above approximately 2 kHz. In general, this operating frequency is much greater than the operating frequency
of an IMU.

Despite the increase in accuracy (and the other bene�ts described in the previous paragraph) provided by the
learning-based detectors, there are areas where further improvements could be made. First, the motion-speci�c
threshold of the zero-velocity detector could be extended to additional motions. Figure 3.6a illustrates how
the SVM classi�er accurately classi�es a number of additional motion types; by extending our motion-adaptive
zero-velocity detector to include these motion types, our system could become more robust to varying motion.
Second, the LSTM-based zero-velocity classi�er could make use of training data collected in areas other than
our Vicon room and at greater velocities (as seen in Figure 3.10, the LSTM model is occasionally unable to detect
zero-velocity events when a wearer’s speed is outside of the training distribution).

Lastly, we note that the increase in positioning accuracy derived from the use of our learning-based detectors
is primarily a result of an improved velocity estimate. Although the zero-velocity updates do impact the IMU roll
and pitch estimates, the yaw (heading) remains unobservable (Nilsson and Handel, 2014). Classical zero-velocity
detectors such as the SHOE detector permit roll and pitch to be recovered accurately (because the magnitude of
the gravity vector, which appears in the error state computation, is large in comparison with other measured
accelerations); we �nd that the use of learning-based detectors does not substantially change the accuracy of
the a�itude estimate.

3.3.5 Generalizing to New IMUs

Although we have shown that our LSTM-based zero-velocity classi�er generalizes to new IMU placements, new
users, and varying motion types, we do not expect it to function properly with an IMU that has signi�cantly
di�erent hardware characteristics. To improve this, we propose a data manipulation technique that transforms
the data within the training dataset to be representative of the outputs of a di�erent IMU. By retraining the
zero-velocity classi�er with the transformed data, the LSTM network is able to generalize to inertial data from
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a di�erent, lower-quality sensor. Importantly, this approach obviates the need to collect any new training data
with the alternate IMU, which would be tedious, time-consuming, and potentially infeasible.

Our proposed transformation technique adds zero-mean Gaussian noise to each IMU channel and then down-
samples the original data to a lower frequency. �ese steps are meant to account for varying measurement qual-
ity and for varying IMU sample rates. �e newly transformed data are then used to retrain the LSTM network to
be compatible with an alternate IMU. We note that our data manipulation approach can only be used to simulate
an IMU with higher levels of noise and a lower update frequency than the IMU used to collect the training data.
Despite this limitation, given a training dataset collected with a high-quality IMU (e.g., our Vicon dataset), there
is a wide array of lower-cost IMUs to which the data manipulation technique is applicable.

IMU Generalization Experiments

Our initial LSTM-based zero-velocity detector is trained with data from the Vicon dataset, collected with the
MicroStrain 3DM-GX3-25 IMU operating at 200 Hz. While we demonstrate that the learned model generalizes to
the (comparable) VectorNav VN-100 IMU at test time, both IMUs have similar noise characteristics and operate
at the same frequency. Herein, as a proof-of-concept study, we show that our model can be retrained to operate
with the low-cost Osmium MIMU22BTP IMU, running at 125 Hz, which has signi�cantly noisier accelerometers
and gyroscopes. For brevity, we refer to this low-cost IMU as the Osmium IMU.

We transform the Vicon training dataset to be representative of the data generated by the Osmium by down-
sampling from 200 Hz to 125 Hz5 and adding Gaussian noise to each sample (σa = 1×10−2 and σω = 1.74×10−3

for the accelerometer and gyroscope channels, respectively). We then retrain the LSTM model with the modi�ed
VICON dataset using the same LSTM training procedure described in Section 3.2.4.

We evaluate the LSTM classi�er (i.e., both the original and the retrained models) on the Hallway 2 dataset
(see Table 3.1) that includes data from �ve test subjects walking and running with the Osmium mounted on their
right foot. We evaluate the end-point error at the farthest point along the trajectory and we report the average
end-point error for each motion type. Table 3.6 shows that the retrained LSTM-based zero-velocity classi�er
results in the most accurate position estimates—its use led to an 18.4% reduction in mean error with respect
to the original LSTM network trained with the MicroStrain data. �ese results indicate that the proposed IMU
generalization method can facilitate the use of the LSTM-based classi�er with new IMUs without the need to
recollect any training data.

3.4 Summary and Future Work

Ensuring correct zero-velocity detection is a crucial step towards producing a robust pedestrian navigation
system. In this chapter, we have presented two new techniques for zero-velocity detection that are robust
to varying motion type. Our SVM-based motion-adaptive detector operates as a motion classi�er to actively
update the threshold parameter of a classical zero-velocity detector. In contrast, our LSTM-based zero-velocity
classi�er directly outputs zero-velocity pseudo-measurements without requiring any motion-speci�c parameter
tuning. We showed that both of our proposed techniques outperform existing threshold-based detectors on
several large datasets involving walking, running, stair-climbing, and mixed-motion trials. �e LSTM-based
zero-velocity classi�er produced the lowest error on average, followed by our SVM-based motion classi�er.
Lastly, we introduced a generalization method that permits the use of our LSTM-based classi�er with lower-
cost IMUs without the need to collect additional training data.

5We apply a �rst-order low-pass (Bu�erworth) �lter with a cuto� frequency of 40 Hz to prevent any aliasing e�ects.
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Table 3.6: IMU generalization results. When evaluating the LSTM on the Hallway 2 dataset (which is collected with the
low-cost Osmium IMU), the retrained LSTM network outperforms the original LSTM trained with the MicroStrain IMU data.

Motion End-Point ARMSE (m)

Type Subject SHOE Adaptive Original
LSTM

Retrained
LSTM

γwalk γmid γrun — — —

Walking

1 1.17 1.86 2.23 1.24 0.98 1.30
2 0.76 1.10 1.27 0.74 0.77 0.72
3 0.31 0.65 0.85 0.34 0.45 0.32
4 0.60 1.47 3.07 0.62 0.48 0.56
5 1.02 1.73 2.17 1.01 1.26 0.92

Running

1 12.36 2.39 2.39 2.22 2.30 2.40
2 99.11 3.74 1.82 1.82 4.02 1.72
3 62.27 1.73 1.82 1.82 1.79 1.80
4 154.88 3.37 4.90 4.89 3.31 3.28
5 128.31 1.12 1.48 1.48 4.09 1.33

Combined

1 5.45 2.61 2.91 2.70 2.69 2.60
2 2.80 2.33 2.40 2.30 1.93 2.00
3 2.50 0.76 0.86 0.70 0.71 0.72
4 11.66 2.26 2.72 2.48 2.13 2.12
5 0.87 1.29 1.64 1.09 0.77 0.83

Mean 32.27 1.89 2.17 1.70 1.85 1.51

�is chapter empirically demonstrates how data-driven models can be used to augment a �lter-based estima-
tor. Building on our current work in the domain of zero-velocity-aided navigation, future work may investigate
the possibility of removing the zero-velocity detector component and directly learning a zero-velocity measure-
ment model using a di�erentiable �lter (Haarnoja et al., 2016). �is modi�cation would allow the system to be
trained end-to-end by minimizing a pose loss directly and would allow for a heteroscedastic measurement noise
covariance model to be learned. By producing uncertainty-aware measurements, the system could properly
in�ate the measurement uncertainty when measurements are unreliable (e.g., during high-intensity motions,
when the IMU may not be completely stationary during midstance). A similar approach could be taken to more
accurately model sensor noise. For example, in�ating the process noise covariance during the high acceleration
period that occurs when the heel strikes the ground can mitigate error growth (Ju et al., 2018).

Future work may also investigate how other pseudo-measurements can be learned and incorporated into
our estimator. �e zero-angular-rate update (ZARU) detector, for example, provides pseudo-measurements of
the gyroscope bias during midstance when the angular velocity of the IMU is approximately zero (Ashkar et al.,
2013). Detecting these periods, however, is challenging, and could be accomplished with a data-driven model
instead. Finally, our system could incorporate magnetometer measurements, which can be used to render the
yaw (heading) direction observable. In systems with magnetometer-based heading error reduction, magnetic
disturbances must be accounted for properly and are usually removed/ignored by applying handcra�ed heuris-
tics. Like the classical zero-velocity detector, these heuristics are based on simplifying assumptions and are
bri�le as a result. �erefore, there is motivation to replace them with data-driven models.



Chapter 4

Visual Egomotion Estimation

Next, we shi� our focus from inertial navigation to visual egomotion estimation, or visual odometry (VO).1 In
this chapter, we introduce the general framework for visual egomotion estimation and contrast the existing
‘classical’ approaches with alternative data-driven systems. Since the focus of this thesis is to investigate how
learning-based methods can be used for robust self-localization, a�er identifying some of the primary failure
modes of classical methods, we propose a data-driven approach as a robust alternative. In particular, we intro-
duce a framework for data-driven visual egomotion estimation that utilizes domain knowledge from the �eld
of structure from motion (SfM). A�er introducing the learned SfM system within this chapter, we present our
contributions to improve the system in Chapters 5 and 6.

4.1 Classical Approaches to VO

Visual odometry, a term �rst coined by Nistér et al. (2004) in their seminal paper, is the estimation of egomotion
using a stream of visual measurements from one or more cameras. �e �rst VO system was proposed in the early
1980s by Moravec (1980). In the following two decades, VO systems were developed extensively for NASA’s
Mars exploration program (Scaramuzza and Fraundorfer, 2011). �e pioneering work of Nistér et al. (2004),
who proposed the �ve-point algorithm for estimating camera motion by computing the essential matrix in real
time, led to a number of works that further advanced the �eld of ‘classical’ VO. �ese advances were also made
possible in part by the development of simultaneous localization and mappping (SLAM) (Durrant-Whyte and
Bailey, 2006), which is closely tied with VO; the front-end of SLAM systems o�en incorporate VO algorithms
to produce local motion estimates, which are then re�ned within the back-end. Further, VO methods have
been in�uenced by structure from motion (SfM) (Longuet-Higgins, 1981) techniques �rst used in the �eld of
computer vision. At its core, SfM involves the joint estimation of camera motion and scene structure through
an optimization procedure known as bundle adjustment (Triggs et al., 1999).

Modern VO systems are distinguished by the amount of image information they utilize for motion estimation
(i.e., sparse versus dense) and whether a photometric or geometric loss is minimized (i.e., direct versus indirect).
In sparse approaches, a relatively small number of image features are extracted and tracked between frames;
their 3D locations are then estimated. Conversely, dense approaches, which minimize a direct photometric loss
based on image alignment, maintain depth estimates for a substantially larger number of pixels in the image.

1In this chapter, we use the terms ‘VO’ and ‘visual egomotion estimation’ interchangeably. VO is the more popular term in the �eld of
robotics, while egomotion estimation is more popular in the �eld of computer vision.

51
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4.1.1 Feature-Based (Indirect) Methods

�e three primary steps for sparse VO are: (1) extracting a relatively small number of points, or features, within
the image; (2) establishing correspondences of these features between frames; and (3) using one of several motion
estimation algorithms based on triangulation to determine camera motion.2

Feature Detection and Tracking. Feature detection usually involves, but is not limited to, the extraction of
‘corner’ pixels that have large gradients in the horizontal and vertical directions in the image (Li, 2017). A�er
these features are identi�ed, their correspondences in nearby frames are established. Establishing feature corre-
spondence involves matching features with a similarity-based metric, or tracking how features move between
frames (e.g., using optical �ow).

Motion Estimation. Once correspondences are established, motion estimation is performed using one of
several possible methods. �e ‘2D-to-2D’ method uses the epipolar constraint to compute the essential matrix,
from which the camera motion can be extracted. �e simplest form of 2D-to-2D estimation is the �ve-point
algorithm (Nistér et al., 2004), which requires �ve points with known correspondence between two frames.
�is method is repeated within a random sample consensus (RANSAC) (Fischler and Bolles, 1981) procedure for
determining the essential matrix that maximizes the number of inlier point correspondences. �e ‘3D-to-2D’
method explicitly estimates 3D feature locations and determines the camera motion through the minimization
of a reprojection loss. Here, the estimated 3D coordinates for each feature are projected to the image plane and
directly compared with their observed (measured) locations.

Local Optimization. Following interframe motion estimation, the camera poses and feature locations can be
optimized across a window of frames using a �ltering approach, or sliding-window bundle adjustment. Note
that this joint optimization becomes more computationally di�cult as the number of tracked features increases.

4.1.2 Dense (Direct) Methods

In contrast to indirect methods, which minimize a reprojection error, direct methods minimize a photometric
loss based on image alignment in order to estimate the camera motion between frames. �e loss is minimized
when pixels from the current frame are projected to their corresponding (correct) locations in the previous im-
age. �is image alignment procedure is based on the photometric consistency assumption, that is, that there is
constant scene illumination and that points within the scene have Lambertian re�ectance. For dense methods,
the photometric loss is minimized for all (or most) of the pixels within the image, causing the overall compu-
tational burden to increase relative to feature-based methods. As a result, joint estimation of scene structure
and camera motion cannot be performed in the same way that it can for sparse optimization methods. Instead,
existing methods (Engel et al., 2013) use alternate optimization steps for estimating camera motion and updating
the 3D scene representation. First, given the current (�xed) 3D scene representation, camera motion between
the previous and current frame is estimated through dense image alignment. �en, given the (�xed) motion
estimate, the 3D scene representation is transformed to the next frame and updated. Most methods, rather than
tracking all pixels within the image, adopt a semidense approach that only takes into consideration pixels that
have strong local gradients. Since image regions without texture do not impact the photometric loss, the removal
of low-gradient pixels has very li�le impact on performance but can substantially reduce the computational load.

2We note that some methods deviate from this categorization. Forster et al. (2014) (SVO) and Engel et al. (2017) (DSO), for example,
demonstrate sparse, direct methods based on minimization of a photometric loss across a subset of high-gradient pixels in the image.
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4.1.3 Failure Modes

Classical VO approaches exhibit a high degree of accuracy within ‘nominal’ operation conditions, where there
is constant illumination, su�cient scene texture, and few dynamic objects within the scene as well as su�cient
overlap between consecutive frames. Outside of these conditions, the modelling assumptions built into the
various VO frameworks may no longer hold, resulting in degradation of accuracy, or even failure to produce a
pose estimate. �ese failure modes may di�er between di�erent types of estimators.

In sparse feature-based systems, accurate (and robust) localization is predicated on the continued existence
of a su�cient number of outlier-free correspondences between frames. Adverse operating conditions can result
in either a lack of detected features or in the failure to track or match existing features between frames. �e
detection of new features is limited, for example when operating in environments with low light or insu�cient
texture, or as a result of motion blur from rapid camera motion. Failed tracking or matching between frames
happens when: (1) there is an insu�cient number of matched correspondences or (2) features are incorrectly
matched to produce outlier correspondences. �e former can occur within degraded visual environments or as
a result of large camera motion that diminishes the scene overlap between frames; the la�er case is o�en a result
of the presence of dynamic objects or repeated texture within the scene.

Dense methods forego the feature tracking/matching step, since correspondences are not required to evalu-
ate the direct (photometric) loss based on image alignment. �ese methods can therefore maintain accuracy over
feature-based methods within some types of visually degraded environments (e.g., scenes with li�le texture).
Instead, the primary failure mode is the divergence of the alignment optimization procedure. Divergence may
occur as a result of poor initialization or as a result of violations of the brightness constancy assumption. Direct
methods are therefore best suited to conditions with small changes in perspective between frames and constant
scene illumination.

4.2 Learned Approaches to VO

New data-driven paradigms for VO replace portions (or all) of the classical localization pipeline with learned
models. We limit our discussion here to ‘end-to-end’ approaches, leaving the discussion of ‘hybrid’ approaches
for Chapter 7. End-to-end approaches parameterize the estimator as a neural network (typically a CNN) that
takes as input a pair of images and directly regresses the interframe pose change between frames. �ese end-to-
end networks can be trained with either supervised or self-supervised losses. In the next sections, we introduce
both types of systems in detail.

4.2.1 Supervised Learning Approaches to VO

If ground truth pose labels are available, egomotion labels can be generated for the training data and a pose
supervision loss can be formulated. �e pose supervision loss for an image pair with predicted translation rj

and rotationφj between frames is generally the mean squared error (MSE) between the ground truth egomotion
(consisting of translation r′j and rotation φ′j terms) and the network predictions (Wang et al., 2017):

Lsup =
∥∥r′j − rj

∥∥2

2
+ κ

∥∥φ′j − φj∥∥2

2
. (4.1)

Here, φ is a parameterization of the rotation between the two image frames and is usually a constraint-free
representation such as an axis-angle vector or Euler angles. �ere are, however, other rotation representations
that have been shown to be more suitable for learning, including continuous representations in 5D and 6D
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(Zhou et al., 2019c). �e constant κ in the loss function is added to balance the magnitude of the translation and
rotation errors. Using a large value for κ is particularly important for driving datasets, since the translation is
o�en several orders of magnitude larger than the rotation.

Networks trained to minimize a pose supervision loss are primarily distinguished by the inputs and the
network structures that are employed. �e standard network input is a stacked image pair. Alternatively, dense
optical �ow estimates (Costante et al., 2015; Costante and Ciarfuglia, 2018) can be used as inputs. From these
inputs, the baseline egomotion network consists of a CNN that returns the 6-DOF egomotion prediction (Konda
and Memisevic, 2015). Given the sequential nature of visual data, a natural extension is to incorporate RNN
layers into the baseline network structure (Xue et al., 2019; Wang et al., 2017).

Supervised approaches have a number of positive and negative aspects. One positive aspect of the supervised
loss is that it provides the network with scale information (through the translation labels). Minimization of
the loss therefore results in a scale-aware egomotion network. �e primary drawback of supervised learning,
however, is that it requires high-quality pose labels that can be arduous to obtain (and may not always be
accurate). �e scalability of systems trained through supervised learning alone, therefore, is limited compared
to that of self-supervised alternatives.

4.2.2 Self-Supervised Learning Approaches to VO

Self-supervised learning has become popular in recent years, motivated by the potential to train learned systems
without the need to secure a large amount of training labels. Further, self-supervised losses facilitate lifelong
learning by enabling network retraining with new data acquired at test time. For end-to-end VO systems, a self-
supervised training procedure based on the SfM framework has recently gained a�ention (Zhou et al., 2017);
here neural networks parameterize a direct mapping from pixel space to scene depth and camera motion. To
train these networks, a photometric reconstruction loss, which encodes the di�erence between a given ‘target’
image and a virtual image, is minimized. �is virtual image is a reconstruction of the target image synthesized
by warping a nearby source view. �e source view is warped through a view synthesis procedure using the
estimated scene depth and the relative camera pose (egomotion).

�e general framework for self-supervised learning of SfM is illustrated in Figure 4.1. �ere are three pri-
mary components: (1) the networks, DepthNet and EgoNet, which respectively produce a depth and egomotion
prediction for a source-target image pair; (2) a view synthesis module that uses the predictions to reconstruct
the ‘target’ image from pixels within the nearby ‘source’ images; and (3) the photometric reconstruction loss,
which is minimized during training. �e self-supervised SfM framework that originated with SfMLearner (Zhou
et al., 2017) has subsequently been developed by many others, including Godard et al. (2019) who proposed a
number of improvements in MonoDepth2. Below, we provide a general overview of a self-supervised system
that is representative of the majority of existing approaches in the literature. We build upon this system in the
remaining chapters of the thesis.

Network Structures

For a single image pair consisting of a source image and a target image, x = {Is,It}, the latent variables of
interest (i.e., those required to reconstruct the target image from source image pixels) are the target image depth
Dt ∈ RH×W and the interframe pose change (egomotion) Tst ∈ SE(3). Here,H andW are the original height
and width of the target image. We produce the depth and egomotion estimates from two separate networks:
DepthNet, Dt = fθD (It), and EgoNet, Tst = fθE (Is,It). We provide a high-level overview of these networks
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Figure 4.1: Overview of the baseline system that employs a depth and egomotion network for learned SfM. �e predictions
from these networks are used to reconstruct a target view from the pixels of a nearby source view through view synthesis.
�e photometric reconstruction loss minimizes the error between the target and reconstructed view, jointly training the
depth and egomotion networks. Gray arrows represent the forward pass, while red arrows represent the backwards pass
during backpropagation.

in this section and refer to Appendix B for more detailed descriptions.

DepthNet. �e depth network takes as input a single image and returns the per-pixel prediction of the scene
depth. A U-Net autoencoder network (Ronneberger et al., 2015), depicted in Figure 4.1, is used to ensure the
input and output dimensions are equal. �e encoder—generally a ResNet-style network (He et al., 2016)—extracts
features from the image. Within the encoder, the dimensionality of the feature maps is reduced as stride-2
convolutions are applied. Following the encoder, a series of decoder blocks increase the dimensionality back
to the original image size; these blocks generally consist of 2D transposed convolution layers (Dumoulin and
Visin, 2016) or interpolation layers (e.g., nearest neighbour interpolation). Other work (Guizilini et al., 2020a)
has proposed di�erent upsampling schemes as well. �e �nal network layer, in practice, outputs the inverse

depth prediction, D−1
t , produced through3

D−1
t =

1

dmin
+

(
1

dmax
− 1

dmin

)
Ot. (4.2)

Here, the network output Ot is a single-channelH×W map, the per-pixel values of which are within [0, 1]. �e
�nal depth prediction Dt is found by computing the Hadamard inverse of D−1

t (i.e., by computing the element-
wise inverse). �e resulting per-pixel depth values are all within [dmin, dmax]. �e minimum and maximum
depths, dmin and dmax, are tunable hyperparameters.

EgoNet. �e egomotion network produces an estimate of the interframe pose change,

Tst ∈ SE(3) =

[
Cst rtss

01×3 1

]
, Cst ∈ SO(3), (4.3)

3�e inverse depth parameterization is analogous to the similar technique used for classical depth estimation (Montiel et al., 2006). �is
parameterization prevents the network from having to directly regress (o�en large) depth values that span several orders of magnitude.
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Project ion

Sampling

Figure 4.2: Illustration of the view synthesis procedure for a single pixel, consisting of projection and sampling steps.
Bilinear interpolation (using pixel intensities from the nearest locations) is used to populate u′ in the synthesized image
Is→t.

between F−→c at frames t and s (i.e., the target and source frames). �e network is a standard CNN consisting of a
series of convolutional blocks with nonlinear activations. Multi-stride convolutions are applied to downsample
the feature maps instead of using pooling layers, since pooling layers remove spatial information that is crucial
for encoding camera motion. �e �nal output of EgoNet is the egomotion prediction, ξst ∈ R6, which is
parameterized as a vector in se(3). �e SE(3) pose is computed according to Tst = exp

(
ξst
∧). �e view

synthesis module, which we discuss next, uses the predicted depth and egomotion quantities to reconstruct the
target image from nearby source views.

Image Reconstruction�rough View Synthesis

During training, a view synthesis module makes use of the predicted quantities (and the known camera intrin-
sics) to reconstruct the target image view from the pixel values of a nearby source image. Figure 4.2 shows how
each pixel in the reconstructed image, Is→t, is populated. First, in the projection step, the coordinates of a pixel
u′ from Is→t are found in Is. �e coordinates in Is are denoted as u. �is correspondence is established by

u = π
(
Tstπ

−1 (u′,Dt(u
′))
)
. (4.4)

Here, π(·), de�ned in Section 2.3.2, is the pinhole camera projection model that maps a 3D point to its cor-
responding pixel coordinates. In the sampling step, the pixel value Is→t(u′) is populated with the value at
Is(u),

Is→t(u′) = Is(u). (4.5)

Since the pixel coordinates u are unlikely to be exact integers, bilinear interpolation is applied to determine
the pixel value by blending the four surrounding pixel values according to their relative distances from u (see
Figure 4.2 for an illustration of this process). In practice, the reconstructed image Is→t is produced using a
spatial transformer (Jaderberg et al., 2015), which uses di�erentiable grid sampling to e�ciently populate all
pixel locations. Target image pixels that are outside of the bounds of Is are populated with zeros and are
excluded from the reconstruction loss.

Finally, we discuss the key modelling assumptions used within the view synthesis module. First, we assume
that there is a constant illumination source and that points within the scene have Lambertian re�ectance. Second,
we assume that all points in the scene are stationary (relative to a �xed, world reference frame) in order for the
projection step (which considers camera motion only) to be valid. �ird, we assume there are no occlusions
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of points in the scene due to the camera motion. In reality, these assumptions do not hold for all pixels, and
minimizing the reconstruction loss for these outlier pixels can negatively impact training.

Although the modelling assumptions above are similar to the ones made in classical VO systems, there is
a key di�erence between how the assumptions impact the robustness of classical and learned systems. With
the data-driven framework, there is a range of methods that can be employed during training to ignore or
downweight outlier pixels that violate the modelling assumptions. By incorporating these techniques during
training, the networks are able to learn to reject unreliable image regions and to instead rely on more stable
image regions. �is enables the learned SfM system to operate relatively robustly, even when some modelling
assumptions are violated.

Self-Supervised Losses

A�er view synthesis, the main supervisory signal for the learned SfM system is a loss that compares the recon-
structed image with the observed target image. �is photometric reconstruction loss, in its simplest form, is the
L1 norm of the di�erence between these two images,

LL1
(Is→t,It) = |Is→t − It| . (4.6)

Most methods additionally incorporate the structural similarity index measure (SSIM) (Wang et al., 2004) into
the reconstruction loss. �e SSIM is an alternative measure of similarity that compares the structure contained
within two image patches, rather than directly comparing pixel intensities, and is consequently more robust
to illumination changes between frames. Operating on two image subregions with the same size, x and y, the
SSIM index between them is

SSIM(x,y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
, (4.7)

where µi, σ2
i are the mean and variance of the values in i ∈ {x,y}, σxy is the covariance between the two win-

dows, and c1, c2 are small values added for numerical stability. �e SSIM returns a scalar quantity within [0, 1],
with larger values indicating a greater similarity. �erefore, the SSIM loss employs the dissimilarity measure,

1− SSIM(x, y)

2
. (4.8)

�e SSIM loss, LSSIM(I1,I2), is an H ×W ‘dissimilarity’ measure between all sub-regions of size 3× 3 within
I1 and I2.4 �e combined photometric loss,

Lphot(Is→t,It) = (1− α)LL1
+ αLSSIM(Is→t,It), (4.9)

is balanced with α ∈ [0, 1], whose value determines the relative importance of the L1 and SSIM loss terms.
Although the photometric reconstruction loss is the primary loss function used to train the learned SfM

system, minimization of this loss on its own is not a well-posed problem as there are many di�erent combina-
tions of depth and egomotion that can (locally) minimize the error. For the system to converge in such a way
that the network predictions are representative of the true scene structure and camera motion, additional con-

4Similar to a 2D convolution with a stride of one, computing the SSIM (or the dissimilarity measure) for all 3×3 sub-regions will produce
H − 1×W − 1 terms. Re�ection padding is then used to return the dimensionality to H ×W in order match the dimensionality of the
L1 loss.
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(a) Explainability mask examples (Zhou et al.,
2017).

(b) Automasking removes the ‘stationary’ pixels of the vehicle moving
alongside the camera (From Godard et al. (2019)).

Figure 4.3: Illustrating the various techniques for removing the e�ect of outlier pixels on the reconstruction loss.

straints must be imposed during training. Next, we discuss how a number of auxiliary loss terms and several
modi�cations to the training procedure can be applied to further constrain the learning problem.

Masking Out Unreliable Pixels

Owing to the presence of dynamic objects, illumination changes between frames, and occlusions of portions
of the scene (as a result of the change in camera perspective between frames), there will always be pixels that
violate the modelling assumptions of view synthesis. In these circumstances, view synthesis will not be able
to adequately reconstruct a subset of the target image pixels from a single (nearby) source image view, even
when the true camera motion and scene depth are used. Consequently, photometric error for these ‘outlier’
pixel regions will be large and minimization of these errors will negatively impact training.

To reduce the negative impact of these unstable pixel regions, pixel-wise masks can be applied to the recon-
struction loss to remove or downweight the outlier error values. In SfMLearner (Zhou et al., 2017), the egomotion
network additionally predicts an image-wise explainability mask, Wt ∈ RH×W , the per-pixel values of which
are within [0, 1]. �e explainability mask is applied to the reconstruction loss (through element-wise multipli-
cation) to downweight the errors for unstable pixels. �e resulting loss is

L = Wt � Lphot(Is→t,It)− log Wt. (4.10)

�e �rst term in this expression is the reconstruction loss (downweighted by Wt through element-wise multi-
plication) and the second term is a regularizer that encourages the explainability mask to produce values close
to one—thus preventing the trivial solution of minimizing Lphot by producing a mask of zeros only. An ex-
ample of the learned explainability mask output is shown in Figure 4.3a. A second masking technique called
‘automasking’ is introduced by Godard et al. (2019) (see Figure 4.3b). Automasking removes ‘stationary’ pixels
(where the values do not change between frames) that are associated with a static camera or an object moving
with the same velocity as the camera. In either case, minimizing the reconstruction loss for these pixels causes
the depth network to create maximum depth ‘holes’ in the predictions. �ese artifacts can be prevented using
automasking. �e binary automask is generated based on the criterion that Lphot(Is,It) < Lphot(Is→t,It).

Godard et al. (2019) also introduce a per-pixel minimum reprojection loss that evaluates Lphot by projecting
multiple source images to a given target image, and for each pixel, populating the loss with minimum value:

Lmin(u, v) = argmin
s∈{t−1,t+1}

Lphot(Is→t,It)(u, v). (4.11)

By providing a secondary view for reconstruction, outlier pixels (from one source view) can be removed from
the image reconstruction and replaced with the projected pixels from the secondary source view. �is technique
leads to a more accurate reconstruction and is particularly e�ective at handling occlusion due to camera motion,
since there is a high likelihood that a target pixel in frame t, if occluded in one source image, will not be occluded
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in another.

Auxiliary Loss Functions

To further constrain the learning problem, a number of auxiliary self-supervised loss terms have been proposed
that can be added during training alongside the reconstruction loss. �ese losses incorporate additional do-
main knowledge into the training procedure to improve the depth and egomotion estimates. �e inverse depth
smoothness loss (Godard et al., 2017),

LS =

∣∣∣∣ ∂∂x (D−1
t

)∣∣∣∣ e−‖ ∂∂x It‖ +

∣∣∣∣ ∂∂y (D−1
t

)∣∣∣∣ e−∥∥∥ ∂
∂y

It
∥∥∥
, (4.12)

leverages the strong correlation between depth discontinuities and edge regions within the image by encourag-
ing a similarity between the gradients of the inverse depth and those of the target image. �e depth consistency
loss, from Bian et al. (2019),

LDC =
|Ds→t −Dt|
Ds→t + Dt

, (4.13)

assumes that nearby source image depth predictions, when projected into the target frame (using the predicted
egomotion), should be consistent with the predicted target image depth. �is loss, which conveniently produces
values between 0 and 1, can also be used to assemble a self-discovered mask, WDC = 1−LDC . �is mask iden-
ti�es (and masks) pixels belonging to dynamic objects, since their motion between frames results in interframe
depth inconsistency.

Scale Ambiguity

Finally, we note that the minimization of the photometric reconstruction loss does not lead to the recovery of the
true (metric) scale of the depth and egomotion predictions. Instead, the depth and egomotion predictions must
adopt an approximately constant scale factor that is shared between the networks across the training dataset.
Typically, the networks adopt an approximately consistent notion of scale, but this scale factor is prone to dri�
(especially at test time). As discussed in other works (Bian et al., 2019; Wang et al., 2021), scale inconsistency
can hinder convergence during training. To improve scale consistency, Bian et al. (2019) use the Equation (4.13)
depth consistency loss to implicitly enforce a more consistent scale factor. Stereo cameras have also been used
to resolve metric scale through a le�-right consistency loss (Godard et al., 2017), which enforces consistency
between the depth predictions from the le� and right stereo images. In this case, the known stereo camera
baseline provides the metric information required to recover the true, metric scale factor. �e stereo consistency
loss, however, is not available at test time for monocular systems and cannot bene�t from online retraining.
Building on these works, we develop novel approaches to resolve metric scale and to improve scale consistency.

Network Training

�e depth and egomotion networks are jointly trained by minimizing a combination of the self-supervised losses
that we introduced in this chapter. �is loss is minimized by updating the network weights through gradient
descent with a standard optimizer such as SGD or Adam (Kingma and Ba, 2014). For each minibatch of training
samples, a forward pass through the network is performed, and the predictions are used for view synthesis.
�en, the loss is evaluated, and the gradients are backpropagated through the (di�erentiable) view synthesis
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Input Image SfMLearner  (2017) MonoDepth2 (2019) PackNet (2020)

Figure 4.4: Illustration of the progression of depth network accuracy from SfMLearner (Zhou et al., 2017) to modern systems
such as MonoDepth2 (Godard et al., 2019) and PackNet (Guizilini et al., 2020a).

module into the depth and egomotion networks. �e network weights can either be initialized with a standard
weight initialization scheme, or can be pretrained; generally, the ResNet depth encoder is initialized with publicly
available weights from training on ImageNet. In most cases, individual training samples consist of a window
of three temporally adjacent images to facilitate the Equation (4.11) minimum reconstruction loss calculation
(where two source images are used to reconstruct the (middle) target image).

To maximize data e�ciency, augmentation is used to generate additional data. Usually, augmentation in-
volves applying random perturbations to the image brightness, contrast, and saturation. Additionally, images
are �ipped about their vertical axis to simulate di�erent camera motions. Data-e�ciency is further improved
by minimizing the reconstruction loss in both directions; here, we de�ne the forward direction as the projection
of both source images to the target frame. �e inverse direction projects the target image into the two source
frames in order to compute the inverse reconstruction loss Linv = Lphot(It→s,Is). Finally, we note that it
is popular to adopt a multi-scale approach (Godard et al., 2019), which involves outpu�ing depth predictions at
multiple image resolutions, and computing the reconstruction loss at each scale.5 We �nd, however, in line with
Bian et al. (2019), that the multiscale approach is not worth the increase in computational burden and is o�en
detrimental to egomotion prediction accuracy.

Training/Evaluation Datasets. �e learned SfM system requires a signi�cant amount of data for training. In
subsequent chapters, we train and evaluate our system on a number of visual datasets collected with autonomous
driving platforms (i.e., the KITTI (Geiger et al., 2013) and Oxford RobotCar (Maddern et al., 2017) datasets), with
a hand-held camera (i.e., the ScanNet (Dai et al., 2017a) dataset), and with a UAV platform (i.e., the EuRoC (Burri
et al., 2016) dataset). We refer the reader to Appendix A for more information on each of these datasets, including
the evaluation metrics used for benchmarking.

4.3 Motivation for the Learned SfM Framework

Considerable advances have been made to self-supervised depth and egomotion frameworks through modi�ca-
tion of the network architectures, loss functions, and training procedures. �ese improvements are best demon-
strated by the results in Figure 4.4 that illustrates the progression of depth-prediction quality over time. Despite
these advances, we note that there has been less emphasis placed on the improvement of egomotion network
accuracy. However, being data-driven and fully self-supervised, the egomotion network is a strong candidate for

5�is is analogous to the techniques in computer vision that operate at di�erent pyramid levels.
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robust self-localization within modern autonomy systems. In this section, we discuss our primary motivation
for investigating how the accuracy of the self-supervised egomotion network can be improved—ideally to the
point where it is comparable to that of classical egomotion estimators.

Being data-driven, the learned SfM system can leverage the capacity and �exibility of modern neural net-
works to model the complex relationship between visual measurements and camera motion within challenging
environments. Further, the self-supervised nature of the networks can be leveraged to mitigate the current
limitations (i.e., generalization and accuracy, discussed in Table 1.1) of data-driven systems. �e issue of gen-
eralization can be addressed by the potential for lifelong learning; these systems can continually improve over
time by adapting to environmental changes. �e issue of accuracy (with respect to classical systems, under
nominal operating conditions) can be remedied in part by unique modi�cations that are possible as a result of
using self-supervised losses (see Chapter 6) and in part by incorporating the learned pipeline within a larger
hybrid system (see Chapter 7).

When contrasting the network-based approach to classical visual egomotion estimation approaches, there
are key di�erences that favour the use of the learned SfM framework for self-localization. Namely, at test time,
EgoNet is a structure-free VO estimator that is able to estimate camera motion without requiring an explicit
representation of scene structure.6 �is structureless approach is bene�cial when scene structure cannot be
accurately recovered within visually degraded environments. While network-based approaches rely on data-
driven priors to maintain accuracy in these degraded environments, classical approaches are more prone to
failure as they require accurate estimates of 3D locations in every frame to estimate camera motion. Further, we
advocate for the learned SfM system because, being a dense estimator, it utilizes the full range of information
within the visual measurements. Unlike other dense, optimization-based methods, the learned SfM system does
not require explicit initialization in order to produce its predictions.

In the coming chapters, we investigate several ways to improve egomotion network accuracy. Chapters 5
and 6 discuss our contributions for improving the baseline SfM system, while Chapter 7 describes how this
system can be incorporated into a larger hybrid framework for robust visual-inertial egomotion estimation.
Below, we introduce our initial proof-of-concept system for self-supervised SfM, the performance of which we
improve upon in the remainder of the thesis.

4.3.1 �e Self-Supervised Deep Pose Correction Network

Our initial proof-of-concept approach for self-supervised SfM is a hybrid system that builds upon the deep

pose correction (DPC) network of Peretroukhin and Kelly (2018). In DPC-Net, a data-driven model is trained to
produce corrections to a classical VO estimator in order to account for the systematic bias that results in reduced
accuracy. Speci�cally, the classical VO estimator produces a ‘large’ prior and a deep neural network learns to
produce smaller ‘corrections’ that take into account how the classical estimator degrades in adverse situations
(e.g., when modelling assumptions no longer hold). DPC-Net is trained using a supervised loss function that
requires ground truth pose information; for a given VO estimator, ground truth pose corrections are generated
by taking the di�erence between the known pose change and the predicted pose change, across all image pairs
within the training dataset. Minimization of the supervised loss enforces the network output to be similar to
these corrections. In their experiments, the authors of DPC-Net paired the network with the classical (stereo)
Libviso2 estimator (Geiger et al., 2011) and evaluated the system on the KITTI dataset. Although the authors

6Since the depth network is only required for view synthesis, it can be removed at test time without impacting the egomotion predictions
from EgoNet. For this reason, we consider EgoNet to be a ‘structure-free’ VO estimator: it does not require an explicit 3D representation of
scene structure to operate.
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Figure 4.5: Our self-supervised deep pose correction (DPC) network regresses a pose correction to a classical VO estimator.

demonstrate a signi�cant improvement in accuracy, the overall generalization ability (beyond the initial training
distribution) of DPC-Net is limited by its reliance on supervised pose labels.

Our system, illustrated in Figure 4.5, builds upon DPC-Net by incorporating the learned SfM framework for
self-supervised training of the pose corrector network. As with other self-supervised methods, our network
outputs a predicted interframe pose change and a depth map—however, our predicted egomotion is initialized
with an egomotion prior from a classical VO estimator. We compound this prior with a correction that is produced
by our pose network. Concretely, our pose network regresses an SE(3) correction, Tcorr

st , that re�nes the classical
VO estimate, Tvo

st. To parameterize this correction, our network outputs an unconstrained vector from the se(3)

Lie algebra, ξcorr
st ∈ R6; applying the exponential map yields an on-manifold SE(3) correction,

T∗st = exp
(
ξcorr
st
∧)

Tvo
st. (4.14)

We follow the training procedure of SfMLearner (Zhou et al., 2017), discussed in Section 4.2.2, to jointly train
our modi�ed DPC-Net by minimizing the weighted photometric reconstruction loss de�ned in Equation (4.10).
�is loss requires an explainability mask to be learned in addition to the depth and egomotion predictions. Next,
we discuss the primary results, but refer to Wagsta� et al. (2020) for further details about the network structure,
training procedure, and experimental details.

Similar to the original DPC-Net, we pair our networks with libviso2-s, the stereo VO approach of
Geiger et al. (2011), and train/evaluate our system on the KITTI dataset. Table 4.1 reports the errors for our
corrected trajectories, while Figure 4.6 visually depicts these results and compares them to the libviso2-
s estimates. We benchmark against the original supervised DPC-Net and also a direct, keyframe-based VO
implementation based on DSO (Engel et al., 2017). �ere are three primary takeaways from this work:

1. �e self-supervised system outperforms the supervised variant of DPC-Net: �is is an interest-
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Table 4.1: Results of correcting libviso2-s with our self-supervised DPC network. ATE is the average trajectory error.
and the mean segment error is reported for all segments within {100, 200, · · · , 800} metres.

ATE Mean Seg. Err.

Test Sequence
(Length) Estimator Trans.

(m)
Rot.
(◦)

Trans.
(%)

Rot.
(◦/100m)

00 (3.7 km) libviso2-s 53.77 13.30 2.79 1.292
DPC-Net 15.68 3.07 1.62 0.559
Direct VO 12.41 2.45 1.28 0.542

Ours 14.65 3.32 1.03 0.444

02 (5.1 km) libviso2-s 68.60 12.55 2.42 0.923
DPC-Net 17.69 2.86 1.16 0.436
Direct VO 16.33 3.19 1.21 0.467

Ours 21.31 1.91 0.83 0.373

05 (2.2 km) libviso2-s 19.68 6.30 2.31 1.135
DPC-Net 9.82 3.57 1.34 0.562
Direct VO 5.83 2.05 0.69 0.320

Ours 4.03 1.18 0.83 0.304
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Figure 4.6: Corrected libviso2-s trajectories. We show the original libviso2-s estimate for comparison.
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ing result, given that the supervised variant uses additional information—ground truth pose labels—for
training. Potential explanations for the boost in accuracy are that: (1) the dense (per-pixel) nature of
the reconstruction loss is ‘richer’ than the supervised pose loss; (2) incorporating domain knowledge
(through the SfM framework) by formulating SfM as a multi-task learning problem is known to improve
subtask accuracy (Zhang and Yang, 2021); and (3) pose labels that, to some degree, contain errors, are
removed. Future work could potentially investigate how the photometric reconstruction loss, assembled
from thousands of per-pixel loss terms, provides a richer gradient �ow to the networks compared to a
six-dimensional pose supervision loss. Further, the impact of adding noise to the pose labels could be
studied to determine how imperfect ground truth impacts performance. For our purposes, we use this
�nding as motivation to further explore self-supervised learning techniques that employ the photometric
reconstruction loss.

2. �escale ambiguity present in the (monocular) reconstruction loss negatively impacts the trans-
lation corrections: We �nd that the improvements from incorporating DPC-Net are solely due to cor-
rections being applied to the rotation estimates. �e scale ambiguity of the reconstruction loss prevents
the network from learning how to improve the (already accurate) translation estimate of the stereo VO
estimator. Further, our system fails to converge when paired with libviso2-m, the monocular variant
of Geiger et al. (2011). We posit that this failure is due to scale dri� present within the classical VO esti-
mate, which our DPC-Net cannot account for. Our �ndings are in line with recent results (Bian et al., 2019;
Wang et al., 2021) that demonstrate how removal of scale ambiguity is important for improving accuracy
within learned SfM. Our contributions in Chapters 5 and 6 are motivated in part by this �nding.

3. �e hybrid system outperforms both classical and end-to-end methods: DPC-Net is an interesting
case where a hybrid system, combining a classical estimator with a learned component, leads to improved
accuracy compared with standalone classical/learned systems. �is is a noteworthy (and perhaps un-
expected) outcome, since it suggests that modelling pose corrections is easier than modelling the full
relationship between sensor measurements and camera motion, even though these two tasks are some-
what equivalent (the DPC network must learn some notion of what the ‘target’ egomotion is in order to
provide an accurate correction to the current estimate). �is discovery suggests there is an interesting
synergy between classical and learned models that should be further explored. Our work in Chapter 7,
which investigates another hybrid system for visual-inertial egomotion estimation, is motivated in part
by this �nding.

In the next two chapters, we shi� from the DPC framework to learning full camera-egomotion predictions.
�is decision is motivated by the discussion in (2) above. Although DPC-Net is advantageous in certain se�ings
(e.g., when using stereo cameras), its performance fundamentally depends on the classical egomotion estimator it
is paired with. Since monocular VO estimators are prone to scale dri� and can completely break down when op-
erating under adverse conditions, it can be challenging to produce accurate corrections with DPC-Net. Instead,
we develop a standalone learned SfM system to produce accurate and scale-consistent monocular egomotion
predictions. As future work, DPC-Net could be paired with this learned SfM system to produce corrections that
account for systematic error present in the learned egomotion predictions.



Chapter 5

Self-Supervised Scale Recovery for the
Learned SfM System

Scale ambiguity is a well-known limitation of monocular VO and SfM systems: the true (metric) scale of the
depth and egomotion cannot be resolved, and the unknown scale factor is prone to dri� over time. While
classical techniques aim to determine the scale factor by incorporating scene information that is a priori known
(e.g., known object sizes or known camera height above the ground plane) into the VO pipeline, this type of
hand-engineering is challenging to tune for performance (Frost et al., 2018).

Dealing with scale ambiguity is also a prominent challenge in monocular, data-driven systems. As we noted
in the previous chapter, the self-supervised loss formulation employed to train the learned SfM system is unable
to resolve metric scale. A side e�ect of this scale ambiguity is that the depth and egomotion predictions are
inconsistent, since the (independent) networks producing these predictions are unable to adopt a consistent
notion of scale. Notably, this scale ambiguity is a source of error during training and can hinder convergence
(Bian et al., 2019). In this chapter, we build on the baseline learned SfM system from Chapter 4 by introducing a
scale recovery loss that both enforces metric scaling and improves overall scale consistency across a given dataset.

Our proposed scale recovery loss enables the learning of metric scale by ensuring that the estimated camera
height (over the ground plane) is the same as the known camera height. To the best of our knowledge, this self-
supervised learning-based system is the �rst to produce scaled (metric) depth and egomotion estimates while
only requiring monocular (as opposed to stereo) images during training. To enable the use of the novel scale
recovery loss, we extract the ground plane from each training image and determine the plane normal and o�set
(i.e., the camera height) through a least-squares technique. �e scale recovery loss then forces the estimated
camera height to be consistent with the known camera height. By doing so, we inject metric information during
the training process, which in turn causes the depth and egomotion networks to produce metrically scaled
predictions that remain properly scaled at test time. Importantly, no ground plane segmentation is required
at test time, unlike existing scale recovery methods (Xue et al., 2020). In short, the main contributions of this
chapter are as follows:

1. we address the monocular scale ambiguity problem in learned SfM systems by incorporating a novel loss
function that enforces metrically scaled depth and egomotion estimates without requiring ground truth
labels or stereo images during training;

2. as part of our scale recovery formulation, we develop a self-supervised framework for training a ground
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plane segmentation network that outputs the likelihood of each pixel belonging to the ground plane;

3. we conduct a number of experiments that comprehensively demonstrate the ability of our loss functions
to resolve metrically scaled depth and egomotion predictions correctly, and furthermore show that these
self-supervised losses can facilitate network retraining with a small amount of data collected online.

5.1 Related Work

For monocular egomotion estimation and SfM, accurate scale recovery—that is, the process of making relative
depth and egomotion predictions consistent with metric, ground truth measurements—remains an active area
of research. In this section, we describe existing scale recovery methods in the literature for both classical and
learning-based egomotion estimators.

5.1.1 Scale Recovery in Classical Systems

In monocular systems, scale is o�en initialized at the �rst frame (e.g., by se�ing the �rst camera translation
to have a displacement of one unit), and its relative change (dri�) is tracked and accounted for over time by
computing the distances between observed 3D points in multiple adjacent image pairs (Scaramuzza and Fraun-
dorfer, 2011). Monocular systems are still subject to scale dri�, however, despite these a�empts to maintain a
constant scale factor. SLAM frameworks such as ORB-SLAM2 (Mur-Artal and Tardós, 2017) can reduce scale
dri� through windowed bundle adjustment or loop closure detection, but extreme scale dri� may cause loop
closure to fail and may lead to irreversible errors during the map-building process (Frost et al., 2016).

To recover the scale factor in a monocular VO system, a source of metric information must be provided.
Commonly, this is achieved either through sensor fusion (e.g., by adding a second camera for stereo VO, an
IMU, wheel odometry, or radar/lidar sensors) or through the incorporation of scene information (e.g., known
object sizes or a known camera height). If the camera height is known, the scale factor can be resolved by
estimating the height of the camera (relative to a ground plane), and then comparing this estimate to the a priori
known camera height. Several classical methods (Song et al., 2015; Fanani et al., 2017; Zhou et al., 2019b; Wang
et al., 2018b; Ki� et al., 2011) utilize this approach for scale recovery; we draw inspiration from these methods
but note that they have some key limitations. Many of these algorithms (Song et al., 2015; Zhou et al., 2019b; Ki�
et al., 2011) assume that the ground plane appears within a prede�ned image region, which is problematic when
the ground plane is not visible (e.g., when the ground plane is occluded by a vehicle on the road). An alternative
is to classify ground plane pixels using colour information (Lee et al., 2015), but because the hue and intensity
of the ground plane pixels may change signi�cantly depending on scene illumination and camera se�ings, this
form of road plane detection is unreliable. Wang et al. (2018b) address this shortcoming by detecting the ground
plane by ��ing a model to 3D feature points. Although this technique is more robust to ground plane pixel hue
and intensity changes, the ground plane (being smooth and textureless) o�en lacks readily identi�able features.
To mitigate these di�culties, our ground plane segmentation network is trained using a geometry-based loss,
which is independent of pixel intensity and external illumination. Since we use a dense set of pixels to determine
the ground plane region, we expect to outperform feature-based plane detection in areas that lack identi�able
features. Finally, we note that all of these scale recovery methods require the presence of a visible ground plane
in every image at test time. Our method only requires the presence of the ground plane in the training images.
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5.1.2 Scale Recovery in Data-Driven Systems

�e most straightforward means of enforcing metrically scaled depth and egomotion predictions is through
supervised learning, where metric information is available from ground truth depth or pose labels. However,
collecting ground truth data can be time consuming, expensive, and may not always be reliable (e.g., due to GNSS
errors within urban canyons). Additionally, relying on ground truth limits the ability of learning-based systems
to be retrained online when ground truth is not available. Online retraining is important when deploying robots
that must operate in environments which are di�erent than the original training environment. �is desire for
�exibility motivates the use of self-supervised training methods.

A limitation of the standard self-supervised photometric reconstruction loss is that it can only be used to
train depth and egomotion networks that produce unscaled predictions. Furthermore, like classical systems, the
predictions are scale inconsistent: di�erent inputs produce depth and egomotion predictions with a varying scale
factor, since there is nothing in the loss formulation that encourages independent predictions to have the same
scale. To address scale inconsistency, recently developed algorithms (Bian et al., 2019; Zhao et al., 2020) have
a�empted to enforce a global scale factor using a depth consistency loss. Despite producing scale-consistent
estimates, this loss cannot be used to resolve metric scale.

To resolve scale in a self-supervised system, Godard et al. (2017) introduce a le�-right consistency loss that
uses stereo image pairs with a �xed (and known) baseline distance. However, despite being self-supervised in
nature, the stereo-based loss cannot be used for retraining when only a single camera is available. We formulate
a loss function that enforces metric scaling by making use of the known camera height relative to the ground
plane. Although the camera height may be considered as ground truth information, this quantity o�en remains
available at test time, which facilitates self-supervised learning and online retraining.

�e work most similar to our own is DNet (Xue et al., 2020), which uses an online technique to estimate the
scale factor of its learning-based depth and egomotion networks by detecting the ground plane. DNet requires
the presence of a visible ground plane at test time, while we embed information about metric scale during the
training procedure and thus do not require a visible ground plane at test time. �is change simpli�es scale
recovery and makes our approach less prone to failure at test time when the ground plane is not seen or is
incorrectly detected. Further, we show that incorporating scale information leads to an improvement in inter-
frame scale consistency over existing techniques (Bian et al., 2019).

5.2 Methodology

We build on the baseline depth and egomotion network structures that we introduced in Chapter 4 by incor-
porating a ground plane segmentation network. �is network is used to estimate the per-image camera height,
which can be compared with the known camera height to determine scene scale. In Section 5.2.1, we introduce
the depth and egomotion networks, along with the standard self-supervised loss formulation used to jointly
train them. �en, in Section 5.2.2, the design of the plane segmentation network and the self-supervised loss
used for training are described. Finally, Section 5.2.3 outlines our proposed scale recovery loss, which relies on
the trained plane segmentation network.

5.2.1 Self-Supervised Depth and Egomotion Networks

We employ the standard self-supervised system that we introduced in Chapter 4 consisting of DepthNet, Dt =

fθD (It), and EgoNet, ξst = fθE (Is,It), which are jointly trained through minimization of a photometric
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Figure 5.1: Examples of the plane segmentation masks (top row) and scene depth predictions (bo�om row) produced by our
plane segmentation and depth networks, respectively. �e images are from KITTI sequence 05.

reconstruction loss.1 �e complete baseline loss used to train these networks consists of the full photometric
reconstruction lossLphot (with theL1 and SSIM losses), in addition to the inverse depth smoothness lossLS and
the depth consistency loss LDC . We also include a pose consistency loss term, LPC = |ξst + ξts| that enforces
the forward and backward pose predictions to be consistent. Overall, the per-sample loss that we use to train
the system is

Lbase =
1

HW

∑
u,v

(λphotLphot + λSLS + λDCLDC) +
1

6

∑
λPCLPC , (5.1)

and is averaged across all training samples. Note that within Lphot, we use the automasking and minimum
reprojection techniques, along with the self-discovered mask, to remove and/or downweight the unstable image
regions. Section 4.2.2 contains additional information about these components. Our baseline system is trained
with this loss to produce unscaled depth and egomotion estimates. Next, we discuss how we augment this system
by incorporating scale recovery into the training procedure.

5.2.2 Self-Supervised Ground Plane Segmentation

In our scale recovery approach, we compute the per-image scale factor of the depth predictions by observing
the di�erence between the measured camera height and the known camera height. A scale factor of unity
(corresponding to the heights being equal) is enforced during training by incorporating our scale recovery loss.
To estimate the scale factor, we �rst compute the camera height over the local ground plane and compare it to
the known camera height. �is requires the ground plane itself to be extracted from the image. To extract the
ground plane, we use our own plane segmentation network. Alternatively, the driveable road region could be
detected using an existing supervised framework (Teichmann et al., 2018), but we choose to implement our own
self-supervised technique in order to facilitate retraining alongside the depth and egomotion networks. SegNet,
our plane segmentation network, takes as input an RGB image and outputs a corresponding plane segmentation
mask Mt, whose per-pixel values Mt(u, v) ∈ [0, 1] indicate the likelihood that each pixel is a ground plane
‘inlier’ (i.e., belongs to the ground plane).

We train SegNet on its own by minimizing a plane consistency loss, Lplane. To do so, we assume that for a
given image, the lower, centre region contains the ground plane only. Although this is a limiting assumption in
general, it only applies to the training data, where we can be reasonably con�dent that the region consistently
represents the ground plane. A�er computing the normal vector ñt and o�set (i.e., the per-image camera height),

1As a reminder, EgoNet regresses the Lie algebra vector of the inter-frame pose change, and the exponential map is used to produce the
SE(3) transform, through Tst = exp (ξst

∧).
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ht, of this speci�ed patch of ground, we train our plane segmentation network to minimize Lplane,

Lplane(u, v) = λplane
(
Mt(u, v)

∣∣ht − pt(u, v)>ñt
∣∣)− λreg log Mt(u, v), (5.2)

over all pixels and images in the training dataset. To minimize the �rst term, SegNet learns to produce small val-
ues (i.e., a low con�dence prediction) for pixels whose 3D coordinates pt(u) do not lie on the ground plane. Since
a trivial solution exists for this �rst term (outpu�ing zero for all pixels in the image), the second term—a cross
entropy regularization loss—enforces the SegNet predictions to be close to unity. �e overall loss is minimized
by training the network to accurately predict ‘inlier’ plane pixels with high con�dence while downweighting
all other pixels. �e two loss terms are balanced by the scalar weights λplane and λreg .

In Equation (5.2), the per-image camera height ht is computed from the prede�ned ground plane region
using a plane-��ing procedure. For the N ground plane pixels (in the target image), the 3D coordinates pt(u)

(expressed within F−→ct ) are computed as

pt(u) = π−1 (u,Dt(u)) = Dt(u)
[
u−cu
fu

v−cv
fv

1
]>

, (5.3)

which is the inverse pinhole projection model (Equation (2.76)) that employs a pre-trained depth network.2

�e N 3D coordinates are stacked in Pt =
[
pt(u0) pt(u1) · · · pt(uN )

]
∈ R3×N , and the ground plane

normal vector ñt is found by solving P>t nt = 1N×1 for nt using the Moore-Penrose pseudo-inverse. �e unit
normal to the plane is

ñt =
nt
‖nt‖

. (5.4)

�e estimated camera o�sets (i.e., the camera height relative to the plane) are then ht = P>t ñt; we take the
mean value ht as our camera height estimate.

We provide further details about the training procedure for SegNet in Section 5.3.2. Figure 5.1 shows several
examples of the trained plane segmentation network outputs. We note that our approach, by assuming local
planarity, will only learn to identify the portion of the ground that is approximately planar. We expect the
network to downweight road plane pixels in images where this assumption does not hold.

5.2.3 Scale Recovery Loss Formulation

With SegNet trained to produce a per-pixel ground plane segmentation mask, the extracted ground plane can
be used to estimate the per-image camera height ht. A scale recovery loss (employed alongside our other self-
supervised losses) can then enforce this camera height estimate to be similar to the known camera height, hgt:

Lcam = |ht − hgt|. (5.5)

Given the plane segmentation mask Mt, the estimated camera height can be determined through weighted
least squares in a two-stage process. In the �rst stage, the (non-unit norm) ground plane normal direction nt is
found by minimizing the least squares loss,

Lt =
1

2
(P>t nt − 1HW×1)>M−1

t (P>t nt − 1HW×1), (5.6)

2�e pre-trained depth network that we use is unscaled: we use the networks and losses from Section 5.2.1 and follow the same training
procedure outlined in Section 5.3.2.
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DepthNet

SegNet

Ground Plane Estimation

Depth Scaling Loss

z

y

Scale Factor 
Estimation

(a) Diagram explaining the depth scaling loss formulation. SegNet outputs a dense (per-pixel) mask that is used to compute
the scale factor of the current depth prediction.

EgoNet

Translation Scaling Loss

(b) Diagram explaining the translation scaling loss formulation.

Figure 5.2: Illustration of our novel scale recovery loss formulation. For each training image, the scale factor is computed
by comparing the estimated camera height to the known camera height. By enforcing the scale factor to converge to unity
during training (through our proposed scale recovery loss), the network predictions become metrically scaled.
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where Pt ∈ R3×HW are the stacked 3D coordinates for every pixel in the image, and M−1
t ∈ RHW×HW is a

diagonalized matrix of plane segmentation network outputs (Mt). �e least squares solution is

nt = (PtM
−1
t P>t )−1(PtM

−1
t 1HW×1). (5.7)

�e result is normalized to produce ñt. In the second stage, the estimated camera height is determined by taking
the weighted average of the o�set (relative to the plane) of all 3D coordinates:

ht =
1∑

u,v Mt(u, v)

∑
u,v

Mt(u, v) pt(u, v)>ñt. (5.8)

Importantly, since a weighted least squares approach is used, Equation (5.5) becomes di�erentiable with respect
to the depth predictions of every pixel in the image (the current depth prediction is used to construct the 3D
coordinates, pt, for each pixel). �is link allows for our depth network weights to be updated through gradient
descent by minimizing Equation (5.5), which enforces a metric scaling of the depth predictions. We found, how-
ever, that there are issues that make Equation (5.5) unsuitable in practice; namely, because the loss is primarily a
function of the ground plane pixels (since predictions for o�-plane pixels are generally close to zero), the ability
of the depth network to properly resolve scale over the whole scene is limited. Instead of scaling all of the depth
predictions, the ground plane depth would erroneously ‘sink’ due to scaling, while other components of the
scene remained unchanged.

To avoid the problem above, we propose an alternative loss that enforces metric depth (i.e., a scale factor of
unity) by a�ecting all image pixels equally. Rather than directly comparing ht to hgt, as in Equation (5.5), we
can compute an image-speci�c scale factor st =

hgt
ht

, and generate per-pixel ‘depth scaling’ targets,

D̃t(u, v) = stDt(u, v), (5.9)

which can be directly applied in a depth scaling loss,

LDS(u, v) =
|Dt(u, v)− D̃t(u, v)|

D̃t(u, v)
. (5.10)

To enforce proper depth rescaling, all gradients associated with the target depth D̃t are removed (e.g., through
D̃t.detach() in PyTorch); this forces the network to update all pixel depths, instead of only updating the
ground plane pixels. �e denominator in Equation (5.10) normalizes the per-pixel depth values to prevent large
depths from dominating the loss function. Figure 5.2a illustrates how our depth scaling loss is applied.

We use the same technique (see Figure 5.2b) to de�ne a ‘translation scaling’ loss,

LTS =
∣∣rtss − r̃tss

∣∣ , (5.11)

where r̃tss = (str
ts
s ).detach(). We �nd that applying both scaling loss terms improves stability during

training and causes the learned scale to converge to unity more quickly. By combining our scale recovery loss
with the baseline loss, our (per-sample) overall loss becomes

L = Lbase +
λDS

HW

∑
u,v

LDS(u, v) +
λTS

3

∑
LTS. (5.12)
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By incorporating these scale recovery loss terms (balanced byλDS andλTS), the scale factor will converge towards
unity while the original loss terms are minimized.

5.3 Experiments

To elucidate the value of our approach, we provide details of our experiments below. First, we discuss the
training and validation datasets and the relevant evaluation metrics. �en, we describe our training procedure.
We follow with extensive experimental results on the KITTI and Oxford RobotCar datasets. Speci�cally, we
focus on experiments that showcase the use of our proposed losses for scale recovery.

5.3.1 Datasets and Evaluation Metrics

KITTI Dataset. For the KITTI dataset, we downsize the images to 192× 640. For depth evaluation, we follow
the Eigen train/test split and report the standard metrics discussed in Appendix A. For odometry evaluation, we
use sequences 00, 02, 06-08, 11, 13-16, 19 and leave out 05 for validation, and 09-10 for testing. We
report the average translational and rotational errors (terr(%), rerr(o/100 m)) over possible sub-sequences of
length (100, 200, . . . , 800) metres.

Oxford RobotCar Dataset. We use the Oxford dataset to pretrain DepthNet and EgoNet before the KITTI
experiments. We downsize the images to 192 × 640 and use the training/validation split from Appendix A.

5.3.2 Implementation Details

We implement our networks in PyTorch (Paszke et al., 2017), using the network structures presented in Appendix
B. �e networks are trained for 25 epochs on the KITTI odometry dataset using the Adam optimizer with a
minibatch size of six and a learning rate of 1×10−4 that is reduced by half a�er every four epochs. Our network
inputs are whitened using the ImageNet (Deng et al., 2009) statistics. During training all images are augmented
through random horizontal �ipping, and random transformations to the brightness, contrast, saturation, and
hue within the ranges ±0.2, ±0.2, ±0.2, ±0.1 respectively (the same modi�cation is made to all the target and
source images within a training sample).

SegNet Training. Prior to implementing our scale recovery losses, we train SegNet to accurately identify the
ground plane regions by minimizing the Equation (5.2) loss. �e SegNet training procedure requires accurate
depth predictions to extract 3D coordinates for each pixel in the image. �erefore, we initially train an unscaled

depth and egomotion network (with the Equation (5.1) baseline, unscaled loss function), and use the unscaled
depth predictions from this network to train SegNet. �e hyperparameters used during SegNet training are
λplane = 25 and λreg = 0.05.

Scale Recovery Training. Next, we employ the trained SegNet (with frozen weights) within the scale recov-
ery losses to train scale-aware variants of DepthNet and EgoNet. Starting with (unscaled) networks pretrained
on the Oxford Robotcar dataset, we minimize the Equation (5.12) loss on the KITTI training sequences. We
initialize our networks by training for one epoch with the unscaled (baseline) loss, since our scale recovery loss
requires reasonable depth estimates to estimate the scale factor. A�er one epoch, we incorporate the scale re-
covery loss terms to begin resolving metric scale. We set α = 0.85, λphot = 1, λS = 0.05, λDC = 0.14, λPC =
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5, λDS = 0.02, λTS = 6, dmin = 1.8, dmax = 60, with the ground truth camera height hgt = 1.70 m.3

Figure 5.3 illustrates the convergence of the scale factor during training; the scale factor converges within 500
minibatch iterations. Over time, as illustrated by the �nal epoch in the training plot, the scale factor becomes
more consistent, and is generally very close to unity.

Loss Type Mean Scale Factor (Std. Dev.)

Seq. 05
(val.)

Seq. 09
(test)

Seq. 10
(test)

Supervised 0.98 (0.04) 1.00 (0.04) 1.01 (0.05)
Stereo Consist. 1.01 (0.03) 1.01 (0.05) 1.01 (0.05)
LTS + LDS 1.00 (0.04) 1.00 (0.03) 1.01 (0.04)

Table 5.1: �e average scale factor across the
held-out sequences for three separate recovery
methods. A more accurate scale factor is closer
to unity.

0 1000
Minibatch

1

2

S
ca

le
F

ac
to

r First Epoch

0 5000
Minibatch

1

2

Final Epoch

Figure 5.3: �e scale convergence during the �rst and
�nal training epochs while using our proposed scale re-
covery losses.

5.3.3 Experimental Results

We verify that our scale recovery method produces depth and pose estimates that are metrically scaled through
four experiments. First, we demonstrate that the accuracy of our scale recovery method is comparable with
alternative techniques that require stereo images or ground truth. �en, we show that DepthNet, being scale
aware, does not require scale alignment with ground truth to produce accurate depth predictions. In our next
experiment, we show that our scale recovery loss, by promoting scale consistency during training, is able to
improve the overall egomotion estimation accuracy compared with online scale recovery methods such as DNet
(Xue et al., 2020). Finally, we demonstrate how our loss formulation is well suited for online retraining to improve
accuracy in new environments.

Scale Factor Evaluation

We compare our method with two existing loss functions that are used to resolve scale: a pose supervision
loss and a (stereo image) le�-right consistency loss (Godard et al., 2017). To implement these two techniques,
we directly replace our scale recovery loss with the alternate loss function and train the depth and egomotion
networks from scratch. No changes are made to the training procedure4 or the network structures for this
experiment, other than balancing the additional loss term with the existing loss terms by appropriately tuning
its weighting factor.

To compare these three scale-resolving approaches, we estimate the scale factor of their depth predictions by
extracting the ground plane using our plane segmentation network, and then computing the camera height with
Equation (5.8). We compare the estimated camera height to the known camera height to determine the scale
factor st =

hgt
ht

for every image frame within the test and validation sequences. We report the per-sequence
mean scale factor in Table 5.1. Comparing our scale recovery technique with the two alternate methods, the
di�erence in scale factor is negligible. However, the alternative approaches require stereo images or ground
truth information, while our algorithm requires knowledge of the camera height only. Figure 5.4 illustrates the
estimated scale factor determined by our method and compares it with our baseline unscaled model. Lastly, we

3For LTS , we found that gradually increasing λTS through λTS = 0.6(1 + min(2T, 9)), with T as the current training epoch,
prevented the depth network weights from diverging early in the training process.

4For the pose supervision method, we omit the odometry sequences (11-21) from training because no pose labels are available for
these sequences.
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Figure 5.4: Scale factor estimates for the KITTI test sequences. In addition to resolving the metric scale factor, the variance
of the scale across the sequences (i.e., the inter-frame scale consistency) is improved with our proposed losses.

Table 5.2: Ablation study demonstrating the e�ect of our scale recovery loss terms on the average scale factor observed
across the validation and test sequences. Inclusion of both proposed loss terms is the most e�ective for scale recovery.

Loss Type Mean Scale Factor (Std. Dev.)
Seq. 05 (val.) Seq. 09 (test) Seq. 10 (test)

Unscaled 1.99 (0.196) 2.05 (0.09) 2.02 (0.12)
LTS 1.02 (0.07) 1.05 (0.04) 1.04 (0.05)
LDS 1.02 (0.06) 1.05 (0.04) 1.04 (0.06)

LTS + LDS 1.00 (0.04) 1.00 (0.03) 1.01 (0.04)

include an ablation study (Table 5.2), which indicates that combining LDS and LTS results in a scale factor that
is the closest to unity.

In addition to resolving metric scale, we observe how the inclusion of our scale recovery losses improves the
overall interframe scale consistency. �e ablation study detailed in Table 5.2 shows how the standard deviation of
the scale factor is reduced when either scale recovery loss is applied, and further decreases with the inclusion of
both losses. �is improvement in scale consistency is also illustrated in Figure 5.4. We consider the improvement
in scale consistency to be a noteworthy result, since the baseline system already employs the depth consistency
loss, which Bian et al. (2019) previously proposed to improve inter-frame scale consistency. We a�ribute this
improvement as being due to the explicit inclusion of metric information through the scale recovery losses.

Depth Evaluation

To benchmark the accuracy of the depth predictions, we train our system with the Eigen training/validation/test
split of the KITTI dataset. Here, we use the standard preprocessing of Zhou et al. (2017) to remove stationary
images, and train our system using the same procedure from Section 5.3.2. Table 5.3 depicts the depth accuracy
results on the test split. We include three versions of our network:

1. our (unscaled) baseline network whose predictions have been rescaled using ground truth depth; the per-
image scale factor is st =

median(Dt,gt)
median(Dt,pred) ,

2. the same network whose predictions have been rescaled using the known camera height (the per-image
scale factor is st =

hgt

ĥt
), and
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Table 5.3: Monocular depth prediction results on the Eigen test split. �e scaling method is either a per-image scale factor
correction using the ground truth depth (GT) or one that only uses knowledge of the camera height over the ground plane
(Cam. Height).

Method Scaling Method Error ↓ Accuracy ↑

Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Bian et al. (2019) GT1 0.137 1.089 5.439 0.217 0.830 0.942 0.975
Zhao et al. (2020) GT 0.148 1.091 5.536 0.209 0.802 0.934 0.976

DNet GT 0.113 0.864 4.812 0.191 0.877 0.960 0.981
Ours

(w/o LTS + LDS) GT 0.130 1.313 5.254 0.206 0.857 0.955 0.979

DNet Cam. Height 0.118 0.925 4.918 0.199 0.862 0.953 0.979
Ours

(w/o LTS + LDS) Cam. Height 0.155 1.657 5.615 0.236 0.809 0.924 0.959

Ours None 0.123 0.996 5.253 0.213 0.840 0.947 0.978
1 A constant scale factor correction is applied to all frames in the sequence, as opposed to the per-frame “GT” scaling that other
methods use for evaluation.

3. our scale-aware network trained with our scale recovery loss, whose scaled predictions do not require
any online rescaling.

Comparing these methods in Table 5.3, we see that the accuracy of our proposed method is competitive with
existing approaches, despite not requiring any form of scaling at test time. Furthermore, we note that incor-
porating our scale recovery loss at training time results in more accurate depth predictions than our two other
baselines, unscaled network predictions that have been rescaled using the known camera height or ground truth.
We posit that this increase in accuracy is a result of the improved inter-frame depth consistency that our scale
recovery losses provide (as discussed in Section 5.3.3).

Visual Odometry Evaluation

We evaluate the egomotion (VO) accuracy of our scale-aware system on the KITTI validation sequences and
present the results in Table 5.4 and Figure 5.5. In Table 5.4, we benchmark the VO accuracy of our method
by comparing it with several (monocular) alternatives. First, to illustrate the problem of scale dri� in classical
estimators, we benchmark against ORB-SLAM2 (Mur-Artal and Tardós, 2017) (without loop closure). Second,
we benchmark against two existing self-supervised methods (Bian et al., 2019; Zhao et al., 2020) that promote
scale consistency using their proposed depth consistency losses. �ird, we compare our system against DNet
(Xue et al., 2020). Since the authors of DNet do not report any VO results, we adopt their open-source scale
recovery technique and use it to rescale our baseline, unscaled network. We follow the same procedure as DNet
to estimate the scale factor online: for a given image, we compute the median camera height using the ground
plane pixels (and their associated depth predictions) and determine the scale factor as st =

hgt
ht

. �e per-image
scale factor is then used to rescale the egomotion estimates from our baseline network.

Table 5.4 lists all mean translation and rotation segment errors for these approaches. We observe that ORB-
SLAM2, despite producing an accurate result for sequence 10, su�ers from scale dri� in sequence 09. When
comparing the alternative self-supervised methods with ours, we see that our system has a similar accuracy
without requiring any form of ground truth at test time to produce metrically scaled predictions. Lastly, when
comparing our system with the baseline that uses the online rescaling method from DNet, we note that our
system produces a more accurate translation prediction. �is result is veri�ed in the �nal two rows of Table 5.4,
where the predicted orientation is replaced with ground truth to isolate the translation prediction error. We
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Table 5.4: Visual odometry results on the KITTI dataset. Our approach produces metrically scaled trajectory estimates
without requiring any test-time scaling.

Method Scaling Method Seq. 09 Seq. 10

terr (%) rerr (◦/100m) terr (%) rerr (◦/100m)

With Predicted Orientation

ORB-SLAM2 GT1 15.30 0.26 3.68 0.48
Bian et al. (2019) GT1 8.24 2.19 10.7 4.58
Zhao et al. (2020) GT1 8.13 2.64 9.74 3.58

Ours (w/o LTS + LDS) DNet 7.23 1.91 13.98 4.07
Ours None 5.93 1.67 10.54 4.03

With Ground Truth Orientation

Ours (w/o LTS + LDS) DNet 5.14 — 9.67 —
Ours None 3.63 — 6.14 —

1 A constant scale factor correction is applied to all frames in the sequence.
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Figure 5.5: Top-down view of sequence 09, comparing the accuracy of our method with the DNet rescaling method with
the predicted orientation (le�) and ground truth orientation (right).

hypothesize that this improvement is a result of the incorporation of metric information at training time.

Online Retraining Evaluation

With self-supervised systems, data collected within new environments can be used to update the model param-
eters, allowing the networks to adapt to changing surroundings. Our �nal experiment demonstrates how our
self-supervised loss formulation accounts for out-of-distribution data through online network retraining to pro-
duce metrically scaled predictions. We examine domain adaptation by �rst training our system on the Oxford
RobotCar dataset and then evaluating VO accuracy on the KITTI dataset.

We �rst train our depth and egomotion networks on a subset of the Oxford RobotCar dataset using the same
training procedure, network structure, and hyperparameters as for the KITTI experiments (see Section 5.3.2).
Following this, we retrain the networks for a single epoch with KITTI data (using the KITTI training sequences),
without changing any parameters (with the exception of se�ing the camera height back to 1.70 metres). To gauge
the e�ectiveness of our scale recovery loss, retraining is carried out twice, once with the scale recovery loss and
once without.

Table 5.5 lists the domain adaptation results. As expected, due to the di�erence in the images between
datasets (e.g., camera parameters and height, as well as signi�cant changes in scene structure/illumination),
our depth and egomotion networks trained on the RobotCar dataset do not perform well on the KITTI dataset.
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Table 5.5: Results from our retraining experiment. A network pre-trained on the Oxford RobotCar dataset is evaluated on
the KITTI dataset. By retraining on KITTI with our scale recovery loss, VO accuracy is signi�cantly improved.

Method Seq. 09 Seq. 10

terr (%) rerr (◦/100 m) terr (%) rerr (◦/100 m)

Original 34.51 9.23 36.38 12.01
Retrained (no LTS + LDS) 34.99 2.25 32.53 3.45
Retrained (no LTS + LDS)

with DNet Rescaling 7.73 2.25 12.48 3.45

Retrained (with LTS + LDS) 6.93 1.70 8.82 3.54

By retraining the models for a single epoch on KITTI using the Equation (5.1) baseline (unscaled) loss, the
overall accuracy improves, but the scale factor does not converge to unity. In contrast, when retraining with
Equation (5.12), the network adapts to the KITTI environment and produces metric predictions.

5.4 Summary and Future Work

In this chapter, we described a novel scale recovery loss that encourages learned SfM predictions to have a
uniform, metric scale factor. In contrast to alternative approaches (e.g., pose supervision or stereo consistency
losses), our method requires only a stream of monocular images and a known camera height at training time.
Notably, our networks can be retrained online, which signi�cantly improves egomotion predictions for out-
of-distribution images. Additionally, our loss enforces inter-frame depth consistency during training, boosting
overall egomotion estimation accuracy compared to a similar method that only recovers scale at test time.

As future work, we may investigate how our scale recovery framework can take into account changes in
the camera height. While we demonstrated that our approach is successful for a wheeled platform (i.e., a car,
where the camera height is approximately constant), other wheeled systems may experience larger �uctuations
in camera height that might corrupt scale recovery. In these circumstances, an uncertainty-based framework
could be used to downweight the scale recovery loss for training samples where the camera height �uctuates. For
aerial platforms, where motion is no longer constrained to a plane, altitude information (i.e., from a barometer
or altimeter) could replace the �xed camera height in our scale recovery framework to recover scale with our
proposed losses.



Chapter 6

Tightly Coupled Networks for
Scale-Consistent SfM

In the learned SfM system, the self-supervised photometric reconstruction loss intimately ties depth and ego-
motion estimation together through view synthesis. To minimize this loss, the depth and egomotion networks,
traditionally parameterized as separate (independent) network structures, must implicitly learn to be consistent
with each other during training. In particular, the networks must learn a mutually consistent notion of scale.
In the previous chapter, we discussed how auxiliary losses can be incorporated to boost scale consistency by
incorporating metric information into the training procedure. Although inter-network consistency is implicitly
encouraged during training via the addition of these losses, inconsistency in the network predictions may limit
convergence during training and degrade overall system accuracy (Wang et al., 2021, 2018a). To mitigate the
issues associated with scale inconsistency, it is possible to couple (i.e., link) the depth and egomotion networks
in such a way that there is an explicit exchange of information that, for example, allows for scale details to be
passed from one network to the other.

On the other hand, it is also possible to over-couple the networks, resulting in convergence to a local minimum
where neither the depth nor egomotion predictions are representative of reality. Indeed, Godard et al. (2019)
note that learning depth and egomotion with a joint network (i.e., through weight sharing between DepthNet
and EgoNet) degrades the overall system performance; we have observed the same phenomenon within our own
experiments. It is of interest, therefore, to establish a coupling method that su�ciently facilitates information
sharing, while preserving the (partial) independence of the network structures.

In this chapter, we investigate and improve upon existing methods to achieve an appropriate degree of
network coupling. First, we survey the �eld and categorize the approaches to coupling described in the literature
(Figure 6.1 and table 6.1). We �nd that most systems rely solely on indirect coupling of depth and egomotion via
the self-supervised reconstruction loss; others incorporate direct coupling by treating one prediction as a function
of the other (Wang et al., 2019; Li et al., 2020); and lastly, recent methods (Nabavi et al., 2020; Gu et al., 2021)
incorporate a form of direct coupling—that we call feedback coupling—to iteratively re�ne predictions based
on successive forward passes through the networks. Building on this taxonomy, we present a novel network
structure that ensures the depth and egomotion network predictions are tightly coupled at both training and test
time by leveraging all three coupling strategies together.

Our approach uses iterative view synthesis (Nabavi et al., 2020) to recursively update the egomotion network
input with the most recent synthesized view, which makes the egomotion prediction a function of depth. Ad-
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Figure 6.1: �ree primary forms of coupling that exist between depth (DepthNet) and egomotion (EgoNet) networks. We
show that feedback coupling, which in this case treats the egomotion network input as an iteratively updated cost map (i.e.,
an iteratively updated photo- or feature-metric input that encodes prediction error), is an e�ective form of coupling. In all
cases, the loss is the photometric di�erence between a target image (It) and a virtual image synthesized by warping a nearby
source view (Is). Test-time optimization through parameter �ne-tuning (PFT), illustrated with green arrows, can be applied
to direct coupling methods as well (we omit this from the diagram for simplicity).

ditionally, we incorporate test-time optimization (Chen et al., 2019b) for parameter �ne-tuning (PFT). �rough
extensive experiments, we demonstrate that our unique coupling strategy promotes scale consistency between
the depth and egomotion predictions, improves generalization, and leads to state-of-the-art accuracy on indoor
and outdoor depth and egomotion evaluation benchmarks. In short, the main contributions of this chapter are
as follows:

1. we introduce a new taxonomy for categorizing the large variety of learned SfM systems by the degree of
coupling that exists between their depth and egomotion networks;

2. we develop a novel tightly coupled SfM system whose depth and egomotion networks are carefully linked
in order to properly share information at training and test time;

3. we present extensive experimental results demonstrating how our proposed system improves in accuracy
and generalization compared with a baseline decoupled network structure;

4. we elucidate how proper network coupling allows for a mutually consistent scale factor to be shared
between the depth and egomotion networks, facilitating inter-network scale consistency.

6.1 Related Work

In what follows, we a�empt to broadly categorize the degree of coupling between the depth and egomotion
networks in a number of common learned SfM systems. Table 6.1 illustrates how the depth and egomotion
networks can be linked using indirect, direct, and feedback coupling, which we describe in detail in the coming
sections.
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Table 6.1: Recent SfM methods that use the coupling strategies shown in Figure 6.1 between the depth (D) and egomotion
(E) networks. Our proposed tightly coupled network structure is the only method that uses all three forms of coupling.

Method Inference-Time Coupling Strategy

Indirect Direct Feedback

Baseline: Zhou et al. (2017);
Godard et al. (2019); Guizilini et al. (2020a) — — —

PFT: Zhang et al. (2021);
Chen et al. (2019b); McCraith et al. (2020)
Shu et al. (2020); Kuznietsov et al. (2021)

X — —

Zou et al. (2020) — D→E —
Ambrus et al. (2020) — D→E —

Li et al. (2020) X D→E —
Wang et al. (2020) — E→D —

ManyDepth (Watson et al., 2021) X E→D —
Nabavi et al. (2020) — D→E X

DRO (Gu et al., 2021) — D�E X
Ours X D→E X

6.1.1 Indirect Coupling

�e majority of self-supervised methods (Zhou et al., 2017; Godard et al., 2019; Guizilini et al., 2020a; Li et al., 2018;
Bian et al., 2019; Mahjourian et al., 2018; Vijayanarasimhan et al., 2017) treat depth and egomotion estimation as
separate tasks and consequently employ separate networks (see Figure 1a). During training, the independently
estimated predictions are coupled as part of the view synthesis procedure, which uses depth and egomotion to
reconstruct the target view from a nearby source view. We call this indirect coupling because there is no explicit
linking of depth and egomotion, rather, the weights of each network are coupled through gradient �ow alone.
Although this form of coupling is su�cient to jointly learn depth and egomotion, the major drawback is that
the networks become decoupled at test time, which prevents contextual information (such as scale) from being
passed from one network to the other. Recently, however, it has been proposed that—owing to its self-supervised
nature—the reconstruction loss can be retained at test time and be further minimized by a gradient-descent-based
optimizer (Li et al., 2020; Zhang et al., 2021; Chen et al., 2019b; Watson et al., 2021; McCraith et al., 2020; Shu
et al., 2020; Kuznietsov et al., 2021). In so doing, the indirect link between networks (via gradient �ow from the
loss function) is preserved at test time, and multiview geometry constraints can be enforced by minimizing the
error from multiple source images. Chen et al. (2019b) initially proposed two unique optimization approaches:
parameter �ne-tuning (PFT), which further optimizes the network weights, and output �ne-tuning (OFT), which
directly optimizes the depth or egomotion predictions. Our approach uses the former for indirect coupling of
the networks at test time.

6.1.2 Direct Coupling

Beyond basic coupling within the loss function, other methods promote consistency between depth and egomo-
tion by explicitly linking depth and egomotion within the network structures. Godard et al. (2019) experimented
with weight sharing to e�ectively merge the networks; however, they report that a baseline ‘shared’ network
structure is less accurate than a system with independent networks. In our own experiments, we also �nd this
to be true. Other methods (Wang et al., 2019; Li et al., 2020; Ambrus et al., 2020; Zou et al., 2020) estimate ego-
motion as a function of the predicted depth (see Figure 1b), with Ambrus et al. (2020); Zou et al. (2020) providing
ablation studies indicating that doing so improves accuracy. Less commonly, egomotion predictions have been
applied to directly aid in the estimation of depth (Watson et al., 2021; Wang et al., 2020).
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6.1.3 Feedback Coupling

Feedback coupling is a method that enables network introspection by reformulating the input as a cost map
built with the current depth and egomotion predictions (see Figure 1c). �e cost map explicitly encodes error
within the input, which the networks can utilize by iteratively updating the current prediction (i.e., through
multiple forward passes). As the predictions improve, the cost map is updated, and this process is repeated
until convergence (i.e., until the cost map is minimized). We identify two existing self-supervised feedback
coupling methods in the literature. Nabavi et al. (2020) use a photometric cost map consisting of the target view
and a synthetic ‘target’ view (generated from a nearby source view); optimal depth and egomotion predictions
maximally align the synthesized view with the target view, e�ectively minimizing the cost map. Gu et al. (2021),
the authors of the Deep Recurrent Optimizer (DRO), adopt a similar approach, but replace the photometric cost
map with a feature-metric one.1 Further, DRO employs iterative feedback for egomotion and depth estimation,
where both networks take the cost map as input. �e increased complexity of this system requires a customized
training procedure that alternates between training of the depth and egomotion network weights to maintain
stability. Finally, other methods (Wei et al., 2020; Tang and Tan, 2019; Teed and Deng, 2020; Ummenhofer et al.,
2017; Clark et al., 2018) use iteration for feedback coupling but require supervision to train the relatively complex
network structures.

Herein, we demonstrate that feedback-based coupling is a crucial estimation component that promotes scale
consistency between depth and egomotion, signi�cantly boosting the overall system accuracy and improving
generalization. We extend the feedback coupling approach of Nabavi et al. (2020) by incorporating indirect
coupling into our system using a test-time PFT strategy to achieve tight coupling of predictions. �at is, our
approach links depth to egomotion, and vice versa, such that an improvement in one leads to an improvement
in the other.

6.2 Methodology

We detail our tightly coupled approach in three parts. First, we introduce our baseline (decoupled) depth and
egomotion networks and the self-supervised loss formulation used for training. Second, we describe the modi�-
cation of this baseline system to include feedback coupling based on iterative view synthesis. Finally, we present
our test-time depth optimization technique that forms the �nal component of our tightly coupled framework
for estimating depth and egomotion. See Figure 6.2 for an illustration of our system.

6.2.1 Baseline Depth and Egomotion Framework

For our baseline system, we use the same network structures and loss functions from the previous chapter.
We review these details again here brie�y. Our system consists of DepthNet, Dt = fθD (It) and EgoNet,
ξst = fθE (Is,It). �e exponential map is used to produce the SE(3) pose change through Tst = exp

(
ξst
∧).

�ese networks are jointly trained through minimization of the photometric reconstruction loss, consisting
of Lphot (with the L1 and SSIM terms), in addition to the inverse depth smoothness loss LS and the depth
consistency loss LDC . We also include the pose consistency loss term, LPC from the previous chapter. Overall,

1Note that our de�nition of a cost map is generalized to encompass the variations in Nabavi et al. (2020) and Gu et al. (2021); the former
implicitly encodes the error within the stacked images, while the la�er explicitly computes the error within the input using the L2 norm.
‘Minimization’ in the former case refers to maximal alignment of the two images, and a zeroing of the input in the la�er.
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Figure 6.2: System overview: (a) We use feedback coupling through iterative view synthesis (Nabavi et al., 2020) to produce
an egomotion prediction that is a function of depth. (b) At test time, the depth network weights are updated via gradient
descent to further minimize the sample-wise loss. As a result of our unique coupling scheme, both depth and egomotion
predictions improve as the depth network weights are updated.

the per-sample loss that we use to train the system, averaged across all training samples, is

Ltrain =
1

HW

∑
u,v

(λphotLphot + λSLS + λDCLDC) +
1

6

∑
λPCLPC . (6.1)

Note that within Lphot, we use the automasking and minimum reprojection techniques, along with the self-
discovered mask, to remove and/or downweight the unstable image regions. See Section 4.2.2 for additional
information. �is baseline system employs no coupling aside from the indirect coupling that happens during
training. To be�er couple our predictions, we use the feedback coupling approach based on iterative view
synthesis (described below).

6.2.2 Feedback-Coupled Egomotion Prediction

In line with Nabavi et al. (2020), we extend the standard egomotion estimation approach to incorporate feedback
through iterative view synthesis. We perform multiple forward passes through the network and rede�ne the
egomotion network input as a photometric cost map that is updated a�er each iteration. We propose (and later
will experimentally demonstrate) that including iteration improves convergence during training by making the
egomotion a function of the current depth prediction. With this added contextual information being provided to
the egomotion network, the consistency between the depth and egomotion predictions is improved. Importantly,
due to this added link, the networks can account for the inherent scale ambiguity that is present in monocular
images.

To incorporate feedback coupling via iterative view synthesis, no network architecture changes are required.
�e only di�erence is that multiple passes through the network are made, where the ith pass takes as input a
recursively updated cost map based on the images {iIs→t,It}. Here, iIs→t denotes the reconstructed image
(created through view synthesis, as Section 4.2.2 describes in detail) a�er the ith forward pass. With this modi�ed
EgoNet input, subsequent passes through the network produce a correction δξist = fθE (iIs→t,It) that be�er
aligns the current reconstructed source image iIs→t with the target image. For N iterations, corrections are
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compounded with the current egomotion prediction to produce an updated estimate through

Ti
st =

(
N∏
i=1

δTi
st

)
T0
st ≈

(
I4 +

N∑
i=1

δξi
∧

st

)
T0
st, (6.2)

where the initial egomotion estimate T0
st is considered an egomotion prior used to initialize the system.2 We

initialize with the identity matrix (i.e., by making the assumption that the camera is stationary) but note that a
constant velocity assumption could alternatively be used. In subsequent iterations, the warped image and the
target image are used as inputs to produce an egomotion correction. Notably, since iIs→t is a function of the
current depth prediction and the corrected egomotion prediction, EgoNet is able to take into account the error
that is explicitly encoded into the input cost map (through any misalignment of the two input images) when
producing the subsequent egomotion correction.

Feedback Resolves Scale Inconsistency. We hypothesize that feedback coupling, through the added link
between EgoNet and DepthNet, will pass scale information from the current depth prediction into EgoNet. In
doing so, the networks no longer need to implicitly learn a mutually consistent scale factor, which is challenging
to do with monocular images (using the unscaled photometric reconstruction loss). As a result, the inter-network
scale inconsistency, present in the baseline decoupled networks at training and test time, can be mitigated.
Signi�cantly, removing scale inconsistency removes a source of error from the photometric reconstruction loss,
which we believe will improve the gradient �ows to the networks during training. Furthermore, the linking of
the networks produces a secondary path for gradient �ow into the depth network: the gradients are now able
to backpropagate through EgoNet and into DepthNet.

To demonstrate the impact of incorporating iteration, we visualize some sample-speci�c photometric recon-
struction loss curves (as a function of egomotion) in Figure 6.3.3 Here, we observe that through the application of
subsequent forward passes, the egomotion predictions gradually converge to the minimum of the loss function.
Note that if the input depth prediction is erroneous, the minimum loss will not always align with the ground
truth value of egomotion; we address this by re�ning depth predictions through PFT, which we describe next.

6.2.3 Tightly Coupled Depth and Egomotion Optimization

We extend the feedback coupling method, linking depth with egomotion, by doing the converse: linking ego-
motion with depth. �is additional network coupling is achieved by incorporating a test-time PFT method that
re�nes the depth network weights by further minimizing the self-supervised loss through gradient descent. By
incorporating our feedback-coupled egomotion network with our depth optimizer, we can achieve tightly cou-

pled optimization of depth and egomotion. �e novelty of our optimization procedure with respect to other PFT
methods is that we can produce re�ned depth and egomotion predictions through the optimization of our depth
network only, because our (feedback-coupled) egomotion predictions are already a function of depth. As the
depth prediction is re�ned by PFT, we recompute an improved egomotion prediction via the iterative egomotion
network (whose cost-map input is updated with the re�ned depth).

To perform PFT at test time, we minimize the same loss as Equation (6.1) but replace the smoothness term
with a depth prior that ensures that the optimized depth D∗t remains similar to the original depth prediction.

2�is approximation simpli�es the training procedure and has a negligible impact on performance, since the pose corrections are small
quantities applied to an already small egomotion prediction.

3�e 1D loss curves were generated by sampling forward translation or yaw values via a grid search and then plo�ing the resultingLphot
produced using these sampled values and the current depth prediction. �en, the egomotion network’s real prediction at each iteration is
overlayed on this curve.
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Figure 6.3: 1D loss experiments illustrating the impact of adding coupling at test time. We visualize the loss curve (for
a sample from the KITTI dataset) as a function of the two primary degrees of freedom for the camera: the forward axis
translation, and the yaw axis orientation. Feedback-based coupling iteratively updates the initial egomotion prediction to
(approximately) align with the minimum of the loss.

�e resulting PFT loss is

LPFT =
1

HW

∑
u,v

(λphotLphot + λDCLDC + λpriorLSSIM (D∗t ,Dt)) +
1

6

∑
λPCLPC . (6.3)

Figure 6.4 illustrates our tightly coupled optimization procedure in one dimension for a single test-time sample.
Beginning with the initial (red) loss curve produced by our trained depth network, the egomotion network
recursively updates its predictions to converge to the (suboptimal) minimum. Running through each epoch of
the test-time depth optimizer shi�s the loss to a new (lower) minimum by improving the quality of the depth
prediction; then, given the new depth prediction, our egomotion network converges to the new minimum. We
visualize an example of the improvement in depth accuracy (and the corresponding reduction in the photometric
reconstruction error) in Figures 6.5 and 6.6.

6.3 Experiments

We provide details of our network structure and training procedure below, followed by extensive experimental
results on the ScanNet, KITTI, and Oxford RobotCar datasets. Speci�cally, we evaluate the performance of our
tightly coupled system on depth and egomotion benchmarks from KITTI and ScanNet, showing that we achieve
state-of-the-art accuracy on the KITTI odometry benchmarks and the ScanNet benchmarks. Further, we include
ablation studies that indicate how both feedback and indirect coupling, while useful on their own, complement
each other when combined. Finally, we demonstrate additional bene�ts of feedback coupling—in particular, this
coupling improves generalization across datasets, as we demonstrate through cross-dataset evaluation (from
KITTI to Oxford RobotCar).

6.3.1 Datasets and Evaluation Metrics

We primarily evaluate our system on KITTI and ScanNet. Additionally, we include a cross-dataset evaluation
on Oxford RobotCar. We refer the reader to Appendix A for further details on these datasets and their common
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Figure 6.4: Incorporating indirect coupling into the 1D loss experiment. �rough the application of PFT for depth optimiza-
tion, the minimum of the loss curve reduces and shi�s towards to ground truth egomotion value. �e egomotion prediction,
thanks to feedback coupling, is able to converge to the new minimum without retraining.

(a) Image (b) Depth (no PFT) (c) Depth (with PFT) (d) Error (no PFT) (e) Error (with PFT)

Figure 6.5: Depth predictions and reconstruction errors before and a�er applying our test-time optimization scheme on
KITTI dataset images.

(a) Image (b) Depth (no PFT) (c) Depth (with PFT) (d) Error (no PFT) (e) Error (with PFT)

Figure 6.6: Depth predictions and reconstruction errors before and a�er applying our test-time optimization scheme on
ScanNet dataset images.
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Figure 6.7: KITTI odometry results on the test sequences. Our tightly coupled system leads to improved egomotion accuracy
compared with the baseline method (1-iteration, no PFT).

evaluation metrics.

ScanNet Dataset. We follow the training/test split from Tang and Tan (2019), where the �rst 1,413 sequences
are used for training and 2000 image pairs from the remaining 100 sequences are selected for testing. Our
networks use images downsized to 256× 448. For evaluation on ScanNet, we report the depth and camera pose
metrics as described in Tang and Tan (2019) (and Appendix A) and, similar to existing literature, use image-wise
rescaling to align the predictions with ground truth for both depth and poses.

KITTI Dataset. Our networks use images downsized to 192× 640. For depth evaluation, we follow the Eigen
train/test split and follow the standard procedure from Godard et al. (2019) by reporting depth accuracy a�er per-
image median ground truth scaling. For odometry evaluation, we train with sequences 00, 02, and 05 through
08, and test on sequences 09 and 10. We report the average translational and rotational errors (terr(%),
rerr(

o/100 m)) over possible sub-sequences of length (100, 200, . . . , 800) metres. Since we do not employ a
scale recovery method in this system, we align the (unscaled) trajectories with ground truth by applying a
constant scale factor to the translation values of the estimated trajectory.

Oxford Dataset. We downsize the images to 192 × 640 and use the training/validation split from Appendix
A. �e mean segment errors (across the same sub-sequences as KITTI) are used for odometry evaluation.

6.3.2 Implementation Details

We use the same depth and egomotion network structures from the previous chapter, which are outlined in
Appendix B. For the KITTI and ScanNet experiments, we pretrain our networks on the Oxford RobotCar dataset.
We train our models on an NVIDIA Titan V GPU for 25, 45, and 15 epochs on the KITTI odometry, KITTI Eigen
and ScanNet datasets, respectively, using the Adam optimizer (β1 = 0.9, β2 = 0.999). We use a learning rate
of (1 × 10−4, 2 × 10−4) for the depth and egomotion network, respectively, that is halved four times over
the duration of training. During training we apply data augmentation in the form of horizontal �ipping and
modi�cations to hue, saturation, contrast, and brightness. For the Equation (6.1) training loss, we use α = 0.85,
λphot = 1, λS = 0.05, λDC = 0.15, and λPC = 5. When training our iterative egomotion network, we only
compute the loss once using the egomotion prediction from the �nal iteration, rather than a�er every forward
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Table 6.2: ScanNet results for the standard two-view test set. �e ablation study indicates that more iterations and applying
PFT at test time leads to improved performance. We specify the number of iterations during training (x) and test (y) as x/y
iter.

Method Abs. Rel. ↓ Sq. Rel. ↓ RMSE ↓ RMSE Log ↓ Sc. Inv. ↓ Rot. (o) ↓ Tr (o) ↓ Tr. (cm) ↓

LSD-SLAM
(Engel et al., 2014) 0.268 0.427 0.788 0.330 0.323 4.409 34.36 21.40

Sup.

DeMoN
(Ummenhofer et al., 2017) 0.231 0.520 0.761 0.289 0.284 3.791 31.626 15.50

BANet
(Tang and Tan, 2019) 0.161 0.092 0.346 0.214 0.184 1.018 20.577 3.39

DeepSFM
(Wei et al., 2020) 0.227 0.170 0.479 0.271 0.268 1.588 30.613 —

DeepV2D
(Teed and Deng, 2020) 0.069 0.018 0.196 0.099 0.097 0.692 11.731 1.902

DRO (12 iter.)
(Gu et al., 2021) 0.053 0.017 0.168 0.081 0.079 0.473 9.219 1.160

Self-Sup.
DRO (12 iter.)

(Gu et al., 2021) 0.140 0.127 0.496 0.212 0.210 0.691 11.702 1.647

Ours (4/8 iter.) 0.088 0.038 0.260 0.125 0.122 0.547 10.482 1.290

Ours (using GT Depth) — — — — — 0.516 10.366 1.247

Ablation

1/1 iter. (no PFT) 0.181 0.117 0.462 0.229 0.223 1.948 43.363 5.612
1/1 iter. 0.186 0.125 0.462 0.233 0.228 1.948 43.363 5.612

2/2 iter. (no PFT) 0.126 0.062 0.342 0.167 0.162 1.137 20.790 2.800
2/4 iter. (no PFT) 0.126 0.062 0.342 0.167 0.162 0.958 17.496 2.270

2/4 iter. 0.111 0.054 0.302 0.150 0.147 0.821 15.195 1.952
4/4 iter. 0.092 0.040 0.266 0.129 0.126 0.695 12.340 1.669

4/8 iter. (no PFT) 0.103 0.044 0.292 0.140 0.137 0.690 12.389 1.635

pass through the egomotion network. In doing so, the iterative approach can be incorporated into the standard
self-supervised depth and egomotion pipeline without having to modify the training procedure.

Some Notes on PFT

Our PFT optimization scheme uses the Adam optimizer to update the depth network weights while the egomo-
tion network weights are �xed. Following McCraith et al. (2020), we only update the depth encoder weights
instead of updating the full depth network, since this reduces the optimization time and can improve opti-
mization stability. For our Equation (6.3) PFT loss, we use the same hyperparameters as training, while se�ing
λprior = 0.1. For every test set sample, 20 optimization ‘epochs’ are performed. Each epoch involves: forward
passes through the depth and (iterative) egomotion network, computation of the loss function using the current
predictions, and a backward pass to update the depth network weights using the Adam optimizer. We perform
the optimization over a minibatch of three samples (each consisting of a target image and the two adjacent
source images), which helps with regularization and leverages available GPU memory to increase the optimiza-
tion speed. Instead of returning the network predictions from the �nal epoch, we average the predictions from
the last �ve epochs to prevent a noisy gradient step from negatively impacting the optimization.

We evaluate the runtime of our method, running on an NVIDIA Titan V GPU, and report the operating
frequency in Table 6.3. �e operating frequency for the baseline (1-iteration, non-PFT) depth and egomotion
networks is real-time capable; the increase from a single egomotion iteration to four iterations reduces the overall
frequency, but real-time capability is maintained. Applying PFT at test time, however, can cause a signi�cant
reduction in the operating frequency, since each PFT epoch requires a new forward pass through the depth and



88 Chapter 6. Tightly Coupled Networks for Scale-Consistent SfM

Table 6.3: A runtime comparison for our proposed methods. �e PFT slows down the system at test time, but only a small
amount of optimization epochs are required to improve the egomotion accuracy. Notably, real-time performance is achieved
using the ‘sequential’ optimization strategy from McCraith et al. (2020). �e translation (terr) and rotation (rerr) errors are
from KITTI sequence 09.

Mode # PFT Epochs Frames Per Sec. terr (%) rerr (◦/100 m)

1-iter — 56.69 8.42 2.52
4-iter — 37.11 2.98 0.66

4-iter 20 1.51 1.19 0.32
4-iter 10 3.05 1.24 0.28
4-iter 5 6.20 1.35 0.40
4-iter 1 16.16 1.65 0.52

4-iter PFT
(Sequential1 McCraith et al. (2020)) 1 21.6 1.59 0.47

1 In the sequential method, the network is continuously optimized throughout the sequence without rese�ing
the model back to its initial weights (like we do in our original PFT method) a�er optimizing each minibatch.

egomotion networks, followed by an optimization step. As shown in Table 6.3, however, only a small number
of optimization steps are required to improve performance.

Lastly, in the course of evaluating our approach on the KITTI odometry dataset, we identi�ed that sample-
wise optimization o�en increases inter-frame scale dri�, since the PFT procedure can independently shi� the
scale factor for individual samples within the test sequences. To promote a uniform scale factor across an entire
sequence, we incorporate a (self-supervised) online scale recovery module based on DNet (Xue et al., 2020).
For each image, we estimate the camera height (relative to the ground plane) using our depth prediction and
then normalize the corresponding translation prediction using this quantity. We refer the reader to Table 6.5
for results from ablation experiments that show the accuracy of our method without applying this rescaling. It
is important to note that this inter-frame scale inconsistency di�ers from the inter-network scale inconsistency
that we address in this chapter through the introduction of the tightly coupled networks.

6.3.3 Experimental Results

ScanNet Results

Table 6.2 presents our results on the ScanNet test split. Our method signi�cantly outperforms the self-supervised
variant of DRO and is competitive with supervised methods. We additionally include the pose results from our
egomotion network when using the available ground truth depth (instead of our predicted depth) to iteratively
warp the source image. �e improved pose accuracy indicates that our egomotion network functions with an
arbitrary depth map that was not present during training. Our ablation study reveals that feedback coupling
(through iteration) is crucial for improving accuracy—without this, even the PFT has very li�le impact.

KITTI Results

Table 6.4 and Figure 6.7 present the performance of our tightly coupled system on the KITTI odometry test
sequences. Our proposed method achieves state-of-the-art egomotion accuracy compared with other learning-
based methods. Our ablation study (Table 6.5) indicates that coupling is crucial for achieving this level of accu-
racy. Including feedback and applying our PFT strategy are both highly e�ective to improve accuracy; incorpo-
rating both leads to the best performance. Notably, our coupling approach produces be�er egomotion estimates
than the more simplistic direct coupling methods (Ambrus et al., 2020; Wang et al., 2019) that treat depth as an
input into the egomotion network.
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Figure 6.8: Training losses for the Eigen split. Increasing the amount of egomotion iterations during training leads to
improved convergence on the training set and improved generalization on the validation set.

Table 6.4: KITTI odometry results on the standard test sequences. We report the mean translation and rotation segment
errors. Our proposed method signi�cantly outperforms other learning-based methods, including others that use PFT at test
time.

Method Test-Time PFT Seq. 09 Seq. 10

terr
(%)

rerr
(◦/100 m)

terr
(%)

rerr
(◦/100 m)

SfMLearner (Zhou et al., 2017) 11.32 4.07 15.25 4.06
SC-SfMLearner (Bian et al., 2019) 8.24 2.19 10.7 4.58

Ambrus et al. (2020) 6.72 1.69 9.52 1.59
MonoDepth2 (Godard et al., 2019) 17.80 3.86 12.41 5.33
ManyDepth1 (Watson et al., 2021) 13.36 2.93 10.18 4.25

Wang et al. (2019) 9.30 3.50 7.21 3.90
Zou et al. (2020) 3.49 1.00 11.80 1.80
Shu et al. (2020) X 8.75 2.11 10.67 4.91
Li et al. (2020) X 5.89 3.34 4.79 0.83

DOC (Zhang et al., 2021) X 2.02 0.61 2.29 1.10
Ours (4-iter) X 1.19 0.30 1.34 0.37

1 We generated this with their publicly available model.

Table 6.7 shows the depth accuracy of our system on the Eigen test split; notably, we are competitive with
other monocular, self-supervised methods, but lag behind some recent approaches like ManyDepth (Watson
et al., 2021). We emphasize the utility of our method in producing accurate depth and egomotion estimates,
whereas ManyDepth and Shu et al. (2020) are only able to estimate depth accurately. Figure 6.8 illustrates how
our performance is in part due to the use of feedback coupling, which improves convergence and generalization
during training as more iterations (i.e., forward passes of the egomotion network) are applied.

Feedback Coupling Experiments

In our �nal set of experiments we present evidence that supports the value of using feedback in egomotion
estimation. First, we evaluate how feedback during iteration improves generalization to unseen data. �is ef-
fect is demonstrated by evaluating our network on image pairs with inter-frame perspective changes that are
signi�cantly larger than those within the dataset (which can occur as a result of increased camera velocity or
decreased camera frame rate). We modify the KITTI dataset by skipping images (i.e., adopting a stride greater
than one) and then evaluate test sequence odometry error as a function of the increased perspective change.
Figure 6.9a shows that as the number of iterations increases, the generalization performance improves. More-
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over, error is reduced by applying additional iterations (beyond the amount used during training) at test time. In
a second generalization experiment, we conduct a cross-dataset evaluation of our KITTI-trained model on the
Oxford RobotCar dataset. Table 6.6 depicts these results, which indicate that iteration is crucial for generalizing
to unseen data.

Next, we verify how robust the feedback coupling mechanism is by demonstrating the ability to mini-
mize error when large perturbations are applied to the initial (�rst iteration) egomotion prediction. Con-
cretely, we apply pose perturbations (in the forward translation direction, and along the yaw axis) to the
�rst iteration prediction from EgoNet, which impacts the synthesized image for subsequent passes through
the network. �e translation perturbation is sampled from a uniform distribution in the range [−α, α], where
α ∈ {0, 0.1, 0.25, 0.5, 0.75, 1.0, 1.5}metres, and the yaw perturbation is sampled from a uniform distribution in
the range [−β, β], where β ∈ {0, 0.1, 0.25, 0.5, 1, 3, 5} degrees. A random perturbation is applied to every sam-
ple within KITTI test sequences 09 and 10, and we report the resulting errors (averaged across the sequence)
in Figure 6.9b. Here, we include the e�ects of applying translation and rotation perturbations independently
but note that a similar result occurs even if both perturbations are applied together. As a baseline, we report the
error for our single-iteration model with random noise added to its one-shot prediction (this is the error range
we expect to see if our iterative network cannot correct for the added error). As demonstrated in Figure 6.9b, the
increase in error from adding perturbations can be completely mitigated by applying only two extra iterations.
During these subsequent iterations, the network, which takes as input the (erroneously) warped source image,
produces corrections that e�ectively compensate for the initial perturbation.

Finally, we verify our claim that appropriate coupling of the network predictions improves inter-network
scale consistency. For this experiment, we rescale the depth predictions for the KITTI test sequences by a con-
stant scale factor and then observe how the scale of the translation predictions changes in response to the mod-
i�ed depth. Concretely, we simulate scale dri� between the depth and egomotion networks by varying the scale
factor s of the depth predictions through Dscaled = sDpred. �e same scale factor is applied to all predictions
within the test sequences. �is is repeated with scale factors in the range s ∈ {0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3}.
We compute the change in translation norm (relative to the original translation norm with s = 1) of our itera-
tive egomotion network predictions to observe how the translation predictions change as a result of the rescaled
depth predictions. Figure 6.9c illustrates that the average change in the translation norms (for the iterative mod-
els) are proportional to the applied depth scaling factor. �is provides support for the notion that the egomotion
network is able to infer scale from depth predictions via our feedback coupling strategy.

Table 6.5: Ablation study on the KITTI dataset showing the e�ect of feedback coupling and indirect coupling (through PFT)
at test time. Including both leads to the lowest error.

# Egomotion Iter.
(train/test) PFT Params Seq. 09 Seq. 10

terr (%) rerr (◦/100 m) terr (%) rerr (◦/100 m)

1 / 1 — 8.42 2.52 9.10 4.11
1 / 3 — 6.16 1.51 10.13 2.74
2 / 2 — 4.49 1.22 6.86 2.09
4 / 4 — 2.98 0.66 3.38 1.02
4 / 6 — 3.02 0.69 3.03 0.93

1 / 1 θD + θE 2.00 0.51 2.36 0.95
4 / 4 θD 1.19 0.30 1.34 0.37

4 / 4 (no DNet scaling) θD 2.36 0.30 2.36 0.38
4 / 4 (no Lprior) θD 1.79 0.28 2.13 0.46

4 / 4 θD + θE 1.28 0.31 1.36 0.35
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Table 6.6: Cross-dataset evaluation results on the Oxford RobotCar dataset (sequence 2014-11-18-13-20-12). �e
translation and rotation mean segment errors are reported. When training on KITTI and testing on Oxford, our iterative
approach generalizes signi�cantly be�er than the baseline 1-iteration model.

Training Dataset Subseq. 0 Subseq. 1

terr (%) rerr (◦/100 m) terr (%) rerr (◦/100 m)

Ox. (1-iter) 7.75 3.26 9.50 3.43
KITTI (1-iter) 36.45 12.05 32.99 13.81
Rel. Change -370.32% -269.63% -247.26% -302.62%

Ox. (3-iter) 4.84 2.18 6.46 2.38
KITTI (3-iter) 5.83 3.11 11.44 4.54
Rel. change -20.45% -42.66% -77.09% -90.76%

Table 6.7: Monocular depth prediction results for self-supervised methods on the Eigen test split (Eigen and Fergus, 2015).
We report results from our depth network following test time PFT. In all other cases, we report the results from the image
resolution closest to ours.

Method Test-Time
PFT Error ↓ Accuracy ↑

Abs. Rel. Sq. Rel. RMSE RMSE Log δ < 1.25 δ < 1.252 δ < 1.253

Bian et al. (2019) 0.128 1.047 5.234 0.208 0.846 0.947 0.976

Nabavi et al. (2020) 0.160 1.195 5.916 0.245 0.774 0.917 0.964

MonoDepth2
(Godard et al., 2019) 0.115 0.903 4.863 0.193 0.877 0.959 0.981

PackNet
(Guizilini et al., 2020a) 0.107 0.803 4.566 0.197 0.876 0.957 0.980

Guizilini et al. (2020b) 0.111 0.785 4.601 0.189 0.878 — —

DRO (12 iter.)
(Gu et al., 2021) 0.088 0.797 4.464 0.212 0.899 0.959 0.980

GLNet
(Chen et al., 2019b) X 0.099 0.796 4.743 0.186 0.884 0.955 0.979

ManyDepth
(Watson et al., 2021) X 0.090 0.713 4.261 0.170 0.914 0.966 0.983

McCraith et al. (2020) X 0.089 0.747 4.275 0.173 0.912 0.964 0.982

Shu et al. (2020) X 0.088 0.712 4.137 0.169 0.915 0.965 0.982

CoMoDA
(Kuznietsov et al., 2021) X 0.102 0.871 4.596 0.183 0.898 0.961 0.981

Ours (4-iter) X 0.097 0.791 4.383 0.178 0.896 0.961 0.982
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Figure 6.9: Summary of the experiments demonstrating the utility of using an iterative egomotion network. Bene�ts include:
(a) improved generalization to unseen data, (b) robustness to initial prediction error, and (c) improved inter-network scale
consistency.
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6.4 Summary and Future Work

In this chapter, we demonstrated that an appropriate coupling of depth and egomotion networks improves per-
formance in self-supervised SfM. We introduced a taxonomy of coupling methods and discussed the potential
bene�ts of incorporating each method to promote consistency between depth and egomotion predictions at
training and at test time. We noted the particular importance of feedback coupling as a method that iteratively
updates an initial prediction to further minimize the self-supervised reconstruction loss. Building on these in-
sights, we presented our own tightly coupled approach and, through extensive experiments, showed that our
system was consistently accurate on indoor and outdoor datasets and achieved state-of-the-art accuracy on
several key benchmarks.

Future work could investigate how temporal coupling can be incorporated into our tightly coupled frame-
work in order to share information between adjacent samples. �ere are some recent methods that do so using
recurrent neural network structures for the depth and egomotion networks (Lee et al., 2020; Vaishakh et al.,
2020). An interesting extension to these methods would be to include feedback coupling to iteratively update
predictions across longer temporal sequences. Doing so could potentially enforce consistency between all of the
predictions within the window, like sliding window bundle adjustment does within classical VO or SfM methods.



Chapter 7

A Hybrid System for Robust,
Self-Supervised VIO

�e previous three chapters diverged from the aided INS framework proposed in the �rst chapter to focus on
a particular data-driven model: the learned SfM pipeline that applies neural networks trained end-to-end to
produce depth and egomotion predictions. �e �nal contribution of this thesis is an approach for utilizing the
learned SfM system as a data-driven measurement model within the broader aided inertial navigation frame-
work. �e resulting system is a hybrid visual-inertial odometry (VIO) estimator that is capable of maintaining
tracking under signi�cantly degraded visual operating conditions. In this chapter, we describe the system in
detail and contrast it with alternative classical and learned VIO estimators. We show that our hybrid VIO for-
mulation has a number of a�ributes that make it superior to these alternatives. Our experiments demonstrate the
robustness of our algorithm to visually degraded conditions, relative to the performance of classical estimators.

�e hybrid VIO system (illustrated in Figure 7.1) uses a di�erentiable �lter (DF) (Kloss et al., 2021) to in-
corporate learned egomotion measurements into an uncertainty-aware state estimator. IMU measurements are
used to propagate the state forward in time through an integration-based process model. Our work builds upon
that of Li and Waslander (2020), who used supervised pose labels to train a similar system. We relax this training
requirement by replacing the supervised loss with the self-supervised photometric reconstruction loss that can
be leveraged to train the full system end to end. In short, the main contributions of this chapter are as follows:

1. we incorporate the egomotion network component of our tightly coupled, learned SfM system as a relative
pose measurement model within a hybrid, EKF-based VIO estimator;

2. we employ our self-supervised loss formulation to train this hybrid system end to end, leveraging the
sequential nature and di�erentiability of the EKF to backpropagate from the loss function, through the
�lter, and into the network components;

3. we show that heteroscedastic uncertainty estimates for our network-based egomotion measurements can
be learned with our self-supervised formulation, facilitating principled sensor fusion within the �lter;

4. we demonstrate how, unlike other self-supervised formulations for learned VIO, our approach facilitates
scale recovery by incorporating a scale parameter as part of the EKF state;

5. we present extensive experimental results demonstrating how our proposed hybrid estimator is more
robust to failure than a number of state-of-the-art, classical VIO approaches under degraded conditions.

93
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7.1 Related Work

In this section, we separate existing approaches to VIO into three categories: classical, learned, and hybrid,
in reference to the amount of (or the lack of) machine learning involved in each case. We identify several key
limitations of approaches based purely on classical or learning frameworks, and then discuss how hybrid systems
can leverage the bene�ts—and mitigate the limitations—of purely classical and learning-based VIO systems.

7.1.1 Classical Approaches to VIO

Similar to the classical VO algorithms introduced in Chapter 4, sparse (feature-based) VIO algorithms generally
consist of a front-end and a back-end (Gui et al., 2015) component.1 �e front-end detects and tracks features
across images. �e back-end estimates the 3D locations of tracked features and the camera trajectory using a
�ltering or optimization-based framework. �e formulation can be either loosely coupled or tightly coupled.
Loosely coupled methods estimate the system state with each sensor modality independently and then combine
the estimates in a �nal stage. Conversely, tightly coupled methods incorporate each modality within a joint
estimation framework.2 To determine the motion, the reprojection error between predicted and observed feature
locations is minimized. �e reprojection error may be expressed indirectly in terms of pixel coordinates, or
directly in terms of a photometric (pixel intensity) loss based on the brightness constancy assumption. �e
available IMU information is used within a motion model to propagate the state between camera measurements
in �lter-based estimators, or is incorporated as a motion constraint in optimization-based estimators (Forster
et al., 2015).

Initially, �lter-based algorithms were the prevalent choice for VIO estimators. One well known algorithm
is the multi-state constraint Kalman Filter (MSCKF) (Mourikis and Roumeliotis, 2007), but its world-centric
formulation has been shown to be inconsistent (Li and Mourikis, 2013). Robot-centric formulations such as
ROVIO (Bloesch et al., 2017) and R-VIO (Huai and Huang, 2018) have been proposed as alternatives to the
world-centric framework. �ese robocentric approaches reformulate the VIO problem by estimating poses with
respect to a moving, local frame (i.e., a robocentric frame), rather than with respect to a �xed, global navigation
frame. �e robocentric approach improves �lter consistency (i.e., producing uncertainty estimates that represent
the true uncertainty of the system) relative to world-centric approaches (Huai and Huang, 2018).

Optimization-based approaches have also been proposed that perform sliding window bundle adjustment
over a window of frames, while relying on IMU preintegration (Forster et al., 2015) for computational e�ciency.
VINS-Mono (Qin et al., 2018) and OK-VIS (Leutenegger et al., 2015) are popular open-source systems that opti-
mize over a sliding window of keyframes. Although more compute intensive, optimization methods tend to be
more accurate than their �lter-based counterparts.

Like the classical, feature-based VO estimators that we introduced in Chapter 4, the primary failure mode in
VIO estimators is the loss of feature tracking within the front-end, which happens when there is a lack of stable
image features. �is lack of stable image features can be a result of rapid camera motion, poor illumination, or
having dynamic objects or limited texture within the scene. Recent work has explored data-driven replacements
to classical estimators. Data-driven replacements, by relying on fewer modelling assumptions, have potential to
improve robustness in scenarios that violate the assumptions of classical systems.

1We only discuss sparse, feature-based methods in this section because the vast majority of VIO estimators fall within this category.
2Note that the term ‘tightly coupled’ here is distinct from our tightly coupled depth and egomotion network framework from Chapter 6.
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7.1.2 Learning-Based Approaches to VIO

In existing data-driven VIO systems, learned models (commonly neural networks) are trained (Gurturk et al.,
2021; Chen et al., 2019a; Clark et al., 2017; Almalioglu et al., 2022; Wei et al., 2021) to model the complex relation-
ship between sensor measurements and egomotion. �ese systems all adopt a similar ‘feature fusion’ procedure,
where the neural network learns to map the raw (visual and inertial) measurements to a 6-DOF egomotion pre-
diction in an end-to-end manner. Internally, the network extracts and combines sensor-speci�c features (e.g.,
through concatenation of the two feature vectors). �e resulting multimodal features are then fed into a �nal
network block that predicts the egomotion. �is scheme exists in both supervised (Gurturk et al., 2021; Chen
et al., 2019a; Clark et al., 2017) and self-supervised (Almalioglu et al., 2022; Wei et al., 2021) se�ings, with the
self-supervised methods minimizing the photometric reconstruction loss to jointly train depth and egomotion
networks.

While end-to-end approaches are e�ective, they do not utilize the standard relationship between inertial
measurements and robot/vehicle dynamics. Ignoring this relationship burdens the network with learning well-
modelled kinematics from scratch and prevents the network from utilizing the metric information in the inertial
data. For example, to e�ectively utilize the speci�c force measurements from the IMU, the network must learn to
implicitly track the velocity and global orientation of the IMU. Additionally, metric information available from
inertial measurements cannot easily be utilized because reconstruction-based losses do not account for absolute
scale. Consequently, the depth and egomotion predictions are only accurate up to a scale factor. Our aim is to
resolve these issues with our hybrid approach that, in contrast to the feature-fusion approach, combines visual
and inertial information in a probabilistic manner and utilizes domain knowledge when appropriate.

7.1.3 Hybrid Approaches to VIO

Di�erentiable �lters (DFs) have been proposed as a way to impose prior knowledge on the network structure
by combining perception (i.e., through a measurement model that maps sensory observations to the state) and
prediction (i.e., through a process model that determines how the state changes over time) in a Bayesian manner
(Haarnoja et al., 2016; Kloss et al., 2021). Being fully di�erentiable, DFs can be trained end-to-end to produce
uncertainty-aware measurement and process models that account for sensor noise characteristics. �e DF is
particularly useful for replacing (bri�le) handcra�ed models with networks that directly map high dimensional,
nonlinear measurements (e.g., raw images) onto the state. �e hybrid DF framework has been used in appli-
cations such as camera relocalization (Zhou et al., 2020), object tracking (Haarnoja et al., 2016), and VIO. For
VIO, Chen et al. (2021b) learn noise covariance matrices for the process and measurement models within a sys-
tem based on a di�erentiable unscented Kalman �lter. Chen et al. (2021a) learn uncertainty-aware process and
measurement models for a linear Kalman �lter that maintains an estimate of a high-dimensional latent state
used for VIO. Li and Waslander (2020) present a DF that combines a classical IMU-based process model with a
learned relative pose measurement model. �eir network is trained end-to-end by minimizing a pose supervi-
sion loss. We extend the approach of Li and Waslander (2020) by using a DF with a relative pose model, but we
train our network with a photometric reconstruction loss. We show that the system accuracy is improved by
using self-supervised learning for end-to-end training. To the best of our knowledge, we are the �rst to train a
di�erentiable �lter in a fully self-supervised manner.
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Figure 7.1: Overview of our hybrid method that combines an IMU-based process model with a learned relative pose mea-
surement model through a robocentric EKF. Our self-supervised formulation can train this system end-to-end by minimizing
a photometric reconstruction loss. Notably, we pass the egomotion predictions into the �lter, and then use the a posteriori
egomotion estimate to compute the photometric reconstruction loss.

7.2 Methodology

Our hybrid approach to VIO, illustrated in Figure 7.1, augments the learned SfM system with a robocentric
EKF back-end. By doing so, the photometric reconstruction loss is computed with the re�ned, a posteriori ego-
motion estimate, rather than the direct network output. �is posterior estimate, notably, is a function of the
inertial measurements used to propagate the state via the process model. To properly incorporate the egomo-
tion measurements in the �lter, we additionally learn a heteroscedastic measurement noise covariance model
that produces a covariance matrix along with every egomotion measurement. Since the �lter structure is fully
di�erentiable, the whole system can be trained end-to-end by minimizing the photometric reconstruction loss.
Notably, the EKF provides a temporal connection between images within a sequence, which results in the sys-
tem being a form of recurrent neural network. �is temporal connection allows the egomotion network to learn
how to in�ate the measurement covariance to mitigate errors at future timesteps.

In Section 7.2.1, we introduce the robocentric EKF framework that we use within our hybrid VIO system.
In Section 7.2.2, we discuss how our learned SfM system from the previous chapter can be incorporated as an
uncertainty-aware measurement model within the EKF. Finally, in Section 7.2.3, we discuss how this system—
the robocentric EKF with a learned, uncertainty-aware measurement model—can be trained end-to-end using
the standard self-supervised losses from the learned SfM pipeline.

7.2.1 Robocentric EKF Formulation

Our robocentric EKF formulation is based on the approach from Li (2020). Our decision to use this structure
is motivated by the presence of a relative pose within the robocentric state, which facilitates the inclusion of
a relative pose measurement model. �is allows us to incorporate our egomotion network (which produces
relative pose measurements) as a data-driven measurement model with ease.3

3�is is also an alternative to stochastic cloning (Roumeliotis and Burdick, 2002), which is an another technique that has been proposed
for incorporating relative pose measurements.
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�e robocentric state, xτ,rk , has the following components (in set notation to accommodate the rotation
matrices) at the latest camera measurement timestep, k, and the latest IMU measurement timestep, τ ,

xτ,rk =
{

Crki, rirkrk , grk | Crkvτ , rvτrkrk
, vvτ ivτ , bω,τ , ba,τ

}
, (7.1)

where the vertical bar separates the robot state (le�) from the IMU state (right). �e robot state consists of the
absolute pose, {Crki, r

irk
rk
}, at the most recent camera timestep, k (acquired at time tk), with respect to the global

reference frame, F−→i. Further, the robot state includes the gravity vector, grk = Crkigi, expressed in F−→rk , which
is the robocentric reference frame aligned with the robot pose at time tk . In the robocentric formulation, the
robot state and the robocentric reference frame are held �xed at the most recent camera measurement timestep
while the IMU state is propagated using the high-rate IMU measurements. �e IMU state contains the relative

pose of the vehicle at the discrete timestep τ , with tτ ∈ [tk, tk+1]. �is relative pose, {Crkvτ , r
vτrk
rk
}, relates

the current vehicle frame, F−→vτ to the most recent robocentric frame F−→rk . Further, the IMU state includes the
velocity of the IMU, vvτ ivτ , and the IMU bias terms, bω,τ and ba,τ .

�e robocentric EKF is composed of three primary steps: the prediction step, the measurement update step,
and the composition step. Figure 7.1 depicts how the robocentric state is updated throughout these steps. Start-
ing with an initial state, x̂k,rk , the prediction step propagates the state to x̌k+1,rk using IMU measurements
and a nonlinear process model based on Euler integration. �e robot state, however, is unchanged, and remains
aligned with F−→rk . Notably, a�er propagating the IMU state through the process model the relative pose within
the IMU state becomes {Črkvk+1

, ř
vk+1rk
rk }. �is pose directly represents the egomotion of the vehicle between

adjacent camera measurements. �erefore, at this point in time, visual odometry or egomotion measurements
(e.g., from the egomotion network within our learned SfM system) can be directly incorporated into the sys-
tem within the measurement update step. Applying the measurement update produces the a posteriori state,
x̂k+1,rk . Again, the robot state remains at F−→rk . Finally, a composition step shi�s the robocentric frame from
F−→rk to F−→rk+1

, and the state becomes x̂k+1,rk+1
. �is process is repeated as new measurements are received.

Further details for the robocentric formulation can be found in Li (2020); Huai and Huang (2018).

Prediction Step

�e prediction step propagates the IMU state from tk to tk+1 using a nonlinear process model based on Euler
integration of the received IMU measurements between subsequent camera frames. �e IMU state covariance
is also propagated during this step. �e continuous-time dynamics of the true IMU states with respect to F−→rk ,
using the IMU measurement model from Section 2.3.1, are

Ċrkvτ = Crkvτ (ωvτ ivτ )∧,

= Crkvτ (ωm,τ − bω,τ − nω,τ )∧,

ṙvτrkrk
= Crkvτv

vτ i
vτ ,

v̇vτ ivτ = avτ ivτ − (ωvτ ivτ )∧vvτ ivτ ,

= (am,τ −Cvτrkgrk − ba,τ −wa,τ )− (ωm,τ − bω,τ −wω,τ )∧vvτ ivτ ,

ḃω,τ = wbω,τ ,

ḃa,τ = wba,τ .

(7.2)
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Note that the dynamics for the robot state are zero, since F−→rk is stationary during the prediction step. Although
the other terms in Equation (7.2) are straighforward, the derivation for v̇vτ ivτ is

vvτ ivτ = C>rkvτv
vτ i
rk
,

v̇vτ ivτ = C>rkvτ v̇
vτ i
rk

+ Ċ
>
rkvτ

vvτ irk
,

= C>rkvτa
vτ i
rk

+ (Crkvτ (ωvτ ivτ )∧)>vvτ irk
,

= avτ ivτ − (ωvτ ivτ )∧C>rkvτv
vτ i
rk
,

= avτ ivτ − (ωvτ ivτ )∧vvτ ivτ .

(7.3)

Similar to the ESKF presented in Chapter 3, the continuous-time state dynamics are separated into the nom-
inal and error state dynamics, ˙̄x and δẋ. �e nominal IMU state dynamics are

˙̄Crkvτ = C̄rkvτ (ωm,τ − b̄ω,τ )∧,

˙̄rvτrkrk
= C̄rkvτ v̄

vτ i
vτ ,

˙̄vvτ ivτ = (am,τ − C̄vτrk ḡrk − b̄a,τ )− (ωm,τ − b̄ω,τ )∧v̄vτ ivτ ,

˙̄bω,τ = 0,

˙̄ba,τ = 0.

(7.4)

�rough integration of these equations, the nominal state process model is determined. �is process model,
x̌τ,rk = f(x̂k,rk ,0), propagates the IMU state from tk to tτ , while keeping the robot state �xed:

Črkvτ =

∫ tτ

tk

Črkvs

(
ωm,s − b̂ω,k

)∧
ds,

v̌vτ ivτ = Č
>
rkvτ

(
v̂vkirk

− ĝrk∆t+

∫ tτ

tk

Črkvs

(
am,s − b̂a,k

)
ds

)
,

řvτrkrk
= v̂vkirk

∆t− 1

2
ĝrk∆t2 +

∫ tτ

tk

∫ s

tk

Črkvµ(am,µ − b̂a,k) dµds.

(7.5)

In these expressions, ∆t = tτ − tk . Discrete integration of the process model is performed using Euler’s method
(see Section 2.3.1 for details). We omit the bias terms here, since they are held constant during this interval. �e
prediction step is repeated until a new camera measurement arrives at tk+1, at which point the state becomes
x̌k+1,rk .4

In parallel, the error state process model is used for covariance propagation. �e error state vector for our
system is

δxτ,rk =
[
δφ>rki δrirk>rk

δg>rk | δφ>rkvτ δrvτrk>rk
δvvτ i>vτ δb>ω,τ δb>a,τ

]>
, (7.6)

where δφrki and δφrkvτ are the orientation error states parameterized as vectors in the Lie algebra. Herein, we
provide the linearized, continuous-time error state dynamics,

δẋτ,rk = Fτδxτ,rk + Gτwτ , (7.7)

4We acknowledge the abuse in notation when de�ning the state as xk+1,rk at tk+1. �is notation implies that τ = k + 1 when
the new camera measurement arrives, when in reality τ has been propagated many times in between the camera timesteps k and k + 1.
Nevertheless, we use this notation to be consistent with Li (2020) and Huai and Huang (2018).
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and refer to Li (2020) for a full derivation. In this expression, wτ =
[
w>ω,τ w>bω,τ w>a,τ w>ba,τ

]>
is the

vector of noise terms with the noise covariance matrix Qτ = diag(
[
σ2
ω11×3 σ2

bω
11×3 σ2

a11×3 σ2
ba

11×3

]
)

and the matrices Fτ and Gτ are

Fτ =



0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 −(ωvτ ivτ )∧ 0 0 −I3 0

0 0 0 −C̄rkvτ (v̄vτ ivτ )∧ 0 C̄rkvτ 0 0

0 0 −C̄
>
rkvτ

−(C̄
>
rkvτ

ḡrk)∧ 0 −(ωvτ ivτ )∧ −(v̄vτ ivτ )∧ −I3

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


, (7.8)

Gτ =



0 0 0 0

0 0 0 0

0 0 0 0

−I3 0 0 0

0 0 0 0

−(v̄vτ ivτ )∧ 0 −I3 0

0 I3 0 0

0 0 0 I3


. (7.9)

�e solution to the di�erential equation in Equation (7.7), when assuming that Fτ is constant between the time
interval δt = tτ+1 − tτ , is

δxτ+1,rk = Φτ+1,τδxτ,rk +

∫ τ+1

τ

Φτ+1,sGswsds,

= Φτ+1,τδxτ,rk + w′τ .

(7.10)

�e error state transition matrix, Φτ+1,τ , is de�ned as

Φτ+1,τ = exp

 tτ+1∫
tτ

Fs ds

 ≈ I24 + Fsδt+ F2
sδt

2. (7.11)

As discussed in Farrell (2008), the noise covariance propagation through Equation (7.10) can be approximated
as

P̌τ+1|k ≈ Φτ+1,τ P̌τ |kΦ
>
τ+1,τ + GτQτG

>
τ δt,

≈ Φτ+1,τ P̌τ |kΦ
>
τ+1,τ + Q′τ .

(7.12)

Note that the subscript τ |k denotes the covariance of the IMU state at τ , and the robot state at k. Since Equa-
tion (7.12) only propagates the IMU state covariance, the �rst index is updated while the robot state covariance
remains �xed. �e robot covariance will be updated a�er the measurement update during the composition step.
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Measurement Update Step

�e measurement update is applied when each new camera measurement is received. When the state is ex-
pressed with respect to F−→rk , the measurement is applied to the predicted state, x̌k+1,rk , at time tk+1. As we
noted earlier, the predicted IMU state at this timestep contains the vehicle/IMU pose at tk+1, expressed with
respect to the robot pose at tk . �erefore, a relative pose measurement model can be used without the need
for stochastic cloning. In this section, we introduce the general relative pose measurement model, and in Sec-
tion 7.2.2, we will discuss how our tightly coupled, learned SfM system is used to provide these relative pose
measurements.

To facilitate visual egomotion measurements, the relative pose measurement model, h(xk+1,rk ,0), trans-
forms the IMU pose to be expressed within the camera reference frame, F−→ck , instead of F−→rk . �is transforma-
tion is

rck+1ck
ck

= C>rkckCrkvk+1
rck+1vk+1
vk+1

+ C>rkck
(
rvk+1rk
rk

− rckvkrk

)
,

Cckck+1
= C>rkckCrkvk+1

Cvk+1ck+1
,

(7.13)

and uses the known extrinsic transformation between the camera and IMU, {Cvkck , r
ckvk
vk
}.5 �e measurement

residual, εk+1, compares the current egomotion measurement, {C̃ckck+1
, r̃ck+1ck
ck

}, with the transformed pose
and is evaluated at the predicted state:

εk+1 =

[
εφ,k+1

εr,k+1

]
=

log
(
C̃ckck+1

Č
>
ckck+1

)∨
r̃ck+1ck
ck

− ř
ck+1ck
ck

+ nk+1. (7.14)

We assume the measurement noise, nk+1 =
[
n>φ,k+1 n>r,k+1

]>
, is normally distributed through nk+1 ∼

N (0,Rk+1). �is heteroscedastic measurement covariance model can be learned; we employ this strategy
within our system and discuss it further in Section 7.2.2.

To perform the measurement update within the EKF, the measurement Jacobian Hk+1 is required and is
found by di�erentiating Equation (7.14) with respect to δx̌k+1,rk . �e measurement Jacobian is de�ned as

Hk+1 =

[
03×9 −C>vkck J`(−φ̌rkvk+1

)−1 03×3 03×9

03×9 C>vkck Črkvk+1
rckvkvk

∧ −C>vkck 03×9

]
. (7.15)

We refer to Appendix D for the full derivation of the measurement Jacobian. Using the derived equations, the
EKF measurement update is

Kk+1 =P̌k+1|kH
>
k+1

(
Hk+1P̌k+1|kH

>
k+1 + Rk+1

)−1

,

P̂k+1|k = (I24 −Kk+1Hk+1) P̌k+1|k, (7.16)

δx̂k+1,rk =Kk+1εk+1.

Finally, the a posteriori state x̂k+1,rk is produced by injecting the error state estimate δx̂k+1,rk into the nominal

5Since the extrinsic transformation is constant at all timesteps, and F−→rk is aligned with F−→vk when a camera measurement is received,
Equation (7.13) is based on the following relations being equal: {Cvkck , r

ckvk
vk } = {Crkck , r

ckrk
rk } = {Cvk+1ck+1 , r

ck+1vk+1
vk+1

} =

{Crk+1ck+1 , r
ck+1rk+1
rk+1

}.
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state through x̂k+1,rk = x̌k+1,rk ⊕ δx̂k+1,rk . �e error-state injection for each component of the state is

Ĉrki = Črkiexp
(
δφ̂rki

∧)
,

r̂irkrk = řirkrk + δr̂irkrk ,

ĝrk = ǧrk + δĝrk ,

Ĉrkvk+1
= Črkvk+1

exp
(
δφ̂rkvk+1

∧)
,

r̂vk+1rk
rk

= řvk+1rk
rk

+ δr̂vk+1rk
rk

,

v̂vk+1i
vk+1

= v̌vk+1i
vk+1

+ δv̂vk+1i
vk+1

,

b̂ω,k+1 = b̌ω,k+1 + δb̂ω,k+1,

b̂a,k+1 = b̌a,k+1 + δb̂a,k+1.

(7.17)

Note that the corrections applied to the �rst two terms (the robot pose) are zero, since these terms are unobserv-
able with a relative pose measurement model. At test time, we use an IEKF to iteratively recompute the terms
in Equation (7.17) as the measurement Jacobian is updated.

Composition Step

In the robocentric formulation, the composition step shi�s the robot state forward from F−→rk to F−→rk+1
, (i.e., the

state is updated from x̂k+1,rk to x̂k+1,rk+1
). Speci�cally, the composition step compounds the (relative) IMU

pose with the robot pose and updates the gravity vector direction to be expressed within F−→rk+1
. �en, the IMU

pose, which is expressed relative to the robot pose, is reset to identity. �e composition step is summarized as

Ĉrk+1i = Ĉ
>
rkvk+1

Ĉrki,

r̂irk+1
rk+1

= Ĉ
>
rkvk+1

(
r̂irkrk − r̂vk+1rk

rk

)
,

ĝrk+1
= Ĉ

>
rkvk+1

ĝrk ,

Ĉrk+1vk+1
= I3,

r̂vk+1rk+1
rk+1

= 03×1,

v̂vk+1i
vk+1

= v̂vk+1i
vk+1

,

b̂ω,k+1 = b̂ω,k+1,

b̂a,k+1 = b̂a,k+1.

(7.18)
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�e state covariance is accordingly updated through

P̂k+1|k+1 = Uk+1P̂k+1|kU
>
k+1, (7.19)

Uk+1 =
∂δx̂k+1,rk+1

∂δx̂k+1,rk

=



I3 0 0 −Ĉ
>
rk+1i

0 0 0 0

0 Ĉ
>
rkvk+1

0 (r̂irk+1
rk+1

)∧ −Ĉ
>
rkvk+1

0 0 0

0 0 Ĉ
>
rkvk+1

ĝ∧rk+1
0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 I3 0 0

0 0 0 0 0 0 I3 0

0 0 0 0 0 0 0 I3


. (7.20)

Essentially, this operation moves the uncertainty from the (relative) IMU pose to the robot state and then resets
the IMU pose covariance to zero as the pose is reset to identity. �e velocity and bias covariance terms remain
unchanged since the composition step does not impact these values.

7.2.2 �e Learned Relative Pose Measurement Model

We produce a relative pose measurement using the learned SfM framework that we introduced in the previous
chapters. �is measurement is applied during the measurement update step, to correct the predicted state,
x̌k+1,rk . For a target image, Ik+1, and a source image, Ik , the learned SfM predictions are

Dck+1
= fθD (Ik+1), (7.21)

ξ̃ckck+1
= fθE (Ik,Ik+1). (7.22)

Note that our predictions are expressed with respect to the camera frame, F−→c, while our state is expressed
with respect to F−→v . �e exponential map is used to produce the SE(3) IMU pose measurement through

T̃ckck+1
= exp

(
ξ̃
∧
ckck+1

)
. �en, from T̃ckck+1

, we can extract the relative translation and rotation measure-
ments, {C̃ckck+1

, r̃ck+1ck
ck

}, and incorporate these measurements into the EKF via the Equation (7.14) measure-
ment residual.6

Our depth and egomotion predictions are produced from the tightly coupled system that we presented in
Chapter 6. Feedback coupling is used to iteratively update the egomotion prediction. Currently, we do not apply
the test-time optimization scheme; we leave this as future work. �e depth and egomotion networks are trained
end-to-end with the �lter by minimizing the standard self-supervised losses. �e training procedure is discussed
further in Section 7.2.3.

Uncertainty-Aware Measurement Model

To leverage the learned egomotion measurements, the iterative egomotion network predicts a measurement
covariance matrix,

Rk+1 =

[
Σφk+1

03×3

03×3 Σrk+1

]
, (7.23)

6In practice, we make the assumption that exp (ξ∧) ≈ I4 + ξ∧, which allows us to extract the relative translation measurement from
ξckck+1

directly, rather than having to compute the Jacobian, J`.
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where Σrk and Σφk are diagonal covariance submatrices. Similar to Li and Waslander (2020), the dimensionality
of the �nal layer of the egomotion network is increased from six to twelve in order for the network to produce
the six diagonal elements of Rk . Each of the additional six network outputs, wi, populates the diagonal of Rk

using

σ2
i = σ2

010β tanh(wi), (7.24)

where σ2
0 is a base covariance and β ∈ R>0 is a control parameter. �is form is chosen such that an unrestricted

network output, wi, can either increase or decrease the covariance from its original value, σ2
0 , to a new value

within a �xed range. �e range is determined through the selection β: since the tanh output is within [−1, 1],
the covariance output is constrained to be within β orders of magnitude of σ2

0 .
With our feedback coupling scheme, we perform multiple forward passes through the egomotion network

to iteratively update the uncertainty predictions. �e prediction from each forward pass is summed together
to form wi before computing Equation (7.24). We �nd that iteratively updating the uncertainty predictions sig-
ni�cantly improves performance. As additional forward passes improve the alignment of the input images, the
remaining errors are more easily detected by the network. Accordingly, the network can in�ate the measurement
covariance if large discrepancies (i.e., misalignments of the images) are still present a�er the �nal iteration.

7.2.3 End-to-End Training with the Di�erentiable EKF

Our hybrid system is trained end-to-end by minimizing the same self-supervised losses that we employed in
the previous two chapters, namely, the photometric reconstruction loss consisting of Lphot (with the L1 and
SSIM terms), in addition to the inverse depth smoothness loss LS and the depth consistency loss LDC . We also
include the pose consistency loss term, LPC from the previous chapter. Overall, the per-sample loss that we use
to train the system is

L =
1

HW

∑
u,v

(λphotLphot + λSLS + λDCLDC) +
1

6

∑
λPCLPC , (7.25)

and is averaged across all training samples. Note that within Lphot, we use the automasking and minimum
reprojection techiques, along with the self-discovered mask, to remove and/or downweight the unstable image
regions.

Owing to the addition of the EKF, several modi�cations are made to the baseline training procedure of
the learned SfM system. �e most notable di�erence is that we use the a posteriori egomotion estimate to
compute the reconstruction loss, instead of using the egomotion network prediction directly. �is modi�cation
is illustrated in Figure 7.1. We outline three other primary di�erences next.

Sequential Training. First, to leverage the recurrent nature of the network, we extend the number of frames
per sample from the standard of three (i.e., one target image and two adjacent source images) to an arbitrary
lengthN . �e longer sequence length is important for training the uncertainty model, as the network must learn
to in�ate the covariance for erroneous measurements that negatively impact future state estimates.7 By reducing
the impact of erroneous (e.g., corrupted or outlier) measurements, future estimates will be more accurate and the
reconstruction loss will be reduced. We visualize a training sample in Figure 7.2 consisting of ten timesteps. Here,

7Importantly, all of the components of the EKF are di�erentiable, allowing for gradients to �ow from the loss and into the networks (at
the current timestep and at previous timesteps) during backpropagation. �is is crucial for training the uncertainty model.
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Forward EKF

Inverse EKF

Figure 7.2: Overview of our training procedure. We use the egomotion estimates from a forward and inverse EKF to produce
the two target image reconstructions required for the minimum reprojection loss. Note that the IMU measurements, depth
predictions, and view synthesis module are omi�ed from this diagram.

the EKF propagates from the initial state x0 and incorporates the learned egomotion measurements. �en, the a
posteriori IMU pose is used to compute the minimum reprojection loss a�er each timestep. Since the minimum
reprojection loss requires two image reconstructions, we generate ‘forward’ and ‘inverse’ egomotion estimates.
�e ‘forward’ egomotion prediction produces It−1→t, and the ‘inverse’ prediction (i.e., the source-target image
inputs are swapped) produces It+1→t. As demonstrated in Figure 7.2, we employ two separate EKFs to produce
these poses during training.

Pose Initialization Scheme. �e second di�erence is the requirement to initialize the training samples with
an accurate estimate of the state (and state covariance) at the �rst timestep. When using supervised training, this
condition is trivial to enforce: the �lter is initialized with the ground truth pose. Since ground truth information
is not available in the self-supervised formulation, we initialize the training samples using the most recent pose
estimate from our hybrid VIO system instead. �ese pose estimates are generated for all training and validation
sequence frames at the start of every epoch, and remain �xed for each epoch. As training progresses, the pose
estimates improve, so the initialization accuracy increases. �is increase in initialization accuracy allows the
training to converge further.

Scale Recovery. Lastly, we employ a scale recovery strategy that encourages the egomotion predictions from
EgoNet to become metrically scaled during training. We achieve this by adding a scale parameter, λτ , to the
end of the IMU state vector during the pose preprocessing stage. �e continuous time dynamics model for the
scale is λ̇τ = 0 and error state is δλ̇τ = 0. With this scale factor augmented to the state, the updated translation
measurement residual is

εr,k = r̃ck+1ck
ck

− λ̌k+1ř
ck+1ck
ck

+ nr,k+1. (7.26)

�e inclusion of this scale parameter allows us to produce metrically scaled pose initializations for the �rst
training epoch, despite using an unscaled depth and egomotion network. By including metric pose initializations
during training, the scale factors of our depth and egomotion predictions naturally converge to unity. �is
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Figure 7.3: �e raw translation predictions for EuRoC validation sequence MH05. �e scale of the predictions closely
matches that of the ground truth, indicating that the networks are scale-aware.

convergence happens without explicitly including the scale parameter in the state at training time; only the
metric pose initializations are needed to train the scale-aware networks. We note that the scale parameter could
potentially be included at test time to mitigate scale dri� in novel (out-of-distribution) environments. Figure 7.3
demonstrates the scale-aware translation predictions from our fully trained egomotion network. Note that with
the addition of the scale factor, the measurement Jacobian is updated to

Hk+1 =

[
03×9 −C>vkckJ`(−φ̌rkvk+1

)−1 03×3 03×9 01×3

03×9 λ̌k+1C
>
vkck

Črkvk+1
rckvkvk

∧ −λ̌k+1C
>
vkck

03×9 −C>vkck(φ̌
∧
rkvk+1

rckvkvk
+ ř

vk+1rk
rk )

]
.

(7.27)

See Appendix D for a full derivation.

7.3 Experiments

In this section, we provide additional training and implementation details, along with the experimental results
from evaluating our system on the EuRoC dataset.

7.3.1 Datasets and Evaluation Metrics

We train and evaluate our system on the EuRoC dataset (see Appendix A for additional details). For training,
we use all sequences except MH05, V103, and V203, which are held out for validation (similar to Almalioglu
et al. (2022)). In our experiments, the images are undistorted using the known radial-tangental lens distortion
parameters and downsized to 256 × 448. �e le� and right images are treated as independent sequences to
e�ectively double the amount of training data. For evaluation, we report the standard metrics for monocular
approaches: the average translation RMSE, a�er Sim(3) alignment with ground truth, and also the rotational
RMSE for some experiments.
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7.3.2 Implementation Details

Our system is trained in PyTorch using an Nvidia �adro RTX 8000 GPU. We use same tightly coupled depth
and egomotion network structures from Chapter 6, and initialize our training with the four-iteration model
trained on ScanNet. Five EgoNet iterations are applied at training and test time. �e EuRoC IMU and image
data used to train our system are downsampled by a factor of two to reduce the per-epoch training time and
increase the perspective change between frames. �e training samples consist of subsequences that are one
second (i.e., ten images at ten Hz) in length. Adjacent training samples have an overlap of 0.3 s. �e depth and
egomotion networks are trained, in minibatches of six samples, via gradient descent (using the Adam optimizer
with β1 = 0.9, β2 = 0.999) for 25 epochs with a learning rate of 1e−4 that is halved every seven epochs.
For image augmentation during training, we randomly apply brightness, contrast, saturation, and hue trans-
formations. We also apply random horizontal �ips (with p = 0.5). �e same augmentation is applied to every
image within the same training sample.8 For our training losses, we set α = 0.15, λphot = 1, λS = 0.05,
λDC = 0.15, and λPC = 5. �e constants for uncertainty prediction are β = 4 and σ2

0 = 1. Our IMU
noise parameters are σω = 1e−3, σa = 0.1, σbω = 1e−5, and σba = 0.01. �e covariance initialization
P0|0 = diag(01×6, σg011×3, 01×6, σv011×3, σba0 11×3, σbω0

11×3) used during training consists of σg0 = 0.1,
σv0 = 0.01, σba0 = 1, and σbω0

= 0.1. We use the current a posteriori estimate to initialize the �rst state of
each training sample (see Section 7.2.3 for more details). To produce these estimates, we initialize the �rst state
of every sequence with the ground truth information provided in the dataset. Since the IMU is stationary in
these instances, we alternatively could initialize the position/velocity to zero and initialize the orientation by
observing the direction of the gravity measurement from the accelerometer. Sensor biases for every training
sample are initialized to zero.

We �nd that when using the procedure outlined above, our system can be trained end-to-end without expe-
riencing any numerical instabilities. We are able to backpropagate gradients through the �lter equations using
the standard automatic di�erentiation method in PyTorch. �is stability is in part a result of initializing the
system with pretrained depth and egomotion networks. Training the networks from scratch would be more
challenging when using this sequential training method, since the �lter could diverge when erroneous egomo-
tion measurements are provided early on during training.

7.3.3 Experimental Results

Table 7.1 reports the average translation RMSE, a�er Sim(3) alignment, for various VIO algorithms operating on
the EuRoC sequences. Similar to other self-supervised methods (Almalioglu et al., 2022), we report the training
sequence results. We include comparisons with classical systems (ROVIO and VINS-Mono), a learning-based
system (SelfVIO), and the hybrid supervised variant of the di�erentiable EKF from Li and Waslander (2020).
Notably, our system is signi�cantly more accurate than the supervised variant from Li and Waslander (2020),
but SelfVIO yields be�er performance overall. We tentatively a�ribute this result to the adversarial loss applied
in SelfVIO, which may lead to more accurate depth predictions. However, SelfVIO cannot produce metrically
scaled predictions and instead relies on Sim(3) alignment to recover scale. Figure 7.4 visualizes the accuracy of
our system on MH05 and V103. Finally, when comparing our system with ROVIO and VINS-Mono, we see that
ours is unable to achieve the same level of accuracy under nominal operating conditions. �ere are a number of
reasons why this shortcoming in performance exists. First, these methods jointly optimize depth and egomotion
through bundle adjustment, while our �lter only estimates egomotion (while keeping the initial depth prediction

8Since the IMU data cannot be augmented in a similar manner, the egomotion predictions, prior to use within the EKF, are appropriately
altered to represent the egomotion of the un�ipped image.
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Figure 7.4: Topdown trajectory estimate for two EuRoC test sequences a�er Sim(3) alignment.

Table 7.1: Translation RMSE for the EuRoC sequences (using the ROVIO and VINS-Mono results reported in Delmerico and
Scaramuzza (2018)). Our self-supervised system outperforms the supervised variant by a signi�cant margin.

Sequence ROVIO
(Bloesch et al., 2017)

VINS-Mono
(Qin et al., 2018)

Self-VIO
(Almalioglu et al., 2022)

EKF-VIO
(Li and Waslander, 2020) Ours

MH01 0.21 0.27 0.19 1.17 0.51
MH02 0.25 0.12 0.15 1.56 0.78
MH03 0.25 0.13 0.21 1.89 0.69
MH04 0.49 0.23 0.16 2.12 1.00
MH05† 0.52 0.35 0.29 1.96 0.80
V101 0.10 0.07 0.08 2.07 0.43
V102 0.10 0.10 0.09 2.20 0.61
V103† 0.14 0.13 0.10 2.83 0.72
V201 0.12 0.08 0.11 1.49 0.20
V202 0.14 0.08 0.08 2.22 0.81
V203† 0.14 0.21 0.11 — 0.84

†�ese sequences are within the held-out validation set.
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Figure 7.5: Images from the EuRoC dataset validation sequences, and the resulting image a�er our applied brightness, blur,
and shot noise corruptions. Despite severe image degradation, the depth network reasonably estimates the scene depth.

�xed). Any error in the depth prediction currently can lead to the iterative egomotion network prediction con-
verging to a sub-optimal value. Second, these methods optimize depth and egomotion over a window of images,
while our approach is fundamentally only a two-frame estimator. �ird, these feature-based approaches operate
with full resolution images, from which extracted feature locations can be precisely determined. Conversely,
our network-based approach is currently constrained to operate with lower resolution data. In future work, we
hope to address these limitations to improve the baseline accuracy. Despite these aforementioned limitations,
our hybrid system, by no longer relying on feature detection and matching, is expected to outperform the clas-
sical estimators in more challenging environments. Next, we investigate how robust our hybrid method is to a
number of realistic visual degradations. For this experiment, our VIO approach and other VIO approaches are
tested on EuRoC validation sequences but with degraded image streams.

Image Corruption

�e EuRoC images are corrupted in three ways: by applying brightness transformations, by applying defocus
blurring, and by adding shot noise. �e corruptions are applied using the ImgAug library9, and a severity level
of �ve is selected. Only one type of corruption is applied at a time. Figure 7.5 shows various example corrupted
EuRoC images. For our experiments, we apply each corruption to all images within a 20 second window every
40 seconds (i.e., half the images are corrupted).

9See https://imgaug.readthedocs.io/en/latest/

https://imgaug.readthedocs.io/en/latest/
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Figure 7.6: �e learned relative egomotion measurement errors with their associated 1σ uncertainty bound for the full
sequence (1:1) and quarter-frame sequence (1:4). �e learned measurement covariance naturally in�ates for the 1:4
sequence that contains larger perspective change between frames.

Table 7.2: �e mean error for three variations of our approach in the (corrupted) Table 7.3 sequences. With the vision-only
approaches, the network trained with our hybrid system is more accurate than the same network trained without the EKF.

Trans. RMSE Rot. RMSE

Full EKF Removed Vision-Only Ours EKF Removed Vision-Only

1.02 1.52 2.16 11.37 17.09 29.43

Frame Skipping

To simulate larger perspective changes, or a reduced camera/IMU frame rate, we downsample the image and
IMU data streams across the full validation sequences. In our notation, 1:X refers a downsample rate of X,
where only one of X frames is maintained (e.g., 1:2 removes half of the frames). We test downsample rates of
X ∈ {2, 3, 4}.

Degradation Experiment Results

We evaluate our system, along with several others, on the degraded data. We test the classical estimators VINS-
Mono (Qin et al., 2018), ROVIO (Bloesch et al., 2017), and R-VIO (Huai and Huang, 2018). We also test our (tightly
coupled, vision-only) learned SfM system from Chapter 6. SelfVIO (Almalioglu et al., 2022) is not publicly
available for evaluation. For VINS-Mono, ROVIO, and R-VIO, we use the open-source implementations with the
default EuRoC parameters, running on Ubuntu 20.04 with ROS Noetic. Table 7.3 depicts the experimental results
for sequences MH05 and V103. We observe that degraded conditions cause the classical estimators to fail for
a signi�cant number of the trials. During these failures, the classical estimators either lose feature tracking or
diverge (resulting in 100+ metres of error). �e most robust classical system is VINS-Mono, although it cannot
maintain feature tracking throughout the frame skip experiment. On the other hand, our system performs
consistently in most trials. Notably, the extreme 1:4 case causes li�le to no increase in error for our system.
Figure 7.6 plots the measurement error and the predicted covariance for the 1:1 and 1:4 cases. �e covariance
predictions shown in Figure 7.6 in�ate as the camera motion becomes more extreme.

Ablation Study

Figure 7.7 shows the relative translation and rotation errors before and a�er the inclusion of our iterative ego-
motion network and our EKF components. From Figure 7.7, it is apparent that integrating the gyroscope mea-
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surements in the EKF is crucial for accurate orientation estimation. �e iterative egomotion network, when
paired with the EKF, reduces the overall translation error also.

Table 7.2 lists the mean accuracy for three versions of our system on the corrupted sequences from Table 7.3.
In sequence, these versions of the system are our proposed hybrid system, the standalone egomotion network
(i.e., our hybrid system with the EKF removed), and the same egomotion network trained without the EKF (i.e.,
our tightly coupled EgoNet from Chapter 6). Notably, the presence of the EKF during training improves the
accuracy of the raw egomotion network output.
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7.4 Summary and Future Work

In this chapter, we demonstrated how our tightly coupled, learned SfM system from Chapter 6 can be incor-
porated as a measurement model within an EKF-based visual-inertial odometry system. Our resulting hybrid
VIO system was able to e�ectively maintain an accurate egomotion estimate even when operating under signif-
icantly degraded conditions that caused other state-of-the-art feature-based VIO estimators to fail. We a�ribute
this increased robustness to the replacement of the feature-based front-end. We removed this bri�le component
and instead used our data-driven model, while leaving the rest of the classical estimation framework (namely,
the EKF structure with an IMU-based process model) unchanged. Notably, this facilitated a principled sensor
fusion scheme for combining visual and inertial data and further allowed for metric scale to be recovered with
our system. Owing to the di�erentiable nature of the �lter, our hybrid system was trained end-to-end using
the self-supervised photometric reconstruction loss. Overall, we believe that the work presented in this chapter
adds to the growing amount of evidence that hybrid models are well suited for self-localization applications
within complex operating environments.

As future work, there are several improvements that can be made to this system. First, the depth predictions
produced from DepthNet could be re�ned to boost the accuracy of the iterative egomotion network and to
improve the image reconstructions used within the reconstruction loss. �is can be accomplished either by
using the test-time PFT strategy from the previous chapter, or by incorporating the map into the state estimate.
Second, it would be interesting to investigate how spatiotemporal self-calibration can be incorporated into our
system. Finally, we note that our approach operates frame-to-frame, and so is fundamentally limited compared to
alternative feature-based VIO methods that optimize over a larger window of data. For this reason, our accuracy
under nominal operating conditions is limited compared to these alternative existing approaches. We would like
to investigate how our system can incorporate multi-frame constraints across larger windows of data.
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Conclusion

In this thesis, we investigated the role of data-driven learning within inertial, visual, and visual-inertial ego-
motion estimation pipelines. Our motivation was to promote the long-term capabilities of modern (and future)
mobile autonomy agents. As wide-scale deployment progresses, these systems will be required to operate with
a higher degree of independence in increasingly more challenging environments. To ful�ll these requirements,
self-localization algorithms for mobile agents must be developed that go beyond what existing ‘classical’ algo-
rithms are capable of. To this end, we explored how contemporary (deep) learning techniques can be applied
to augment or replace these classical algorithms in order to improve overall robustness when subjected to chal-
lenging operating conditions.

We divided our work into three sections, each of which discussed a unique form of self-localization using
inertial and/or visual sensors. In the �rst section, we examined how data-driven modelling can be used to
achieve robust zero-velocity detection within a zero-velocity-aided inertial navigation system. We evaluated
our system within the domain of pedestrian navigation, demonstrating how a foot-mounted IMU can be used
to accurately estimate the trajectory of a wearer in real-time—making our system well-suited for applications
where humans and robots are required to operate (and navigate) within a shared space. In the second section,
we shi�ed our focus to data-driven visual egomotion estimation using a learned SfM system. In particular,
we introduced (and provided motivation for using) the learned SfM based on neural network models for depth
and egomotion estimation. We then substantially improved the overall accuracy of the learned SfM system
and demonstrated techniques for improving generalization at test time. In the third section, we extended our
learned SfM system by incorporating it as the measurement model for a vision-aided INS. We showed that, by
eschewing the conventional feature-based front-end, this hybrid system is more robust than existing classical
visual-inertial estimators.

�e optimal way to apply learning-based methods to the domain of self-localization remains an open area of
research. Herein, we have considered two ways that learning can be applied: through hybrid systems that incor-
porate learning into classical estimation frameworks or through end-to-end systems that rely solely on learned
models for localization. We have found that hybrid approaches can leverage the bene�ts of both paradigms: the
preservation of classical estimation components maintains the accuracy and interpretability that they provide,
while the addition of data-driven components improves the robustness of the system. Speci�cally, we focussed
on hybrid systems that incorporate robust, data-driven measurement models into the traditional aided naviga-
tion framework and found that these systems are particularly e�ective for inertial and visual-inertial navigation.

113
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8.1 Summary of Contributions

In Chapter 3, we demonstrated how our novel techniques for data-driven zero-velocity detection can signi�-
cantly improve the accuracy of the zero-velocity-aided navigation pipeline for pedestrian localization. In short,
the contributions from this chapter were as follows:

1. the development of two robust, data-driven zero-velocity detectors that accurately identify zero-velocity
events (i.e., the midstance phase) from a stream of foot-mounted inertial sensor measurements;

2. the incorporation of these detectors within a zero-velocity-aided INS (based on an EKF) to provide robust,
zero-velocity pseudo-measurements;

3. the evaluation of our system on several newly collected datasets, demonstrating that our data-driven
approaches consistently outperform a number of common ‘classical’ zero-velocity detectors on walking,
running, stair-climbing, and mixed-motion trajectories.

In Chapter 4, we introduced the learned SfM framework that employs neural network models for depth and
egomotion estimation. We identi�ed that this approach, although still nascent, has the potential to replace its
classical counterparts in robust self-localization systems. Notably, being fully self-supervised, this system can
bene�t from life-long learning by continually improving as new data are collected. At the end of the chapter, we
presented our proof-of-concept system that uses the learned SfM framework to train a network that produces
self-supervised pose corrections to a classical VO estimator. We used the promising results of this proof-of-
concept system as motivation for further development of the learned SfM system. �e two subsequent chapters
discussed our contributions in this domain.

In Chapter 5, we identi�ed how scale ambiguity—one of the common problems associated with monocular
cameras—negatively impacts the learned SfM system. We accordingly proposed a novel scale recovery loss that
only requires knowledge of the camera height (making it suitable for wheeled vehicle applications) in order to
constrain the networks to produce metrically scaled predictions. In short, the contributions from this chapter
included:

1. a novel scale recovery formulation based on self-supervised losses that enforce the measured camera
height (over a ground plane) to be similar to the a priori known camera height;

2. a self-supervised framework for training a ground plane segmentation network, developed as part of our
scale recovery formulation, that outputs the likelihood of each pixel belonging to the ground plane;

3. the improvement of the interframe scale consistency of the network predictions through the incorporation
of our losses.

In Chapter 6, we demonstrated how coupling of the (traditionally independent) depth and egomotion net-
work structures in the learned SfM formulation can have a signi�cant impact on performance. We presented a
tightly coupled network structure that resulted in state-of-the-art accuracy (relative to other learned SfM sys-
tems) and improved generalization. In short, the contributions from this chapter were:

1. the introduction of the notion of network coupling for the depth and egomotion networks within the
learned SfM system;

2. a tightly coupled SfM system, the depth and egomotion networks of which are carefully linked in order to
properly share information at training and test time;
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Figure 8.1: Illustrating the spectrum of hybrid approaches that combine classical estimation and data-driven (learned)
components. We divide this spectrum into three major categories and show which category each one of our proposed
systems falls within.

3. �e discovery that proper network coupling allows for a mutually consistent scale factor to be shared
between the depth and egomotion networks, facilitating inter-network scale consistency.

Finally, having substantially improved the learned SfM system, we decided to incorporate it within an INS
to produce a robust visual-inertial egomotion estimator. In Chapter 7, we detailed this novel VIO system. In
short, the contributions from this chapter were:

1. the incorporation of our learned SfM system as a relative pose measurement model within a hybrid, EKF-
based VIO system;

2. a novel self-supervised training procedure that can be used to train a scale-aware and uncertainty-aware

egomotion network capable of producing metrically scaled predictions with associated measurement co-
variance estimates;

3. experimental results demonstrating how our proposed hybrid approach is more robust to failure than a
number of state-of-the-art, classical VIO approaches when degraded operating conditions are present.

8.2 Future Research Directions

�roughout this thesis, we investigated how data-driven models can be incorporated with classical estimation
frameworks. Within our proposed systems, there was a varying degree of learning involved, and the strategies
used to combine classical components (and domain knowledge) with data-driven models varied between each
chapter. In Figure 8.1, we a�empt to place our systems within three broad categories of hybrid systems. �e
�rst category (in blue) augments classical systems with data-driven (learned) components. In this category, the
full system is nondi�erentiable, which prevents it from being trained end-to-end. Instead, data-driven com-
ponents must be pretrained prior to being incorporated. Our zero-velocity-aided INS from Chapter 3 and our
self-supervised DPC-Net from Chapter 4 fall within this �rst category.

�e other two categories (in green) contain the end-to-end trainable (i.e., fully di�erentiable) systems we
proposed in the la�er chapters of this thesis. By merging classical and learned components together in a way
that is di�erentiable, learned components embedded at various points within the hybrid system can be trained
by minimizing downstream losses that are directly representative of the target function of the system (e.g.,
for a self-localization system, minimizing a pose supervision loss directly). Conversely, learned components
in nondi�erentiable hybrid systems commonly need to be trained with ‘intermediate’ labels that may be more
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arduous to acquire (e.g., in Chapter 3, we had to collect zero-velocity labels for our foot-mounted INS, rather
than directly using the ground truth poses from our VICON system as labels).

We believe that future work should focus on developing hybrid systems that incorporate classical estimation
components while being end-to-end trainable. �ese systems leverage the full bene�ts of modern deep learning
techniques while being able to preserve the bene�ts that come with classical estimation frameworks (e.g., pro-
ducing Bayesian uncertainty estimates, having increased interpretability, and providing �exibility to incorporate
domain knowledge where needed). �rough end-to-end training, the learned components can be optimized to
work directly with the broader classical estimation framework of which they are a part. Further, end-to-end
training enables the inclusion of a diverse range of learning-based components that would be signi�cantly more
challenging train outside of the hybrid system. Data-driven heteroscedastic uncertainty models (such as the one
we developed in Chapter 7), for example, are one particular type of model can be learned through end-to-end
training. Without end-to-end training, uncertainty labels—which are di�cult to acquire—would be required to
train such a model.

�ere are many promising avenues of research that involve developing hybrid, end-to-end trainable systems.
In addition to work being done with di�erentiable �ltering, alternative systems incorporate di�erentiable opti-
mization layers within neural networks for SfM and SLAM (Tang and Tan, 2019; Teed and Deng, 2021). Further,
Jatavallabhula et al. (2020) propose a fully di�erentiable SLAM system that enables data-driven models to be
incorporated at various stages within the front-end or back-end.

Lastly, we emphasize the importance of self-supervised learning within data-driven perception systems.
With the availability of self-supervised labels, loss functions can be evaluated at training and test time, en-
abling a new mode of operation that is based on prediction error minimization. Prediction error minimization
involves re�ning the original network prediction (e.g., with subsequent forward passes or by applying correc-
tions produced from an auxiliary network) in such a way that the loss is further minimized. �is novel mode
of operation was explored in Chapter 6 with our iterative feedback coupling strategy for egomotion estimation.
We demonstrated that by applying successive forward passes through the egomotion network, the predictions
progressively improved to further reduce the photometric reconstruction loss. �is resulted in greater accu-
racy and be�er generalization of the egomotion predictions. In many ways, this framework for predictive error
minimization is similar to the human perception system; the brain relies on a similar (albeit more complex)
form of error minimization that a�empts to match top-down (generative) predictions about the world with the
incoming sensory inputs (Clark, 2013). Drawing inspiration from the e�ectiveness of human perception and
the promising results from our iterative feedback coupling experiments, we believe that predictive error mini-
mization should be further explored. One avenue for future work could involve incorporating self-supervised
losses from multiple sensor modalities to provide a stronger supervisory signal for error minimization. Another
research direction might investigate how other types of generative models can be applied to reconstruct sensor
data from latent variables. View synthesis through depth and egomotion estimation is one example of gener-
ative model that we used, but other models such as neural radiance �elds (Mildenhall et al., 2020) are gaining
popularity and should be examined.
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Appendix A

Visual Datasets and Evaluation Metrics

�e data-driven methods for visual (and visual-inertial) egomotion estimation presented in this thesis rely on
several existing (open source) datasets for training and evaluation. For our purposes, use of these datasets
enables the comparison of our methodology with related literature through standard evaluation benchmarks. In
this section, we brie�y introduce the datasets—and their associated, speci�c evaluation metrics—that are relevant
to the thesis. For visual egomotion estimation, we utilize four datasets: the KITTI and Oxford RobotCar datasets
for autonomous driving, and the ScanNet and EuRoC datasets for indoor navigation. �e foot-mounted inertial
navigation datasets, which we collected ourselves, are described in Chapter 3.

A.1 �e KITTI Dataset

�e KITTI odometry dataset (Geiger et al., 2012) is a driving dataset collected in Karlsruhe, Germany. For data
collection, the vehicle was equipped with two forward-facing Point Grey Flea2 colour global shu�er cameras
(operating at 20 Hz). All intrinsic and extrinsic transform parameters are provided with the dataset. �ere are 22
available sequences, which amounts to 41,000 images captured over a driving distance of 39.2 km. Ground truth
poses are available from a high-quality INS for the �rst ten sequences (00-10). Vehicle traverses are divided
into ‘city’, ‘residential’, and ‘road’ categories.

For monocular VO, the standard training/test split uses sequences 00-08 for training and 09-10 for val-
idation. We report the average translational and rotational errors, normalized by segment length (terr(%),
rerr(

o/100 m)), over all possible sub-sequences of length (100, 200, . . . , 800) metres. To evaluate the perfor-
mance of unscaled monocular systems, a constant scale factor is applied to all of the relative translation estimates
within a sequence to align with the ground truth translation. For a sequence with relative translation estimates,
rk , and ground truth translation, r′k , the per-sequence scale factor is

s =
∑
i

‖r′i‖
‖ri‖

. (A.1)

For depth evaluation, we follow the standard ‘Eigen’ train/test split (Eigen and Fergus, 2015) and evaluate
the standard error metrics. For an estimated pixel depth, di, and a ground truth depth, d′i, the error metrics are
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(a) �e KITTI data collection vehicle (from
http:
//www.cvlibs.net/datasets/kitti/).

(b) Sample images from KITTI.

Figure A.1: �e KITTI dataset.

(a) �e Oxford RobotCar data collection vehicle (from
https:
//robotcar-dataset.robots.ox.ac.uk/).

(b) Sample images from Oxford RobotCar (with the lower pixels
cropped to remove the hood of the data collection vehicle).

Figure A.2: �e Oxford RobotCar dataset.

Abs Rel: 1
N

∑
i∈N

|d′i−di|
d′i

Sq Rel: 1
N

∑
i∈N

(d′i−di)
2

d′i

RMSE:
√

1
N

∑
i∈N (d′i − di)2 RMSE Log:

√
1
N

∑
i∈N (log d′i − log di)2

Errors are averaged across all N pixels in the test dataset. A second metric is δ < γ, which is the percentage
of test set pixels where δ = max(

d′i
di
, did′i

) is within the error threshold, γ. �is metric is evaluated for δ < 1.25,
δ < 1.252, and δ < 1.253. Prior to evaluation of the depth metric, a per-image scale factor is applied to align
the unscaled depth predictions with ground truth.

A.2 �e Oxford RobotCar Dataset

�e Oxford RobotCar dataset (Maddern et al., 2017) is an autonomous driving dataset spanning more than 1,000
km and collected over a period of one year in central Oxford, United Kingdom. For data collection, the vehicle
was equipped with a forward-facing Point Grey Bumblebee XB3 global shu�er trinocular stereo camera operat-

http://www.cvlibs.net/datasets/kitti/
http://www.cvlibs.net/datasets/kitti/
https://robotcar-dataset.robots.ox.ac.uk/
https://robotcar-dataset.robots.ox.ac.uk/
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(a) Room-level reconstructions from ScanNet (from
http://www.scan-net.org/).

(b) Sample images from ScanNet.

Figure A.3: �e ScanNet dataset.

ing at 16 Hz. Images were stored as lossless, compressed PNG �les in unrecti�ed 8-bit raw Bayer format. Ground
truth position information was provided by a GPS-INS system. We use the publicly-available development kit1

to perform Bayer demosaicing and undistortion of the images. Undistortion is performed via a look-up table
that is provided by Point Grey (as part of a factory calibration).

In our experiments, we use a subset of the dataset for training and validation. Sequences2014-11-18-13
-20-12, 2015-07-08-13-37-17, 2015-07-10-10-01-59, and 2015-08-12-15-04-18 are
used for training, but the �rst and second subsequences of 2014-11-18-13-20-12 are held out for vali-
dation. For evaluation, we follow the KITTI odometry benchmark and report the translation and rotation mean
segment errors for all possible subsequences of length (100, 200, . . . , 800) metres.

A.3 �e ScanNet Dataset

ScanNet (Dai et al., 2017a) is a large RGB-D video dataset with 2.5 million camera views from 1,513 indoor
sequences. �e images were captured with an RGB-D Structure Sensor, which incorporates a global shu�er RGB
camera operating at 30 Hz. Ground truth poses are available for odometry evaluation, and the camera intrinsics
are provided. Ground truth was generated using a dense 3D reconstruction method called BundleFusion (Dai
et al., 2017b). We follow the training/test split from Tang and Tan (2019), where the �rst 1,413 sequences are
used for training and 2,000 image pairs from the remaining 100 sequences are selected for testing. For evaluation
on ScanNet, we report the depth and camera pose error metrics as described in Tang and Tan (2019) and, similar
to existing literature, use image-wise rescaling to align our predictions with ground truth (for both depth and
poses). �e depth metrics are the same Abs Rel, Sq Rel, and RMSE metrics used for KITTI, in addition to the scale
invariant (Sc-Inv) error (Eigen et al., 2014),

esc−inv =

√√√√ 1

N

(∑
i

z2
i

)
− 1

N2

(∑
i

zi

)2

, zi = log di − log d′i. (A.2)

1See https://github.com/ori-mrg/robotcar-dataset-sdk.

http://www.scan-net.org/
https://github.com/ori-mrg/robotcar-dataset-sdk
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(a) �e data collection drone for EuRoC (from
https://projects.asl.ethz.ch/datasets/doku.
php?id=kmavvisualinertialdatasets).

(b) Sample images from EuRoC in the machine hall (top) and
Vicon room (bo�om).

Figure A.4: �e EuRoC dataset.

�e three ScanNet pose metrics represent the error between the predicted translation and rotation, {ri, Ci},
and the ground truth {r′i, C′i}. �e mean angular error (in degrees) is

erot =
1

N

∑
i∈N

cos−1 tr(C
T
i C′i)− 1

2
. (A.3)

�e angular error (in degrees) between the predicted translation vectors ri and the ground truth r′i is

etrans−deg =
1

N

∑
i∈N

cos−1 ri · r′i
||ri|| ||r′i||

, (A.4)

and the distance (in centimetres) between the endpoints of the (scale-aligned) predicted and ground truth trans-
lation vectors is

etrans−cm =
100

N

∑
i∈N

√ ∑
n∈{x,y,z}

(
r′i,n − sri,n

)2
, s =

r′i · ri
ri · ri

. (A.5)

A.4 �e EuRoC Dataset

�e EuRoC dataset (Burri et al., 2016), contains visual and inertial measurements collected from on board an
AscTec Fire�y micro aerial vehicle (MAV). For data collection, the MAV was equipped with a (grayscale) global
shu�er stereo camera, operating at 20 Hz, and a Skybotix IMU sensor, operating at 200 Hz. �e visual-inertial
data were synchronized on board also. Intrinsic and extrinsic calibration parameters are provided. In total, 11
sequences were collected within a machine hall and in two rooms that contained Vicon motion capture systems.
In the machine hall, 3D position ground truth was obtained using a Leica MS50 MultiStation laser tracker. In the
Vicon-equipped rooms, 6-DOF pose ground truth was obtained from the Vicon data (i.e., from markers on the
drone). �e vehicle was manually operated throughout these sequences and underwent rapid movements that
produced motion blur in the image stream, making this dataset particularly challenging for odometry estimation.

https://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets
https://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets


Appendix B

Network Structures

In this appendix, we provide speci�c details about the network structures used for our learned SfM systems
described in Chapters 5 to 7. �ese (coupled) networks consist of a depth network (DepthNet), an egomotion
network (EgoNet), and a plane segmentation network (SegNet, see Chapter 5).

Egomotion network (EgoNet). Table B.1 describes the layers of our egomotion network. �e network input
consists of a stacked source-target image pair with an optional 2D optical �ow input that we use for the scale
recovery system in Chapter 5.1 �e �ow input is omi�ed from the feedback-coupled egomotion network used in
the later chapters. Convolutional layers are applied to the input, reducing the dimensionality while increasing
the number of channels. Following each convolutional layer, weight standardization (WS) (Qiao et al., 2019),
group normalization (GN) (Wu and He, 2018), and ReLU activations are applied a�er all but the last convolution.
Omission of the ReLU activation allows for both positive and negative values to be present in the egomotion
prediction. �e �nal convolution layer reduces the number of channels to six; the average pooling layer then
reduces the spatial resolution to 1× 1.

1�e optical �ow vectors, generated using the Gunnar Farneback algorithm Farnebäck (2003), are incorporated in part because Zhou
et al. (2019a) demonstrate that using intermediate representations can improve performance on vision-based tasks.

Table B.1: �e network layers for EgoNet. Note that strided convolutions are used instead of pooling layers for dimension-
ality reduction to preserve the spatial information present within the input.

EgoNet Layers
Layer Kernel Size Stride In/Out Channels Input Activation
conv1 3 1 6/16 stacked-img-pair1 WS, GN, ReLU
conv2 3 2 16/32 conv1 WS, GN, ReLU
conv3 3 3 32/64 conv2 WS, GN, ReLU
conv4 3 2 64/128 conv3 WS, GN, ReLU
conv5 3 2 128/256 conv4 WS, GN, ReLU
conv6 3 2 256/256 conv5 WS, GN, ReLU
conv7 3 2 256/256 conv6 WS, GN, ReLU

poseconv 1 1 256/6 conv7 —
avgpool —2 — 6/6 poseconv —

1 �ere are 8 input channels if a 2D optical �ow estimate between the stacked images is included for
estimation.
2 �e kernel size is selected to be the same size as the remaining spatial resolution, which is a function
of the original image resolution. �e average pooling layer reduces the 6 ×M × N feature map to a
6× 1× 1 pose output.
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Table B.2: �e network details for the decoder of DepthNet. Each layer merges the previous layer with the skip connection

from the ResNet encoder layers (enc5, enc4, enc3, enc2). To increase the spatial resolution at each layer, upsampling layers
(indicated with ↑), via nearest neighbour interpolation, are applied prior to the upconv convolutions. �e �nal DCP
layers incorporate information from the last three decoder levels to perform disparity prediction. Channel concatenation is
indicated with ⊕.

DepthNet Decoder Layers
Layer Kernel Size Stride In/Out Channels Input Activation

upconv5 3 1 512/256 ↑enc5 ELU
iconv5 3 1 256/256 upconv5 ELU

upconv4 3 1 256/128 ↑iconv5 ELU
iconv4 3 1 128/128 upconv4 + enc4 ELU

upconv3 3 1 128/64 ↑iconv4 ELU
iconv3 3 1 64/64 upconv3 + enc3 ELU

upconv2 3 1 64/64 ↑iconv3 ELU
iconv2 3 1 64/64 upconv2 + enc2 ELU

upconv1 3 1 64/32 ↑iconv2 ELU
iconv1 3 1 32/32 upconv1 ELU

Depth Prediction with DCP Layers
dcp3 3 1 64/8 iconv3 ELU
dcp2 3 1 64/8 iconv2 ELU
dcp1 3 1 32/8 iconv1 ELU
disp 3 1 (8+8+8)/1 dcp3 ⊕ ↑dcp2 ⊕ ↑dcp1 sigmoid

Depth Network (DepthNet). �e depth network is a U-Net (Ronneberger et al., 2015) encoder-decoder �e
encoder is a standard ResNet18 network (He et al., 2016) pretrained on ImageNet. We refer the reader to He
et al. (2016) for additional details on ResNet18. Table B.2 describes the layers of our depth network decoder,
which is based on Monodepth2 (Godard et al., 2019). Starting at the bo�leneck (i.e., the middle region of the
U-Net, where the feature map has the smallest spatial resolution), the decoder gradually increases the spatial
resolution back to the input size. �e decoder consists of a series of upsampling and 2D convolution layers. �e
upsampling scheme we use is nearest neighbour interpolation. At various points in the decoder, the feature maps
are merged, via skip connections, with the feature maps from the intermediate layers of the Resnet18 encoder (i.e.,
enc4, enc3, and enc2 in Table B.2). �ese feature maps are merged by addition. To produce a depth prediction
at the end of the network, we adopt the ‘dense connected prediction’ (DCP) convolutional layers from DNet
(Xue et al., 2020). Here, the feature-map outputs from the �nal three iconv layers are passed through the dcp

convolution layers, combined (via concatenation), and passed into a �nal disp convolution layer. �e output of
the disp convolution is the disparity prediction, which is passed into Equation (4.2) to produce the inverse depth
prediction. Finally, the inverse depth prediction is inverted to yield the depth prediction (whose per-pixel values
are within [dmin, dmax]). For our experiments, we set the dmin, dmax hyperparameters for each given dataset.

Plane Segmentation Network (SegNet) SegNet is designed to be similar to DepthNet, since the overall
functionality of the two networks is roughly the same (both output per-pixel predictions). �e encoder consists
of a pretrained Resnet18 network. �e decoder that follows is described in Table B.3.
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Table B.3: �e network details for the decoder of SegNet. Like DepthNet, skip connections merge information from the
encoder at various stages of the decoder.

SegNet Decoder Layers
Layer Kernel Size Stride In/Out Channels Input Activation

upconv5 3 1 512/256 ↑enc5 ELU
iconv5 3 1 256/256 upconv5 ELU

upconv4 3 1 256/128 ↑iconv5 ELU
iconv4 3 1 128/128 upconv4 + enc4 ELU

upconv3 3 1 128/64 ↑iconv4 ELU
iconv3 3 1 64/64 upconv3 + enc3 ELU

upconv2 3 1 64/64 ↑iconv3 ELU
iconv2 3 1 64/64 upconv2 + enc2 ELU

upconv1 3 1 64/32 ↑iconv2 ELU
iconv1 3 1 32/32 upconv1 ELU
plane1 3 1 32/1 iconv1 sigmoid



Appendix C

Error State Kalman Filter Details

�is appendix provides additional details pertaining to the zero-velocity-aided error state EKF from Chapter 3.
Starting from the true state dynamics, we show how the state can be separated into nominal and error state
components. �e error state dynamics are linear with respect to the state and can integrated to produce the
discrete-time error state process model. �is process model is used to propagate the state covariance forward in
time as IMU measurements are received. We describe these steps within this appendix and refer the reader to
Solà (2015) for additional details.

To begin, we reintroduce our state, xτ , which consists of the position, rvτ ii , velocity, vvτ ii , and orientation,
qivτ , of the IMU at the discrete timestep τ (corresponding to time tτ ). In the ESKF formulation, the true state is
separated into the nominal (error-free) state, x̄τ , and the error state, δxτ :

xτ =

rvτ ii

vvτ ii

qivτ

 =

 r̄vτ ii + δrvτ ii

v̄vτ ii + δvvτ ii

q̄ivτ ⊗ exp(
δφivτ

2 )

 . (C.1)

As discussed in Section 2.2.3, the error state for the rotation is de�ned in R3. Applying the quaternion ex-
ponential map yields the quaternion error state on S3. �is error state is then composed with the nominal
(orientation) state. In the ESKF formulation, the nominal state and error state are both propagated as IMU mea-
surements (consisting of the speci�c force, am,τ and angular velocity ωm,τ ) are received. �e nominal state
quantities (r̄vτ ii , v̄vτ ii , and q̄ivτ ) are large-signal and are integrated using a non-linear process model, while the
error state quantities (δrvτ ii , δvvτ ii , and δφivτ ) are small-signal, linear, and are estimated within the ESKF along
with their covariance. Note that since the error state accounts for all of the sources of noise within the system,
the error state covariance represents the full uncertainty of the true state. Next, we derive the continuous-time
dynamics for the nominal and error states. Starting with the true state dynamics,

ṙvτ ii = vvτ ii ,

v̇vτ ii = avτ ii ,

q̇ivτ =
1

2
qivτ ⊗

[
0

ωvτ ivτ

]
.

(C.2)
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We can substitute the IMU measurement model from Section 2.3.1 (while assuming there are no biases) to yield

ṙvτ ii = vvτ ii ,

v̇vτ ii = C{qivτ }(am,τ −wa,τ )− gi,

q̇ivτ =
1

2
qivτ ⊗

[
0

ωm,τ −wω,τ

]
.

(C.3)

�e continuous-time dynamics of the nominal state and the error state are found by substituting Equation (C.1)
into Equation (C.3) and separating the nominal values from the error values. First, we provide the resulting
equations, and leave the derivation until the end of this appendix. �e continuous-time nominal state dynamics
are

˙̄rvτ ii = v̄vτ ii ,

˙̄vvτ ii = C{q̄ivτ }am,τ − gi,

˙̄qivτ =
1

2
q̄ivτ ⊗

[
0

ωm,τ

]
.

(C.4)

�e linearized, continuous-time error state dynamics are

δṗvτ ii = δvvτ ii ,

δv̇vτ ii = −C{q̄ivτ }(am,τ )∧δφivτ −wa,τ ,

δφ̇ivτ = −(ωm,τ )∧δφivτ −wω,τ .

(C.5)

�ese continuous-time equations are integrated to produce the discrete-time kinematics (process) models for
the nominal and error states. �e error state process model is also used for covariance propagation, which we
discuss in the next section.

Derivation of the Error State ProcessModel andCovariance Propagation. �e Equation (C.5) error state
dynamics are linear with respect to the state and the noise perturbation vectors, and therefore can be expressed
as

δẋτ = Fτδxτ + Gτwτ , (C.6)

with

Fτ =

0 I3 0

0 0 −C{q̄ivτ }(am,τ )∧

0 0 −(ωm,τ )∧

 , Gτ =

 0 0

−I3 0

0 −I3

 , wτ =

[
wa,τ

wω,τ

]
. (C.7)

Note that C{q̄ivτ } is evaluated with the most recent state posterior, q̂ivτ . �e solution to Equation (C.6), from
Farrell (2008), is

δxτ = Φτ+1,τδxτ +

∫ tτ+1

tτ

Φτ+1,sGswsds, (C.8)

= Φτ+1,τδxτ + w′τ . (C.9)
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where Φτ+1,τ , the error state transition matrix, propagates the discrete-time error state from tτ to tτ+1, and is
determined through

Φτ+1,τ = exp

(∫ τ+1

τ

Fsds

)
(C.10)

≈ I9 + Fτδt. (C.11)

Note that we make the assumption that Fτ is constant across the δt interval to compute Φτ+1,τ . �e covariance
propagation through the error state model is straightforward for the �rst term in Equation (C.8), but less so for
the second term, which requires the computation of Q′τ = E

[
w′τw

′>
τ

]
:

P̌τ+1 = Φτ+1,τ P̂τΦ
>
τ+1,τ + Q′τ . (C.12)

A common solution (Farrell, 2008), which assumes wτ is a white noise process (i.e., having constant power at
all frequencies, see Farrell (2008) for additional information), is

Q′τ ≈ GτQτG
>
τ δt, (C.13)

where Qτ is the IMU input covariance, Qτ = E
[
wτw

>
τ

]
=

[
σ2
aI3 0

0 σ2
ωI3

]
.

Derivation of the Nominal and Error State Dynamics Models. Here, we derive the Equation (C.4) and
Equation (C.5) dynamics models starting from Equation (C.3). By substituting the nominal and error state com-
position for xτ using xτ = x̄τ ⊕ δxτ , the state dynamics become

˙̄rvτ ii + δṙvτ ii = v̄vτ ii + δvvτ ii , (C.14)
˙̄vvτ ii + δv̇vτ ii ≈ C{q̄ivτ }(I3 + δφ∧ivτ )(am,τ −wa,τ )− gi, (C.15)

˙̄qivτ ⊗ δqivτ + q̄ivτ ⊗ δq̇ivτ =
1

2
(q̄ivτ ⊗ δqivτ )⊗

[
0

ωm,τ −wω,τ

]
. (C.16)

�e nominal and error state terms are separated in these three equations to more easily calculate their respective
dynamics. For Equation (C.14), separating the nominal terms from the error terms is simple: the nominal state
terms are ˙̄rvτ ii = v̄vτ ii and the error state terms are δṙvτ ii = δvvτ ii . To separate the terms in Equation (C.15), we
expand the right hand side,

˙̄vvτ ii + δv̇vτ ii ≈ C{q̄ivτ }(I3 + δφ∧ivτ )(am,τ −wa,τ )− gi, (C.17)

≈ C{q̄ivτ }am,τ − gi + C{q̄ivτ }δφ
∧
ivτam,τ −C{q̄ivτ }wa,τ −C{q̄ivτ }δφ

∧
ivτwa,τ . (C.18)

�e �rst two terms in this �nal expression are the nominal values, which can be isolated to produce ˙̄vvτ ii =

C{q̄ivτ }am,τ − gi. �e three �nal terms are functions of the error state: using the relation a∧b = −b∧a to
modify the �rst error term and removing the third (higher-order) error term, we arrive at the �nal error state
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dynamics that are linear with respect to the error state:

δv̇vτ ii = −C{q̄ivτ }a∧m,τδφivτ −C{q̄ivτ }wa,τ , (C.19)

= −C{q̄ivτ }a∧m,τδφivτ −wa,τ . (C.20)

In the second expression, we omit the rotation operation on the white noise term, since the mean and covari-
ance of the noise is una�ected by a rotation when it is assumed to be isotropic and uncorrelated. Finally, the
orientation error state dynamics can be determined by manipulating Equation (C.16). Substituting Poisson’s

kinematical equation, ˙̄qivτ = 1
2 q̄ivτ ⊗

[
0

ωm,τ

]
, in the le� hand side gives us

1

2
q̄ivτ ⊗

[
0

ωm,τ

]
⊗ δqivτ + q̄ivτ ⊗ ˙δqivτ =

1

2
q̄ivτ ⊗ δqivτ ⊗

[
0

ωm,τ −wω,τ

]
, (C.21)

1

2
q̄ivτ ⊗

([
0

ωm,τ

]
⊗ δqivτ + 2 ˙δqivτ

)
=

1

2
q̄ivτ ⊗

(
δqivτ ⊗

[
0

ωm,τ −wω,τ

])
. (C.22)

We can isolate the terms within the brackets on each side and solve for δq̇ivτ ,

2δq̇ivτ = δqivτ ⊗
[

0

ωm,τ −wω,τ

]
−
[

0

ωm,τ

]
⊗ δqivτ . (C.23)

Using the Equation (2.18) matrix-form multiplication for quaternions to manipulate the right side, while approx-

imating 2δq̇ivτ ≈
[

0

δφ̇ivτ

]
and δqivτ ≈

[
1

δφivτ
2

]
, we get the following relation:

[
0

δφ̇ivτ

]
=

([[
0

ωm,τ − nω,τ

]]
R

−
[[

0

ωm,τ

]]
L

)
δqivτ , (C.24)

=

[
0 −w>ω,τ

−wω,τ (−2ωm,τ + wω,τ )∧

][
1

δφivτ
2

]
. (C.25)

Finally, solving the bo�om row of Equation (C.24) (and ignoring the second-order term w∧ω,τδφivτ
2 ) gives us

δφ̇ivτ = −(ωm,τ )∧δφivτ −wω,τ . (C.26)



Appendix D

Derivation of the Relative Pose
Measurement Jacobian

In this appendix, we derive the measurement Jacobians for the relative pose measurement model of our hybrid
VIO system from Chapter 7. We include derivations with and without the inclusion of the scale parameter in
the state, since we use both versions within our system. As previously shown, the measurement residual εk+1

is

εk+1 =

[
εφ,k+1

εr,k+1

]
=

log
(
C̃ckck+1

C>ckck+1

)∨
r̃ck+1ck
ck

− r
ck+1ck
ck

 , (D.1)

where {Cckck+1
, r
ck+1ck
ck } is the (relative) IMU pose that has been transformed to the current camera frame in

order to be ‘compatible’ with the camera-centric egomotion measurements. �is transformation, which uses the
known extrinsic calibration between the camera and IMU, {Cvkck , r

ckvk
vk
}, is

rck+1ck
ck

= C>vkckCrkvk+1
rckvkvk

+ C>vkck
(
rvk+1rk
rk

− rckvkvk

)
, (D.2)

Cckck+1
= C>vkckCrkvk+1

Cvkck . (D.3)

Note that these equations originate from Tckck+1
= TckrkTrkvk+1

T−1
ck+1vk+1

. �e measurement Jacobian
Hk+1 = ∂εk+1

∂δxk+1,rk

∣∣∣
x̌k+1,rk

is found by di�erentiating Equation (D.1) with respect to the error state:

Hk+1 =

[
03×9 −C>vkckJ`(−φ̌rkvk+1

)−1 03×3 03×9

03×9 C>vkckČrkvk+1
rckvkvk

∧ −C>vkck 03×9

]
. (D.4)

We derive the three non-zero terms of this measurement Jacobian below. First, the term in the upper row (the
Jacobian of the rotation measurement) is derived. �en, the two terms in the second row (the Jacobian of the
translation measurement) are derived.

Derivation of the Rotation Measurement Jacobian. To compute the Jacobian of εφ,k+1 with respect to
the error state, we use the �rst-order Baker-Campbell-Hausdor� (BCH) (Barfoot, 2017) formula to express the
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rotation error as a subtraction,

εφ,k+1 = log
(
C̃ckck+1

C>ckck+1

)∨
, (D.5)

= log

(
exp

(
φ̃
∧
ckck+1

)
exp

(
φckck+1

∧
)>)∨

, (D.6)

≈ φ̃ckck+1
− φckck+1

. (D.7)

�is approximation assumes that the rotation vectors are small, which is usually valid in high-rate odometry
applications such as ours. Now, through a series of manipulations, we can make εφ,k+1 linear with respect to
the error state. Substituting φckck+1

= log
(
Cckck+1

)∨ and using Equation (D.3) this expression becomes

εφ,k+1 = φ̃ckck+1
− log

(
C>vkckCrkvk+1

Cvkck

)∨
. (D.8)

Le�ing Crkvk+1
= exp

(
φrkvk+1

∧
)

, we obtain

εφ,k+1 = φ̃ckck+1
− log

(
C>vkckexp

(
φrkvk+1

∧
)

Cvkck

)∨
, (D.9)

= φ̃ckck+1
− log

(
exp

(
C>vkckφrkvk+1

∧))∨
, (D.10)

= φ̃ckck+1
−C>vkckφrkvk+1

, (D.11)

= φ̃ckck+1
−C>vkck log

(
Crkvk+1

)∨
, (D.12)

where the second line makes use of the identity C exp (u∧) C> = exp
(
(Cu)

∧) (Barfoot, 2017). Separating
Crkvk+1

into its nominal and error state components, Crkvk+1
= C̄rkvk+1

exp
(
δφrkvk+1

∧
)

, this becomes

εφ,k+1 = φ̃ckck+1
−C>vkck log

(
C̄rkvk+1

exp
(
δφrkvk+1

∧
))∨

, (D.13)

= φ̃ckck+1
−C>vkck log

(
exp

(
φ̄
∧
rkvk+1

)
exp

(
δφrkvk+1

∧
))∨

. (D.14)

Using the BCH approximation for a small rotation (Barfoot, 2017),

log
(
exp

(
φ1
∧) exp

(
φ2
∧))∨ ≈ { J`(φ1)−1φ1 + φ2 if φ1 small,

φ1 + Jr(φ1)−1φ2 if φ2 small,
(D.15)

the second term becomes linear with respect to the rotation error:

εφ,k+1 ≈ φ̃ckck+1
−C>vkck

(
φ̄rkvk+1

+ Jr(φ̄rkvk+1
)−1δφrkvk+1

)
, (D.16)

≈ φ̃ckck+1
−C>vkck φ̄rkvk+1

−C>vkckJr(φ̄rkvk+1
)−1δφrkvk+1

, (D.17)

≈ φ̃ckck+1
−C>vkck φ̄rkvk+1︸ ︷︷ ︸
ε̄φ,k+1

−C>vkckJ`(−φ̄rkvk+1
)−1δφrkvk+1

. (D.18)

Note that we use J`(−φ) = Jr(φ) (Barfoot, 2017) to produce the �nal expression. We now have an expression
where the nominal terms, ε̄φ,k+1, are separated from the error state terms, and the expression is linear with
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respect to δφrkvk+1
. �e derivative of this expression is

∂εφ,k+1

∂δφrkvk+1

= −C>vkckJ`(−φ̄rkvk+1
)−1. (D.19)

Translation Measurement Jacobian. A similar process is followed to compute the Jacobian of εr,k+1 with
respect to the error state. Substituting Equation (D.2) into Equation (D.1), εr,k+1 becomes

εr,k+1 = r̃ck+1ck
ck

− rck+1ck
ck

, (D.20)

= r̃ck+1ck
ck

−
(
C>vkckCrkvk+1

rckvkvk
+ C>vkck

(
rvk+1rk
rk

− rckvkvk

))
. (D.21)

Le�ing C = C̄rkvk+1
exp

(
δφrkvk+1

∧
)

, and r
vk+1rk
rk = r̄

vk+1rk
rk +δr

vk+1rk
rk , we can isolate the nominal and error

state terms:

εr,k+1 = r̃ck+1ck
ck

−
(
C>vkckC̄rkvk+1

exp
(
δφrkvk+1

∧
)

rckvkvk
+ C>vkck

(
r̄vk+1rk
rk

+ δrvk+1rk
rk

− rckvkvk

))
, (D.22)

≈ r̃ck+1ck
ck

−C>vkckC̄rkvk+1
(I3 + δφ∧rkvk+1

)rckvkvk
−C>vkck r̄

vk+1rk
rk

−C>vkckδr
vk+1rk
rk

+ C>vkckr
ckvk
vk

,

(D.23)

≈ r̃ck+1ck
ck

−C>vkckC̄rkvk+1
rckvkvk

−C>vkckC̄rkvk+1
(δφrkvk+1

)∧rckvkvk

−C>vkck r̄
vk+1rk
rk

−C>vkckδr
vk+1rk
rk

+ C>vkckr
ckvk
vk

,
(D.24)

≈ ε̄r,k+1 −C>vkckC̄rkvk+1
(δφrkvk+1

)∧rckvkvk
−C>vkckδr

vk+1rk
rk

, (D.25)

where ε̄r,k+1 contains all of the nominal state terms, independent of the error state. �e other two terms,
containing error states, can be di�erentiated with respect to the error state. �e derivative with respect to the
rotation error vector, δφrkvk+1

, is

∂εr,k+1

∂δφrkvk+1

= −
∂
(
C>vkckC̄rkvk+1

(δφrkvk+1
)∧rckvkvk

)
∂δφrkvk+1

. (D.26)

Using u∧v = −v∧u (Barfoot, 2017), this expression becomes linear with respect to δφrkvk+1
:

∂εr,k+1

∂δφrkvk+1

=
∂
(
C>vkckC̄rkvk+1

(rckvkvk
)∧δφrkvk+1

)
∂δφrkvk+1

, (D.27)

= C>vkckC̄rkvk+1
(rckvkvk

)∧. (D.28)

�e derivative with respect to δrvk+1rk
rk is straightforward:

∂εr,k+1

∂δr
vk+1rk
rk

= −∂
(
C>vkckδr

vk+1rk
rk

)
∂δr

vk+1rk
rk

, (D.29)

= −C>vkck . (D.30)
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Incorporating the Scale Parameter. With the addition of the scale parameter, λk+1, the translation mea-
surement residual becomes

εr,k+1 = r̃ck+1ck
ck

− λk+1r
ck+1ck
ck

, (D.31)

= r̃ck+1ck
ck

− λk+1

(
C>vkckCrkvk+1

rckvkvk
+ C>vkck

(
rvk+1rk
rk

− rckvkvk

))
. (D.32)

We rederive the measurement Jacobian for this new measurement residual. To do so, we separate the scale
factor (along with our other state variables) into the nominal and error state components through λk+1 =

λ̄k+1 + δλk+1. �e new measurement Jacobian becomes

Hk+1 =

[
03×9 −C>vkckJ`(−φ̌rkvk+1

)−1 03×3 03×9 03×1

03×9 λ̌k+1C
>
vkck

Črkvk+1
rckvkvk

∧ −λ̌k+1C
>
vkck

03×9 −C>vkck(φ̌
∧
rkvk+1

rckvkvk
+ ř

vk+1rk
rk )

]
.

(D.33)

�e upper row remains the same as the original measurement Jacobian in Equation (D.4), since the rotation
residual is unchanged. �e terms in the second row are all changed; we derive these terms next. Starting from
Equation (D.32), we can separate the true state into the nominal and the error state:

εr,k+1 = r̃ck+1ck
ck

− λk+1

(
C>vkckCrkvk+1

rckvkvk
+ C>vkck

(
rvk+1rk
rk

− rckvkvk

))
, (D.34)

= r̃ck+1ck
ck

− (λ̄k+1 + δλk+1)
(
C>vkckC̄rkvk+1

(I3 + δφ∧rkvk+1
)rckvkvk

+C>vkck
(
r̄vk+1rk
rk

+ δrvk+1rk
rk

− rckvkvk

))
.

(D.35)

Expanding and rearranging these terms, while removing second-order quantities and above, we arrive at the
following expression:

εr,k+1 = ε̄r − λ̄k+1C
>
vkck

C̄rkvk+1
δφ∧rkvk+1

rckvkvk
− δλk+1C

>
vkck

C̄rkvk+1
rckvkvk

− δλk+1C
>
vkck

r̄vk+1rk
rk

− λ̄k+1C
>
vkck

δrvk+1rk
rk

+ δλk+1C
>
vkck

rckvkvk
.

(D.36)

Note that ε̄r,k+1 contains all of the nominal terms and is independent of the error state. Di�erentiating with
respect to δφrkvk+1

produces

∂εr,k+1

∂δφ
= −

∂(λ̄k+1C
>
vkck

C̄rkvk+1
δφ∧rkvk+1

rckvkvk
)

∂δφrkvk+1

, (D.37)

= λ̄k+1C
>
vkck

C̄rkvk+1
(rckvkvk

)∧. (D.38)

Di�erentiating with respect to δrvk+1rk
rk gives us

∂εr,k+1

∂δr
vk+1rk
rk

= −∂
(
λ̄k+1C

>
vkck

δrrkvk+1

)
∂δrrkvk+1

, (D.39)

= −λ̄k+1C
>
vkck

. (D.40)
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Finally, the derivative with respect to δλk+1 is:

∂εr
∂δλk+1

= −∂
(
δλk+1C

>
vkck

C̄rkvk+1
rckvkvk

− δλk+1C
>
vkck

r̄
vk+1rk
rk + δλk+1C

>
vkck

rckvkvk

)
∂δλk+1

, (D.41)

= C>vkckC̄rkvk+1
rckvkvk

−C>vkck r̄
vk+1rk
rk

+ C>vkckr
ckvk
vk

, (D.42)

= C>vkck
(
(C̄rkvk+1

− I)rckvkvk
− r̄vk+1rk

rk

)
, (D.43)

≈ −C>vkck

(
φ̄
∧
rkvk+1

rckvkvk
+ r̄vk+1rk

rk

)
. (D.44)

Evaluating all of these Jacobian terms using the predicted state values produces Equation (D.33).
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