
A Contrastive Learning framework for Self-Supervised
Pre-Training of 3D Point Cloud Networks with Visual Data

by

Andrej Janda

A thesis submitted in conformity with the requirements
for the degree of Master of Applied Science

Graduate Department of Aerospace Science and Engineering
University of Toronto

© Copyright 2022 by Andrej Janda

Abstract

A Contrastive Learning framework for Self-Supervised Pre-Training of 3D Point Cloud

Networks with Visual Data

Andrej Janda

Master of Applied Science

Graduate Department of Aerospace Science and Engineering

University of Toronto

2022

Reducing the quantity of annotations required during supervised training is vital when

labels are scarce and costly. This reduction is especially important for segmentation

tasks involving 3D datasets, which are often significantly smaller, and more challenging

to annotate, than their image-based counterparts. Self-supervised pre-training on large

unlabeled datasets is one way to reduce the amount of manual annotations needed. Pre-

vious work has focused on pre-training with point cloud data exclusively; this approach

often requires two or more registered views. In this thesis, we combine image and point

modalities, by first learning self-supervised image features and then using these features

to train a 3D model. By incorporating visual data, which is often included in many

3D datasets, our pre-training method requires a single scan of a scene only. We demon-

strate that our pre-training approach, despite using single scans, achieves comparable

performance to other multi-scan, point cloud-only methods.

ii

Acknowledgements

Although this thesis names a single author, the work enclosed is a product of many

interactions with friends and colleagues without which none of the following pages would

have been possible. I would like to thank all those who supported me throughout my

graduate studies. First and foremost I would like to thank Prof. Jonathan Kelly for

taking a chance on me both as an undergraduate and graduate student. Throughout my

studies, you were a source of technical support that kept me going on the right path.

As much as research is an academic pursuit, it is also an emotional one, and your words

really helped me get through the hardest days. Thank you also for shielding me from

the complex project administration that allowed me to focus on my research. I also have

to thank all my colleagues at the STARS Laboratory for all their advice, support and

valuable feedback. I would like to especially thank Philippe Nadeau and Adam Hall for

all of our philosophical talks on robotics and for creating an open space to bounce ideas

around. An especially large thank you goes out to Brandon Wagstaff who not only helped

me figure out core parts of my thesis but also helped edit much of the work I submitted

for publication. Thank you also Edwin Ng for all your helpful comments and for being

my partner on the ARIBIC project. I would like to thank my parents, Miroslav and

Jaroslava, and my siblings Katherine and Martin for being there for me always. Thank

you Bethany and Mazhar for all of our conversations and for believing in me.

iii

Contents

1 Introduction 1

1.1 Reducing Reliance on Annotations . 2

1.2 Contributions . 3

2 Background 5

2.1 Data Structures for Scene Representations 5

2.2 Coordinate Frames . 7

2.3 Projective Geometry . 10

2.4 Features . 13

2.5 Tasks and Metrics for Scene Understanding 14

2.6 Learning-Based Methods . 16

2.6.1 Deep Neural Networks . 16

2.6.2 Convolutional Neural Networks in 2D 19

2.6.3 Convolutional Neural Networks in 3D 22

2.6.4 Self-Supervised Contrastive Learning 23

3 Related Work 26

3.1 Contrastive Learning in 2D . 26

3.1.1 Learning Image Features . 27

3.1.2 Learning Pixel Features . 30

3.2 Contrastive Learning in 3D . 31

3.2.1 Learning Point Cloud Features . 32

3.2.2 Learning Point Features . 33

3.3 Multi-Modal Contrastive Learning . 34

4 Methodology 36

4.1 Perception Models . 36

4.2 Stage 1 - Learning Image features . 37

iv

4.3 Stage 2 - Learning Point Features . 39

5 Results 47

5.1 Datasets . 47

5.2 Baselines . 48

5.3 Implementation Details . 49

5.4 Visualization of Image Features . 51

5.5 Visualization of Point Features . 51

5.6 Semantic Segmentation . 52

5.7 Instance Segmentation . 53

5.8 Object Detection . 53

5.9 Varying Overlap . 54

5.10 Pre-Training on Out-of-Distribution Data 60

5.11 Inconsistencies in Performance Boost . 61

5.12 Training Speed-up . 62

6 Conclusions 65

6.1 Contributions . 65

6.2 Potential Improvements . 66

6.3 Future work . 67

Appendices 68

A Augmentations 69

A.1 Image Transformations . 69

A.2 Point Cloud Transformations . 72

A.3 General Colour Transformations . 73

Bibliography 74

v

List of Tables

5.1 Downstream performance comparison of pre-training methods. 55

5.2 S3DIS semantic segmentation results (mIOU). 56

5.3 S3DIS instance segmentation results (mAP@0.5). 56

vi

List of Figures

2.1 Visualization of a point cloud and a corresponding voxel grid. 6

2.2 Visualization of the relationship between two reference frames and a point. 8

2.3 Visualization of 1D perspective projection. 11

2.4 Visualization of bilinear interpolation at fractional pixel coordinates. . . . 12

2.5 Visualization of the concepts of equivariance and invariance. 13

2.6 Visualization of scene understanding tasks. 14

2.7 Visualization of a precision-recall curve. 15

2.8 Visualization of a deep neural network. 17

2.9 Visualization of a 2D convolution. 20

2.10 Visualization of the generic UNet architecture. 21

2.11 Visualization of dense and sparse 2D convolution operations. 22

2.12 Visualization of a typical contrastive learning framework. 24

3.1 Generating 2D feature correspondences for contrastive learning. 27

3.2 Comparison of contrastive learning architectures. 29

3.3 Generating 3D feature correspondences for contrastive learning. 32

4.1 Overview of our multi-modal contrastive learning framework. 40

4.2 Network diagram of a 3D Res16UNet34C model. 42

4.3 Network diagram of a 2D ResUNet34 feature extractor. 43

5.1 Visualization of 2D and 3D feature vectors. 50

5.2 Comparison of feature interpolation methods. 51

5.3 Visual comparison of semantic segmentation performance. 57

5.4 Performance on ScanNet over varying labelled data proportions. 58

5.5 Effect of point cloud overlap on downstream performance. 59

5.6 Performance on SemanticKITTI across varying labelled data proportions. 60

5.7 Distribution of performance improvements by pre-training methods. . . . 63

5.8 Comparison of validation performance over training steps. 64

vii

Chapter 1

Introduction

Maintaining an accurate representation of the environment is necessary for many tasks

in robotics, such as navigation, planning, obstacle avoidance, and scene understanding.

The two most common scene representations, particularly for scene understanding tasks,

are images, and point clouds. These representations are built from data captured by

specialized sensors for each modality. Images are most often captured using cameras,

whereas point clouds can be captured from a variety of sensors, such as lidars and stereo

cameras. Cameras are mature, abundant, and relatively inexpensive sensing devices.

The images that cameras produce contain dense, feature-rich information, which has

made visual data useful for robotics applications. Algorithms that process overlapping

sequences of images have proven extremely effective in estimating position and orientation

changes [36], recognizing objects [35], tracking the motion of features [48], stitching

images together [37], and segmenting objects and structures [19]. However, the lack of

depth information in images limits how well they can be used on their own to model

the 3D environment. For instance, images do not provide information about distances

or object sizes. Objects in images are also prone to occlusion. Therefore, images, on

their own, without additional measurement information or processing, are insufficient for

robotics tasks that require knowledge of metric distances in 3D space (e.g., for localizing

objects within a 3D scene).

Modelling the 3D world directly with point clouds circumvents many of the limita-

tions inherent to images. Unlike images, point clouds contain metric information about

distances (between points). Individual point cloud scans from multiple viewpoints can

also be stitched together to reduce occlusions. Recent advances in sensing have made

3D data increasingly more available, dense, and accurate. Algorithms that process point

clouds for various perception tasks have also been very successful [8, 25, 42–44]. Point

clouds are appealing for perception in part because they can provide a more cohesive

1

Chapter 1. Introduction 2

understanding of a scene than can be gained from images alone.

Working with point clouds is not without challenges, however. In contrast to images

which are dense and easy to collect, point clouds are sparse, harder to collect, and

relatively less abundant. Point cloud data is more difficult to acquire since the sensors

that capture point clouds are not as common or as inexpensive as standard cameras.

Localizing individual scans within the global scene adds additional complexity, owing to

the cost of careful point cloud registration or the need to build a robust localization and

mapping pipeline.

Point clouds are also notoriously hard to annotate. The annotation difficulty is a key

limiting factor for many state-of-the-art data-driven scene understanding algorithms that

require large, annotated datasets [8, 19, 25, 43]. Generating point cloud labels requires

(human) annotators to manipulate the point clouds by zooming, panning, and rotating to

select points of interest. Annotators then have to separate points that belong to a partic-

ular object from any background and other occluded points. In comparison, generating

image annotations requires annotators to draw polygons or rectangular boxes around

objects (or classes) of interest in 2D only. Manipulating point clouds and identifying all

‘object’ points makes point cloud annotation significantly more challenging than image

annotation.

The difficulty of annotating 3D data has resulted in considerable effort and labelling

times for existing datasets. For example, the SemanticKITTI dataset [4], which has

518 square tiles of 100 metres length each, required 1,700 hours for annotators to label.

ScanNet [11], which has 1,600 reconstructed scenes of indoor rooms, took about 600 hours

to label [63]. Despite the substantial labelling time, 3D datasets are still significantly

smaller than comparable image-only datasets.

1.1 Reducing Reliance on Annotations

The extensive labelling effort required for 3D data is the reason we seek, herein, to reduce

the volume of annotations necessary. Although cumbersome, annotations are integral to

many accurate, data-driven modelling efforts. The need for annotations could be avoided

altogether through the use of explicit classical algorithms (in some cases), but data-driven

approaches have proven more apt at modelling the complexity in many vision and robotics

tasks.

The dependence on annotations varies depending on the choice of learning approach.

At one extreme, supervised learning relies entirely on ground-truth labels and uses the

discrepancy between the current model prediction and the given label to iteratively op-

Chapter 1. Introduction 3

timize the model. At the other extreme, unsupervised learning has no dependence on

labels and instead attempts to find patterns in the raw data, usually through cluster-

ing. Without labels, however, unsupervised learning is generally much more challenging.

Semi-supervised learning offers a compromise by combining aspects of both supervised

and unsupervised learning at the same time. Semi-supervised learning reduces the re-

liance on annotations while still learning the desired classification or regression model,

for example. Alternatively, few-shot and zero-shot learning frameworks seek to generalize

to new labels using few or zero annotations. Transfer learning uses model parameters

pre-trained on a similar task with a larger dataset as the initialization for supervised

learning on a smaller, target dataset. Finally, self-supervised learning leverages unsuper-

vised training on a large unlabelled dataset to initialize the parameters of a given model,

which is subsequently trained with supervised annotations on a downstream task.

Self-supervised learning, in particular, has shown great success in fields such as nat-

ural language processing [13]. These results have encouraged researchers to investigate

whether self-supervised learning can be of benefit in other domains. A common and pop-

ular type of self-supervised learning is contrastive learning. Contrastive learning aims to

minimize the distance, specified by a given metric, between model outputs for ‘similar’

inputs, and to maximize the distance between outputs for ‘dissimilar’ inputs. Contrastive

learning has proven to be highly effective for image classification tasks [6,18,57], matching

fully supervised pre-training in terms of performance [17]. Once a model has been pre-

trained, it can be easily and quickly deployed on any number of related tasks to improve

performance. Recently, results from [21, 59, 63] have demonstrated that the contrastive

framework can be applied to 3D data to train point cloud networks. These methods

train a network to produce point-specific 3D features that are similar between matching

points and dissimilar between non-matching points. We choose to pursue self-supervised

learning to reduce reliance on annotations, since the approach has proven successful in

various domains including point cloud processing.

1.2 Contributions

A key limitation of existing 3D pre-training methods for segmentation, for example, is

that they utilize point cloud data for pre-training while neglecting the information-rich

images that are often available as part of 3D datasets. We propose a pre-training method

that leverages images as an additional modality, by learning self-supervised image features

that can be used to pre-train a 3D model. Our learning method is split into two separate

stages. The first stage (Stage 1) learns image features using a self-supervised contrastive

Chapter 1. Introduction 4

learning framework. The second stage (Stage 2) applies the same contrastive learning

framework to pre-train a 3D model by making use of the self-supervised 2D features

learned in Stage 1. By incorporating visual data into the pre-training pipeline, we obtain

a notable advantage: only a single point cloud scan and the corresponding images are

required during pre-training. The use of a single scan obviates the need for two or more

overlapping 3D views of a point cloud, which is required by many point-only approaches.

The use of a single scan improves the scalability of our pre-training approach, since we

require raw 3D data only, as opposed to multiple scans that have been aggregated using

a robust mapping pipeline for data association.

Through extensive experimentation, we compare our pre-training approach with exist-

ing point cloud-only approaches on several downstream tasks and across several datasets.

We find that our method performs competitively with methods that use only overlapping

point cloud scans. However, we note that the downstream performance of all methods

varied extensively between datasets and available label proportions. Achieving the best

performance may require a search over different self-supervised learning algorithms. Since

our method does not require registered point clouds, it can be implemented relatively

easily and is a good first candidate for pre-training.

In short, this thesis makes the following contributions:

• we describe a self-supervised method for extracting visual features from images and

using them as labels to pre-train 3D models via a contrastive loss;

• we provide visualizations demonstrating that the features follow structures, such

as lines and surface patches, that are present in the input image and point cloud;

• we show that our approach simplifies self-supervised pre-training on point clouds

relative to other pre-training strategies;

• we demonstrate that a model trained using features learned from raw images im-

proves performance on 3D segmentation and object detection tasks;

• we include an in-depth analysis of how different pre-training methods, including

our own, perform on several standard datasets and tasks including segmentation

and object detection.

Notably, our method yields more consistent performance gains than other, related

algorithms. We achieve results that are comparable to pre-training methods that use

multiple overlapping point cloud scans, despite having access to single scans and images

only.

Chapter 2

Background

This chapter reviews the fundamental mathematical concepts and definitions required to

understand the contents of the thesis. A brief overview of the data structures used to

represent 3D scenes is provided first. Then, we give a short review of coordinate frames

and transformations. Next, we discuss classical computer vision theory, with an emphasis

on the relationship between point clouds, images, and features. Finally, recent advances

in deep learning are detailed, in the context of point cloud and image processing; this is

followed by a brief overview of self-supervised contrastive learning.

2.1 Data Structures for Scene Representations

The spatial form of the external world (i.e., a scene) can be represented by a variety of

data structures with different dimensionalities. In this thesis, we consider 3D scenes and

use either point cloud representations or images, which are 2D projections of the 3D world.

The images we rely on are captured by a standard camera that focuses light rays onto a

rectangular photosensor. The geometry of image formation is covered in Section 2.3. An

image is represented as a three-dimensional tensor, denoted by I ∈ RW×H×C , with width

W , height H, and channel size C. Each image is made up of pixels, which are defined

by integer or real values on a regularly-spaced grid, at coordinate u ∈ [0, . . . ,W − 1]

along the x-axis and coordinate v ∈ [0, . . . , H − 1] along the y-axis. As per convention,

the u and v coordinates are indexed starting from the top left corner of the image. The

channels of the image hold the colour information, with one channel per colour band.

Standard colour images contain three channels, which define the red, green, and blue

(RGB) intensity values for a given pixel; greyscale images contain a single (luminance)

channel only. The image files used in this thesis store each channel value as an 8-bit

positive integer, in the range from 0 to 255. An RGB colour image can be converted to a

5

Chapter 2. Background 6

Figure 2.1: Visualization of a point cloud and a corresponding voxel grid.

greyscale image using a weighted sum of the colour channels for each pixel, according to

Y = 0.299R + 0.587G+ 0.114B, (2.1)

where Y is the resulting luminance of the greyscale channel and R, G, and B are the

red, green and blue channels of the colour image, respectively.1 Colour images can also

be augmented with an additional depth channel that stores the distance from the camera

to the corresponding surface in the scene from which the light was reflected or emitted.

This augmented image is referred to as an RGB-D image.

While an image represents the projection of 3D space onto a discrete 2D grid, a point

cloud, denoted by P herein, can represent a 3D scene without quantization and without

the need to project to a lower-dimensional space. Point clouds are sets of 3D points,

where each point is defined relative to a given reference frame (see Section 2.2). Each

point in P lies on a surface in the scene, (i.e., represents occupied space as opposed to

free space). Point clouds are the direct output of sensors that acquire range measure-

ments, or can be produced through the process of triangulation, for example, by stereo

cameras. The main advantage of point clouds is that they encode metric distance in-

formation. Additionally, individual 3D measurements from different viewpoints can be

stitched together to reconstruct the entire scene with fewer occlusions than for images

(see Section 2.2). Although building a registration pipeline for scene reconstruction is

challenging, the ability to do so when needed allows point clouds to more accurately

model complex 3D environments. The point cloud data structure can also be augmented

with other information, such as the colour or reflectivity of each point (analogous to the

1This conversion follows the ITU Radiocommunication Sector (ITU-R) BT.601 standard and extracts
luminescence information more accurately than simply averaging the three colour channels together.

Chapter 2. Background 7

colour channels for images). A point cloud P is defined by a set of coordinates ri and

channel values ci,

P =

{[
ri

ci

]
∈ R3+C

∣∣∣∣∣ ri ∈ R3 , ci ∈ RC

}
, (2.2)

where C is the number of channels assigned to each point (which may be zero).

It is also possible to discretize a point cloud into a voxel grid, which aggregates points

into fixed-sized ‘voxels’ (i.e., volume pixels) in 3D space. A voxel grid can be represented

as a four-dimensional tensor, V ∈ RW×H×L×C , with width W , height H, length L and

channel size C. A non-empty voxel represents a cubic volume that is at least partially

occupied by a physical object in the scene (i.e., for a voxel derived from a point cloud,

non-empty voxels must contain at least one point). A visual comparison between a point

cloud and a corresponding voxel grid is shown in Figure 2.1. When converting a point

cloud to a voxel grid, the channel information stored by a specific voxel is derived from

the channel values of the points that fall within the voxel. For colour values, the average

colour of all points might be used, while for semantic labelling, the most common label

among the points may be selected.

2.2 Coordinate Frames

Building a complete map of a 3D scene requires correctly merging many individual 3D

scans. To aggregate 3D points from individual scans, the points must be expressed in

a common reference frame. Following the formulation given in [3], a reference frame in

three dimensions, denoted in vectrix form as F−→i, is defined by three orthogonal unit

vectors (i.e., axes),

F−→i =

 1−→1

1−→2

1−→3

 , (2.3)

where 1−→1 · 1−→2 = 1−→1 · 1−→3 = 1−→2 · 1−→3 = 0. A vector, r−→, which has a magnitude and

direction independent of any reference frame, can be expressed as a set of coordinates in

a particular reference frame through

r−→ = F−→
T
i ri =

[
1−→1 1−→2 1−→3

]r1r2
r3

 . (2.4)

Chapter 2. Background 8

Figure 2.2: Visualization of the relationship between two reference frames and a point
P . The point is shown relative to F−→i and F−→v. Vectors r−→

pi and r−→
pv identify the point,

while the vector r−→
iv connects the origin of F−→i to the origin of F−→v.

Following the visualization in Figure 2.2, we can represent the location of a point P by

r−→
pi = r−→

vi + r−→
pv, (2.5)

where the superscripts on each vector are read from right (tail) to left (tip).

Note that the basis vectors of one frame (e.g., F−→i) may be rotated with respect to

the basis vectors of a second frame (e.g, F−→v). Utilizing the vectrix representation again

and taking the outer product, we obtain

Civ = F−→i · F−→
T
v . (2.6)

The resulting 3 × 3 rotation matrix, Civ, is a member of the special orthogonal group

(in three dimensions), which is the set defined as

SO(3) = {C ∈ R3×3 |CCT = 1, det(C) = 1}. (2.7)

The subscripts are read from right (initial frame) to left (final frame). Note that rotation

matrices are orthonormal (i.e., CCT = 1) and preserve handedness (i.e., det(C) = 1). It

follows directly from orthogonality that the inverse of the rotation matrix is

Cvi = C−1
iv = CT

iv. (2.8)

Consider expressing the vector r−→
pi in terms of coordinates in reference frame Fi.

Chapter 2. Background 9

Making use of Equations (2.5) and (2.6), we have

rpvi = Civr
pv
v , (2.9)

rpii = rvii + rpvi , (2.10)

rpii = rvii +Civr
pv
v , (2.11)

where the subscripts indicate the frame in which the coordinates are expressed.

When two reference frames are rotated relative to each other and their origins are

translated, the transformation between the frames can be represented by a homogeneous

transformation matrix, T ∈ R4×4, that is a member of the special Euclidean group (in

three dimensions),

SE(3) =

{
T ∈

[
C r

0T 1

] ∣∣∣∣∣C ∈ SO(3), r ∈ R3

}
. (2.12)

The coordinates of a point expressed in two different reference frames are thus related by[
rpii
1

]
=

[
Civ rvii

0T 1

]
︸ ︷︷ ︸

Tiv

[
rpvv

1

]
. (2.13)

The inverse transformation can be computed as

T−1
iv = Tvi =

[
CT

iv −CT
ivr

vi
i

0T 1

]
. (2.14)

With knowledge of the appropriate transform matrices, the points captured in indi-

vidual point cloud scans can be merged into a common, world reference frame, Fi, and

concatenated together. The world reference frame is usually assumed to be defined by

the first scan in a sequence. Given a set of V ≥ 1 scans, the full set of points (i.e., the

point cloud or P) can be expressed in the world frame as

P =

{
pji
i ∈ R3

∣∣∣∣∣
[
pji
i

1

]
= Tiv

[
pjv
v

1

]
, pjv

v ∈ Pv

}
, (2.15)

where each individual scan v ∈ (1, . . . , V), contains a set of points Pv = {pjv
v }Mv

j=1. Here,

pjv
v ∈ R3 and Mv is the total number of points in scan (or cloud) Pv. We note a slight

abuse of notation above, where we mix alphabetic (i.e., i) and numeric (e.g., 1, 2, . . .)

Chapter 2. Background 10

frame identifiers for notational simplicity. The homogeneous transform matrix from each

scan frame to the world frame is denoted by Tiv. Multiple point cloud scans are said to

be registered if the scans are all expressed in a common frame.

2.3 Projective Geometry

Images and point clouds can be used together in a flexible way for many perception tasks

because 3D points can be mapped directly to image pixels. The direct mapping from

points to pixels is possible because an image is a projection of 3D space onto a 2D image

plane. There are various types of projection operations or models, and we refer to the

formulations discussed by Szeliski [51] for more details. The simplest projection model

is an orthographic projection, which defines the 3D to 2D mapping by discarding the

z-coordinate of each 3D point. However, this model does not accurately represent the

way light is focused by a camera lens system. Instead, in the ideal perspective projection

model, a light ray emitted from a 3D point passes through an infinitely small aperture

(i.e., a pinhole) and intersects the image plane at a 2D point. This model is also commonly

referred to as the pinhole camera model. Since the pinhole model is based on similar

triangles, there is no interdependence between projection in the x and y directions, and

hence the two axes can be treated independently. The diagram in Figure 2.3 visualizes

perspective projection for a 1D camera (in the x direction). Using similar triangles, it

can be shown that

xc = fx
xp

zp
, (2.16)

where xc represents the projection of the point (xp, zp) onto the image plane along the

x-axis. The extension to the y-axis follows the same logic by substituting the point

coordinate yp.

To obtain distances in terms of pixel values, the focal length, f can be converted to

pixels by dividing by the (metric) pixel size, s, which yields

fu =
fx
sx

. (2.17)

We distinguish values represented in pixel coordinate units with the subscript u for pixel

values along the image plane x-axis and v for pixel values along the y-axis. Image

coordinates are specified using ordered pairs of coordinates, denoted by (u, v). Note also

that pixels may not be square, and hence the focal lengths can differ between axes. The

distances to the principal point, where the optical axis pierces the image place, also vary

Chapter 2. Background 11

Figure 2.3: Visualization of a 1D perspective projection. The point p is projected onto
the image plane I. The light ray passes through the optical centre (aperture) O; the
distance between the image plane and origin (optical centre) is fx. Each pixel on the
image sensor has size sx and the distance from the top of the image place to the principal
point (x-axis) is cx pixels. An equivalent formulation places a ‘virtual’ image plane in
front of the optical centre (denoted as I ′

) to avoid image inversion.

because the image sensor is usually rectangular. By applying the offset of the principal

point and re-arranging, the pixel coordinates of a projected 3D point become

u =
1

zp
(fuxp + cuzp), v =

1

zp
(fvyp + cvzp). (2.18)

Equation (2.18) can be further re-arranged to define the projection operation in matrix

form, uv
1

 =
1

zp

fu 0 cu

0 fv cv

0 0 1

︸ ︷︷ ︸

K

xp

yp

zp

︸ ︷︷ ︸

p

, (2.19)

where K is a 3× 3 intrinsic calibration matrix. Re-arranging Equation (2.19) yields

p = zpK
−1

uv
1

 , (2.20)

which is the inverse projection that maps pixel coordinates back to 3D point coordinates

To solve Equation (2.20), we require knowledge of zp. Since images lack this information,

a unique solution for the inverse projection cannot usually be computed. However, for

the special case of RGB-D images, zp can be extracted from the depth channel.

The perspective projection model assumes that light rays travel in straight lines,

through the aperture, and intersect the image plane. In reality, all lenses introduce some

amount of distortion, or deviation of the path of each light ray from a straight line. If

Chapter 2. Background 12

Figure 2.4: Visualization of bilinear interpolation at fractional pixel coordinates. There
are four pixels, one at each corner of the square, with known intensity values f . The
fractional pixel coordinates fs,t are s ∈ [0, 1] and t ∈ [0, 1] relative to f0,0, in the horizontal
and vertical directions, respectively.

this deviation is not accounted for, it will introduce an error when computing both the

forward and backward projections. The most common type of lens distortion is radial

distortion, which can be modelled as a transform of the image points inwards, towards

the image centre (i.e., barrel distortion), or outward, away from the image centre (i.e.,

pincushion distortion). The effects of radial distortion can be approximated by

x̂c = xc(1 + κ1r
2
c + κ2r

4
c), (2.21)

ŷc = yc(1 + κ1r
2
c + κ2r

4
c), (2.22)

where r2c = x2
c + y2c is the radial distance of the point (xc, yc) that is computed prior

to applying the intrinsic transform matrix from the centre of projection on the ideal

(distortion-free) image plane and κ1 and κ2 are radial calibration coefficients.

Image operations such as perspective projection or rescaling often result in fractional

pixel values. Usually, this is not a problem, since fractional values can be rounded to

the nearest whole number. However, this rounding operation is inaccurate by definition,

and interpolation using the values of nearby pixels is sometimes necessary. The simplest

interpolation method is to apply a first-order (linear) approximation along each axis, as

part of bilinear interpolation (see Figure 2.4). Following the formulation in Szeliski [52],

the value of the (fractional) pixel fs,t in the diagram can be computed as

fs,t = (1− s)(1− t)f0,0 + s(1− t)f1,0 + (1− s)tf0,1 + stf1,1, (2.23)

Chapter 2. Background 13

Figure 2.5: Visualization of the concepts of equivariance and invariance.

where s and t represent the horizontal and vertical distances from the top left pixel,

respectively, and fi,j defines the intensity (or colour) value of a pixel in one of the four

corners. The contribution of the pixel value at each corner is scaled according to the area

of the rectangle directly opposite.

2.4 Features

Extracting essential information from data, in the form of features, plays a key role in

segmentation and object detection tasks. Here, a feature is a summary representation

computed from all or a portion of the data. Feature extraction is a common first step in

scene understanding algorithms that process features for downstream decision-making.

Designing features that make decision-making accurate is, therefore, an important aspect

of algorithm development and one of the core objectives of this thesis.

Depending on the task, features can summarize either the global information about

a single data point, or the local surrounding region. Local features are useful in scene

segmentation since objects in a scene typically ‘cover’ more than a single pixel (or 3D

point in the case of a point cloud), and so valuable contextual information can be acquired

from the surroundings of a single data point. Meanwhile, global features are useful in

high-level scene classification since they summarize information about the entire scene.

We seek certain desirable properties in both feature types. The first property is that a

feature should form a compact and succinct representation of the underlying data, which

is important for the computational efficiency of downstream feature processing. Second,

Chapter 2. Background 14

Figure 2.6: Visualization of scene understanding tasks.

a feature should usually exhibit symmetry, either in the form of invariance or equivari-

ance, to transformations of the input data. Symmetry allows for algorithms to generalize

to larger input spaces. Examples of possible input transformations include translations,

rotations, and scaling. An invariant feature remains unchanged by a given transforma-

tion. Invariance is desirable for tasks such as image classification, where transformations,

such as rotations, should not influence the final image class. An equivariant feature, on

the other hand, undergoes a transformation in the output space that is equivalent to the

transformation of the input space. A convolution (see Section 2.6.2) is an example of an

operation that is equivariant to input translations. Equivariance is desirable for tasks

such as image segmentation, where the segmented pixels corresponding to a particular

object should be ‘grouped’ along with the object.

There exist many possible feature representations. In certain cases, a metric may

also be defined on the feature space, allowing one to measure distances between features.

By defining a feature space and an accompanying metric on that space, features that

are similar according to the metric can be grouped together or compared. In this thesis,

a feature (image or point cloud) is represented by a vector f ∈ Rn with the standard

Euclidean or ℓ2 norm applied as the distance metric,

ℓ2(f1, f2) = ||f1 − f2||2, ∀ f1, f2 ∈ Rn. (2.24)

2.5 Tasks and Metrics for Scene Understanding

Although features can be informative, they are not particularly useful on their own. In-

stead, features are utilized for tasks such as object detection, semantic segmentation,

and instance segmentation. Therefore, we gauge the quality of our pre-trained features

by evaluating how they impact the performance of these downstream tasks. This sec-

Chapter 2. Background 15

Figure 2.7: Visualization of a precision-recall curve. The shaded area under the curve is
the average precision (AP).

tion gives a short description of each task along with relevant evaluation metrics. A

visualization of the different scene understanding tasks is shown pictorially in Figure 2.6.

First, the goal of object detection is to find instances of specific objects and tightly

fit a bounding box around each object. A detection is considered correct if it meets a

defined threshold of the intersection over union (IOU) metric. Intersection over union is

computed as a ratio between the area or volume of the intersection between the predicted

and ground truth bounding boxes and the area or volume of their union. A detection is

commonly considered to be ‘correct’ when the IOU exceeds 50% and is used to compute

a mean average precision (mAP) metric. To compute the mAP we first need to compute

the precision and recall scores, defined as

Precision =
True Positives

True Positives + False Positives
, (2.25)

Recall =
True Positives

True Positives + False Negatives
, (2.26)

across all possible confidence thresholds, to build a precision-recall curve. The area under

this curve is the average precision, and when further averaged over all possible classes

it becomes the mean average precision. A visualization of a precision-recall curve along

with the area that represents the average precision is shown in Figure 2.7. An extension

of object detection is the task of semantic segmentation, where the goal is to label each

point or pixel in a scene as belonging to a predefined class (including structures such as

walls), instead of drawing bounding boxes around objects. The evaluation metric used

is the mean intersection over union (mIOU), which is the intersection of the predicted

Chapter 2. Background 16

and ground truth labels over their union, averaged across all available classes. Lastly,

the task of instance segmentation aims to identify specific instances of objects. Like

semantic segmentation, instance segmentation labels the raw data directly as belonging

to a specific instance of an object class. Instance segmentation uses the mAP metric,

with a correct classification thresholded by the IOU metric.

2.6 Learning-Based Methods

The complexity of scene understanding makes the problem of ‘hand-modelling’ infeasi-

ble. Learning-based approaches have proven to be a successful and practical alternative.

Learning-based methods work by optimizing models to mimic the input-output relation-

ship defined by sample data points (i.e., training data). This section provides an overview

of the learning-based methods that are used in this thesis.

2.6.1 Deep Neural Networks

Deep neural networks (DNNs) are able to model complex nonlinear problems in an end-

to-end fashion (meaning from model input to output) and have been highly successful for

segmentation and object detection tasks. This section of the thesis provides an overview

of DNNs, following the outline from Szeliski [53].

DNNs are built from consecutive layers of ‘neurons,’ where each neuron computes a

weighted sum of its inputs that is then shifted by a scalar bias value. The result is then

passed through a non-linear activation function. The output of an individual layer i,

denoted as fθi , is

fθi = h(WT
i xi + bi), (2.27)

where h represents a non-linear activation function applied element-wise and θi represents

the model parameters, which are the weight matrix Wi ∈ Rn×m and bias vector bi ∈ Rn.

Individual layers are stacked together such that the output of one layer becomes the input

to the next (see Figure 2.8). A helpful way to express the output of multiple consecutive

layers is via the composition operator,

(fθ)(x) = (fθM ◦ · · · ◦ fθ1)(x). (2.28)

The parameters of each layer are summarized into a single variable θ = {θi}Mi=1 where M

is the number of layers. For regression problems, the output of the network can be used

directly without further modification. For classification problems, the continuous model

Chapter 2. Background 17

Figure 2.8: Visualization of a deep neural network.

output has to be converted to a discrete classification. This conversion is commonly done

by numbering each class and representing the class index using a one-hot encoding. A

one-hot encoding vector has a length equal to the total number of classes with a one at

the position corresponding to the identified class index and zeros everywhere else. The

model output is then made to match the size of the one-hot encoding vector, K, and

converted into a probability distribution across all classes using the softmax function

yi =
exi∑K
j exj

, (2.29)

where the predicted class is that with the highest probability (i.e., closest to one).

The weights and biases of the network are the learnable parameters that are adjusted

according to the task. The easiest and most common method for tuning a model is

through supervised learning, whereby a set of input-output pairs are given. The model

is optimized such that the model outputs match the desired outputs (targets) as closely

as possible. Optimization is based on a selected scalar loss function L : RK → R, where
K is the model output size. The total loss is then computed as the average of the loss

from each input-output pair,

L =
1

N

N∑
i=1

Li, (2.30)

where we use Li to denote the loss from one of the N samples.

For classification problems, a common practice is to use a cross-entropy loss

LCE =
1

N

N∑
i=1

yi log(fθ(xi)), (2.31)

where yi ∈ RK represents the target output given input xi. For regression problems, an

Chapter 2. Background 18

ℓ2 loss is used

L2 =
1

N

N∑
i=1

∥yi − fθ(xi)∥2. (2.32)

Training the network can now be formulated as an optimization problem,

θ∗ = argmin
θ

L(fθ(x),y). (2.33)

This optimization problem is almost always non-convex and riddled with local minima.

The most common optimization method, known as gradient descent, iteratively takes

steps in the direction opposite to the gradient of the loss function with respect to the

network parameters, where the gradient is computed at the current operating (parameter)

point. This method is also known as steepest descent. However, like all methods based on

linearization, moving too far in the steepest descent direction may not yield the lowest

value of the loss function. Selecting a step size ϵ for each gradient-based update that is

neither too big nor too small is crucial. Updating the parameters is done simply using a

step opposite to the gradient direction

θi ← θi − ϵ
∂L
∂θi

. (2.34)

Since the network is a composition of the individual activation functions across each

layer, the complete gradient is simply a product of gradients from the previous layers,

defined using the chain rule,

δL
δθi

=
δL
δfθM

· δfθM
δfθM−1

· · ·
δfθi+1

δθi
, i ∈ {1, . . . ,M}. (2.35)

The parameters are updated until either a predefined maximum time or iteration count

is reached or the loss stops decreasing for an extended period. Many different algorithms

for network optimization exist, but the most common is stochastic gradient descent

(SGD). SGD works by randomly grouping data into smaller sets called mini-batches

and computing the gradient across this mini-batch only. Optimization requires setting

various hyper-parameters such as the step size and a momentum term.

The activation function must be nonlinear to ensure that the network can model

nonlinear input-output relationships. The most-used activation function is the rectified

linear unit (ReLU) which is defined as

h(y) = max(0, y). (2.36)

Chapter 2. Background 19

However, the ReLU activation suffers from a ‘zero gradient’ problem when the input is

negative, preventing any further parameter updates for that neuron and for any connected

neurons in other layers. To avoid this zero gradient issue, the leaky ReLU function uses

a scaling value, α, to ensure the slope is nonzero,

h(y) =

y y > 0

αy y < 0,
(2.37)

while the exponential linear unit applies an exponential function as part of the activation,

h(y) =

y y > 0

α(exp(y)− 1) y < 0,
(2.38)

for negative inputs.

Applying the additional step of normalizing the inputs before applying the activation

function is also common. Normalization prevents an imbalance in the magnitude of the

parameter weights between different layers, which can make training extremely sensitive

to even small update steps. The most common type of normalization is batch normal-

ization, which rescales all of the outputs of a layer in a mini-batch such that the set has

zero mean and unit variance.

2.6.2 Convolutional Neural Networks in 2D

Since the impressive breakthrough in performance shown by AlexNet [28], which in 2012

beat human performance on the ImageNet benchmark [12], most image-based computer

vision algorithms have adopted the convolutional neural network (CNN) as part of their

core architecture. Unlike fully-connected networks that have individual weights for each

element of the input, convolutions have the advantage of being equivariant to translations

of pixels in the input image. This is important because the same clusters of pixel values

can appear together anywhere within an image (e.g., consider an edge at a specific orien-

tation), and the model needs to behave in the same way regardless of where in the image

the exact pattern appears. Convolutional neural networks apply small filters, known as

kernels, to the inputs by ‘sliding’ them across the image, similar to the convolutional op-

eration used in signal processing. The output of each filter is computed using the set of all

channels of the input, denoted by C. Stacking multiple kernels together forms a convolu-

tional layer, where each stacked kernel output represents a feature vector. Convolutional

neural networks are composed of multiple sequential convolutional layers. Following the

Chapter 2. Background 20

Figure 2.9: Visualization of a 2D convolution. The input is size 7× 7 and the kernel size
is 3× 3 with a stride of 2 and padding of 0. The resulting output size is 3× 3.

formulation given in Szeliski [53], the output of a single convolutional kernel at input

coordinates i and j can be expressed as

y(i, j) =
∑
c∈C

∑
(k,l)∈N

w(k, l, c)x(i+ k, j + l, c) + b, (2.39)

where w and b represent the kernel weights and bias respectively and N represents the

set of 2D kernel offsets. The output y can subsequently be passed through an activation

function as described in Section 2.6.1. A visualization of an example of 2D convolution

is shown in Figure 2.9. Each filter can move in positive increments of whole pixel coor-

dinates, referred to as the stride and denoted as s, to reduce the spatial dimension of

the output. When applying a convolutional filter of size greater than one, it will extend

beyond the boundary of the image. To deal with this situation, the image is often padded

on all sides with zeros or with the value of the nearest-neighbour pixel at the boundary.

The output size for an individual dimension, dout, can be computed using

dout =

⌊
din − k + 2p

s

⌋
+ 1, (2.40)

where s represents the stride, p represents the number of padding pixels, k represents

the kernel size, and din represents the input dimension size. Note that all variables are

measured along a single axis. Positional invariance of features in a small local window

is achieved through the pooling of outputs in the window. Note that the translational

invariance of local pooling means that the output is no longer equivariant within the

window. Local pooling is often performed by simply taking the maximum value of the

Chapter 2. Background 21

Figure 2.10: Visualization of the generic UNet architecture.

outputs within the window, otherwise known as max pooling.

Given the definition of the convolution operation above, the output size can only

stay the same or decrease. In many cases, it is advantageous for the output to be larger

than the input, in which case a transposed convolution can be applied. A transposed

convolution inserts s− 1 rows and columns between each pixel of the input layer, where

s represents the upsampling stride. Then, a regular convolution operation with a stride

of 1 is performed over the new input, resulting in an increase in the output dimension

compared to the input. Similarly, a discrete upsampling operation can achieve a similar

size increase by interpolating over the output using the input values. In this thesis,

we use simple nearest-neighbour interpolation, which maps each pixel in the upsampled

image back to the original image and selects the pixel in the original with the nearest

pixel coordinates.

The deeper a convolutional network is, the more features it can extract. However,

deep networks suffer from the vanishing gradient problem, where the gradient magnitude

typically reduces as the network size increases. ResNet [20] mitigates the impact of van-

ishing gradients by learning residuals that are added to the input, as opposed to learning

the output directly. This allows a signal to pass through the layers relatively unaltered

so that its gradient does not diminish significantly. Groups of layers where the input

is bypassed are referred to as blocks. There exist many configurations of the ResNet

architecture that vary in terms of the number of blocks that are employed. Importantly,

larger ResNets (ResNet50/101/152) build a bottleneck layer into their blocks, which re-

duces the number of parameters per block. It is common to leverage different versions of

the ResNet backbone, trained on the large ImageNet dataset, as the early-stage feature

extractor for state-of-the-art image-based semantic segmentation networks.

Chapter 2. Background 22

Figure 2.11: Visualization of dense and sparse 2D convolution operations.

An outstanding issue with ResNet is that it suffers from being sequential, meaning

that downstream layers have no direct access to the raw outputs from upstream layers

and cannot take advantage of features at multiple scales. Feature pyramid network

(FPN) [32] architectures address this drawback by implementing feature pyramids, which

are a popular method for handling objects at multiple scales in classical compute vision

algorithms. FPNs make use of a typical CNN with decreasing filter dimensions and

then add an adjacent top-down pathway that sequentially up-samples the outputs of

the smallest filters. FPNs use lateral skip connections to directly connect the output of

equally-sized layers from the down-sampling pyramid to the up-sampling pyramid. This

structure resembles two pyramids stacked back-to-back (or top-to-top). Importantly,

predictions are made at all levels from the smallest layer to the largest layer on the up-

scaling side. The UNet [46] architecture modifies the feature pyramid network to use

the output of the last layer of the up-scaling pyramid only. This approach has proven

successful for many kinds of image and point cloud segmentation tasks. A visualization

of a generic UNet is shown in Figure 2.10.

2.6.3 Convolutional Neural Networks in 3D

The advantages of using convolutions for image data, such as parameter efficiency and

equivariance, are equally desirable when processing point clouds. However, using convo-

lutions on point clouds brings a few challenges. The first issue is that the convolutions,

when applied to images, assume discrete input coordinates (i.e., pixels), while points

in point clouds do not generally have integer coordinates. To handle this discrepancy,

Chapter 2. Background 23

point clouds are frequently converted to voxel grids (see Section 2.1). The second issue is

that, with each new dimension, the space and time complexity of forward passes through

the network grow exponentially. Processing larger scenes at high spatial resolutions,

therefore, becomes computationally infeasible. A key observation for improving compu-

tational efficiency is that, although there may be many voxels, most of them are empty.

Any operation on empty voxels has no effect on the output and so empty voxels can be

discarded immediately. Performing a convolution solely on occupied elements is referred

to as a sparse convolution. A visual comparison between a normal dense convolution and

a sparse convolution in 2D is shown in Figure 2.11.

2.6.4 Self-Supervised Contrastive Learning

Although supervised learning has proven immensely successful, collecting labels is often

tedious, expensive, and time-consuming. Labelling can also severely limit the scalability

of a dataset, which further restricts the number of examples that can be used to train

a model. For this reason, self-supervised learning techniques seek to utilize unlabelled

data to learn representations that can be used either directly or on other downstream,

fully-supervised tasks.

In this thesis, we utilize a self-supervised technique referred to as contrastive learn-

ing. To describe contrastive learning, we follow the formulation from [29]. Contrastive

learning aims to produce features that are distinguishable between unique inputs. The

objective function encourages the outputs of a model, given similar input data points

(i.e., positive samples), to be close together. Additionally, the objective function encour-

ages the outputs produced from dissimilar data points (i.e., negative samples) to be far

apart. The ‘closeness’ of model outputs is measured according to the metric defined by

the feature space (see Section 2.4). Defining which data points are similar and which are

dissimilar depends on the objective task that is being trained. This objective is otherwise

known as the pretext task. For example, image colourization [62] seeks to find the origi-

nal colours of an image that has been converted to greyscale (e.g., similar to colourizing

old movies). The same pixel coordinate between the colour and greyscale images forms

a positive pair while corresponding pixel coordinates from different images form nega-

tive pairs. The most common pretext task, and the one used in this thesis, is instance

discrimination [57], whereby each input individually, regardless of the input type (e.g.,

image, point cloud) is considered a separate class. Instance discrimination generates pos-

itive pairs by applying augmentations to a query point and generates negative pairs by

sampling from all other available data points.

Chapter 2. Background 24

Figure 2.12: Visualization of a typical contrastive learning framework.

The points are subsequently fed through a model that learns to discriminate using a

contrastive loss. More formally, a query point xi ∈ RN is first sampled from the dataset.

The query point is then augmented by sequentially applying one or more individual

transformations t : RN → RN , forming a composite function,

T (xi) = (t1 ◦ · · · ◦ tS)(xi), (2.41)

where all transformation hyperparameters are sampled randomly. Whether the input is

a point in a point cloud or a pixel in an image, the same transformation is applied to

all data points in the scene. Applying two separate transformations to the query point

results in the positive pair (T (xi), T
+(xi)). Each member of the pair then follows a

separate pathway through the network or model, as shown in Figure 2.12. Conversely,

negative points are sampled by taking any other point not derived from xi, regardless of

its augmentation.

All points are subsequently fed through an encoder fθ to obtain a feature v = fθ(x),

where v ∈ RD. This encoder forms the backbone of the model that we are trying to

initialize. The feature is then passed through a decoder z = hϕ(v), where z ∈ RM

and M ≤ D. However, if the features are desired directly then the decoder can simply

apply the identity transform. The decoder outputs are normalized such that ∥z∥2= 1

to improve the stability of the gradient update during training. Once pre-trained, only

the encoder parameters θ are retained as part of the initialized backbone; the decoder

parameters ϕ are discarded.

The most common and successful contrastive objective function is the InfoNCE (Info

Noise Contrastive Estimation) loss function [39]. The loss is defined over the set of query

points as

L = −
N∑
i=1

log
exp(zi · z+i /τ)

exp(zi · z+i /τ) +
∑K

j exp(zi · z−j /τ)
, (2.42)

Chapter 2. Background 25

where τ ∈ (0, 1] represents the temperature parameter that controls the smoothness of

the latent (encoded) representations, and K is a hyperparameter that determines the

number of negative features to sample. For simplicity, it is common to set K = N and

take all negative samples as query points. The similarity between features is computed

as the dot product, although other suitable distance functions exist.

Chapter 3

Related Work

This thesis builds upon work on self-supervised learning from image and point cloud data.

The present chapter provides a review of existing self-supervised contrastive learning

methods used to initialize models for downstream scene understanding tasks. We first

cover methods that operate on either images or point clouds separately. Then, we discuss

methods that utilize both modalities together.

3.1 Contrastive Learning in 2D

This section covers the algorithms used for learning self-supervised features from raw 2D

data, which comprises the first stage of our method. A 2D image feature, in this context,

is the output of an encoder network that has been trained using a contrastive objective

and that follows the formulation discussed in Section 2.4. Importantly, the methods

described in this section are also used as building blocks for self-supervised learning on

other data types including point clouds.

We first cover algorithms that learn a single feature vector for each image (i.e., image-

level), since this is the format most often used to develop and evaluate new contrastive

architectures. We then examine extensions of image-level contrastive algorithms to those

that learn a feature vector for each pixel in an image (i.e., pixel-level).

Almost all of the contrastive algorithms covered in this section use the same method

to generate positive-pair correspondences. If an algorithm deviates from this approach,

we indicate this distinction clearly in the text. Positive pairs are generated by randomly

augmenting two separate random crops of the same image. Augmentations can gen-

erally be split into two types: coordinate transforms (e.g., horizontal image flips) and

colour transforms (e.g., from colour to greyscale). Each augmentation has a pre-defined

probability of being applied to the data point during training. New positive pairs are

26

Chapter 3. Related Work 27

Figure 3.1: Generating 2D feature correspondences for contrastive learning. Pixel-level
contrastive learning compares and contrasts features vectors defined for individual pixels
within an image, while image-level contrastive learning compares and contrasts features
defined over full images.

generated at each iteration, with all of the augmentation parameters sampled randomly.

A visualization depicting how positive pairs are produced from a single image is shown

in Figure 3.1. The positive samples are passed separately down one of two different data

pathways, each of which applies an encoder to produce a feature vector, as shown in

Figure 2.12. The exact form or architecture of each pathway depends on the algorithm,

as shown in Figure 3.2. The encoder is implemented as a 2D CNN, denoted by gθ in

Figure 3.2, while the resulting feature vector is denoted by z. For pixel-level tasks, the

encoder CNN computes one feature vector for every pixel; for image classification tasks,

the CNN computes a single feature vector for the entire image. During image-level pre-

training, the image-level feature vectors derived from the two augmented image crops

form a positive pair used in the contrastive loss or objective function. During pixel-level

pre-training, pixels in the two cropped images that originate from the same coordinates

in the original (full) image are selected as positive pairs. The pretext task used in the al-

gorithms discussed here is instance discrimination (see Section 2.6.4 for more details). A

visual comparison of the most common 2D contrastive learning architectures is provided

in Figure 3.2. The next section covers each of these architectures in detail.

3.1.1 Learning Image Features

Contrastive learning is a useful form of pre-training for image classification. Perhaps the

best-known algorithm for self-supervised image feature learning is SimCLR [6]. SimCLR

contrasts the similarity of a positive image pair with the dissimilarity of the query point

Chapter 3. Related Work 28

to other images in the training batch using an InfoNCE loss, defined by Equation (2.42).

The SimCLR architecture follows the structure found in Figure 2.12. SimCLR achieves

performance gains on downstream image-classification tasks that are comparable to su-

pervised pre-training. The SimCLR architecture also forms the basic structure for all

other contrastive learning algorithms, each of which modifies SimCLR to address various

shortfalls.

One shortfall of SimCLR is the dependence on negative samples, or those samples

whose features should be dissimilar to the query point (see Section 2.6.4). Contrastive

architectures that apply the InfoNCE loss benefit greatly from large batches of negative

samples at each iteration. This is because, as training progresses, the model outputs

for negative samples become more dissimilar to the output for the query point, leading

to gradients with very small magnitudes and stagnation. Using large negative batch

sizes yields a higher chance of selecting a sufficient quantity of negative features that

remain ‘close’ to the query point. However, due to resource limitations, generating large

batches of feature vectors is not always feasible. One method to efficiently increase the

negative sample batch size is to store previous feature encodings in a memory bank so

that they do not have to be recomputed [57]. However, since the parameters of the

encoder are updated at each iteration, the previous encodings become less representative

of the current encoder state. Encodings are therefore only kept for a few iterations. An

extension of using memory banks is to use a momentum encoder architecture (MoCo) [18].

The MoCo architecture is also based on a memory bank, but the features in the bank

come from a separate encoder, gψ. This separate encoder has the same structure as gθ

but with parameters ψ that are updated at step k + 1 according to a moving average of

the current parameters θk and ψk,

ψk+1 ← mθk + (1−m)ψk, (3.1)

where m ∈ (0, 1) represents the blending coefficient between the current encoder and

momentum encoder parameters. Backpropagation updates are stopped for this separate

encoder gψ by applying a stop-gradient operation to prevent gradient information from

propagating further through the network. Compared to storing feature vectors from the

target model in a memory bank, storing features from the momentum encoder greatly

improves downstream image classification performance. The reason for the performance

improvement is not well understood, but one hypothesis is that the momentum encoder

produces a more stable gradient than the model itself [41].

Without labels, it is possible that some negative samples may belong to the same

Chapter 3. Related Work 29

Figure 3.2: Comparison of contrastive learning architectures. Applying the gradient
operation along a pathway modifies parameters upstream of the loss function through
(stochastic) gradient descent. Applying the stop-gradient operator along a pathway pre-
vents any upstream parameter updates.

Chapter 3. Related Work 30

class as the positive samples. Pushing these features apart is therefore counter-productive

during training. One way to deal with negative samples is to avoid using them altogether

and instead to focus on positive samples only. This is the approach taken by the Bootstrap

Your Own Latent (BYOL) [17] algorithm. BYOL uses the same dual encoder architecture

as MoCo, but does not include a memory bank. BYOL adds a predictor module, pϕ,

that learns to predict the feature vector of one encoder from the output of the other.

Also, BYOL only uses positive pairs in the objective function, and so is not restricted

by negative sampling. SimSiam [7] modifies BYOL by sharing weights between the two

encoders instead of using a moving average. The authors of [7] remark that this change

does not affect downstream performance. Instead, they find that the key component

of BYOL is the stop-gradient operation that prevents the second encoder from being

updated via backpropagation. Another contrastive learning algorithm that forgoes using

negative samples is Swapping Assignments between Views (SwAV) [5]. SwAV iteratively

clusters feature vectors into groups, called prototypes, for each batch and compares

these prototypes against a dictionary of existing (current) prototypes. SwAV learns

which prototypes best represent the data and how to generate features close to these

prototypes, regardless of the input transformation. Similarly, Prototypical Contrastive

Learning (PCL) [30] applies a different clustering algorithm that avoids sampling positive-

negative pairs from the same cluster.

An alternative technique to deal with negative samples is to design specific negative

sampling strategies. Supervised Contrastive Learning (SupCon) [27] performs both su-

pervised learning and self-supervised feature learning concurrently. The predicted class

labels learned during training, also called pseudo-labels, are used to select negative sam-

ples that belong to a different class than the positive pair. SupCon also extends the

InfoNCE loss to compare multiple positive points at the same time. Debiased sam-

pling [10] accounts for the likelihood that a negative and positive sample belong to the

same class by adjusting the loss function. Hard negative sampling [45] extends debiased

sampling by picking negative samples that are closer to the positive sample in the se-

lected metric space (e.g., the ℓ2 norm). Lastly, hard negative mixing [26] selects negative

samples that are close to the positive sample and then generates new samples using linear

combinations of close negative samples.

3.1.2 Learning Pixel Features

Contrastive learning is also a valuable pre-training strategy for pixel-level scene under-

standing tasks. The success of pixel-level pre-training motivates and guides our own

Chapter 3. Related Work 31

work, which explores how this feature-based approach performs when applied to train

models for 3D scene understanding tasks. One such algorithm is DenseCL [56], which

applies the same framework as MoCo but, in addition to computing an InfoNCE loss for

image-level features, adds a term to the loss function that determines an InfoNCE loss

from features derived for individual pixels. The pixel features are computed using another

CNN network built upon the image-level encoder. Unlike all other algorithms covered in

this section, DenseCL actually learns which samples form positive pairs, instead of using

known correspondences. Selecting positive pairs is done after passing both augmented

images through the model. Pixel-level model outputs from different augmentations are

compared using a Euclidean distance metric. Each pixel-level feature derived from the

first augmented image is assigned the ‘closest’ pixel-level feature derived from the second

augmented image. The authors of DenseCL demonstrate that the addition of individual

pixel features to MoCo greatly improves downstream performance compared to using

image-level features alone. PixContrast [60] follows a similar approach as DenseCL, ex-

cept that the loss does not involve any image-level features; positive pairs are identified

using the known correspondences between pixels in the augmented images. PixContrast

also adds a ‘pixel propagation module’ that encourages smoothed feature representations

by enforcing any similarity between features that are derived from pixels that occupy

distant parts of the image. Lastly, ContrastiveSeg [55] modifies MoCo by training self-

supervised features and performing supervised semantic segmentation concurrently. The

semantic segmentation labels (learned by the model via supervised training) are used

to select positive and negative pairs. Given the semantic labels from the model, fea-

tures from the same semantic class are selected as positive pairs, while features from

different semantic classes are selected as negative pairs. Applying supervised learning in

conjunction with feature learning is similar to the method applied in SupCon.

3.2 Contrastive Learning in 3D

The same contrastive pre-training techniques used for images can often be applied to

3D point clouds. Self-supervised pre-training algorithms for point clouds roughly follow

the same positive-pair generating procedure outlines for images in Section 3.1. Augmen-

tations are applied to a point cloud (with colour information) that is either captured

from a single view or registered using multiple views (see point cloud registration in Sec-

tion 2.2). The augmentations may include coordinate transforms, for example, rotations,

and colour transformations (see Appendix A). Using registered point cloud pairs has the

added advantage of encouraging the learned features to become invariant to slightly dif-

Chapter 3. Related Work 32

Figure 3.3: Generating 3D feature correspondences for contrastive learning. Contrastive
learning at the point level compares and contrasts features vectors defined for individual
points within a point cloud, while point cloud-level contrastive learning compares and
contrasts features defined over full clouds.

ferent viewpoints. Two augmented point clouds, each considered as a single data point,

form a positive pair for training. Alternatively, algorithms that learn features for individ-

ual points over multiple scans select positive pairs that are spatially close together in a

common world frame, but that belong to different scans. A visualization of how positive

pairs are generated for a point cloud is shown in Figure 3.3.

3.2.1 Learning Point Cloud Features

One approach to contrastive learning for point clouds is to learn a single feature for each

complete scan. This is the approach taken by DepthContrast [63], which demonstrated

that global feature descriptors from individual scans can be effective for downstream

point-level scene understanding tasks. However, global feature descriptors produce a

single feature vector per scan, while the same scan can generate multiple point-level

features. As a result, DepthContrast must process many more scans per iteration than

equivalent point-level methods to maintain a sufficient quantity of features for effective

contrastive learning. Since processing a large number of scans per pass is computationally

expensive, DepthContrast employs a momentum encoder and memory bank (as done by

MoCo), allowing for larger batches of negative samples. Despite leveraging the momen-

tum encoder, DepthContrast still requires significantly more computing resources than

comparable point-level methods.

Chapter 3. Related Work 33

3.2.2 Learning Point Features

Learning point-level features is a common choice for 3D contrastive learning algorithms

because a single scene can generate a large number of positive and negative pairs. Often,

state-of-the-art 3D contrastive learning algorithms utilize overlapping scans instead of a

single scan. Fully Convolutional Geometric Features (FCGF) [9] is an early algorithm

that uses overlapping scans; the results in [9] demonstrate the usefulness of contrastive

learning for point cloud registration. The features learned by FCGF are uniquely identi-

fiable between scans, which allows features with the same coordinates in the world frame

to be matched correctly. FCGF was subsequently adapted by PointContrast [59] for use

in semantic segmentation tasks. Results from the PointContrast work show that the same

features that proved useful for point cloud registration are also useful to initialize weights

for downstream semantic segmentation tasks. However, many of the negative samples in

PointContrast are taken from spatially distant points, which are easy to distinguish and

thus contribute minimally to the gradient at each training step. Contrastive Scene Con-

texts (CSC) [21] uses a partitioning scheme to select points that are closer in 3D space

to enable more efficient contrastive learning. The space around each point is split into

spherical segments that are defined by ranges of angles (along an arc) and a minimum and

maximum distance from the point. For each partition, a separate loss is computed, where

all negative samples are selected from that partition only. The individual losses are then

averaged to form a complete loss value for the query point. The model pre-trained with

CSC achieves 89% of the fully-supervised instance segmentation accuracy and 90% of the

fully-supervised semantic segmentation accuracy (without pre-training) on the ScanNet

dataset, using just 0.1% of the available labels during supervised training.

Jiang et al. [24] adapt the technique from SupCon by performing both supervised and

self-supervised learning in parallel. The authors of [24] develop a model that contains

both an encoder and classification head. The model is trained with full supervision using

a cross-entropy loss on a subset of the labelled data during a pre-defined warm-up period.

Afterward, a self-supervised InfoNCE loss is added to train the encoder component of

the model (jointly with the supervised loss). The pseudo-labels generated from the

classification head are used to select positive points, defined as those points that have

the same pseudo-label, and negative points, defined as those points that have different

pseudo-labels. This prevents negative samples from being selected from the same class.

SegContrast [38] uses a hand-engineered (i.e., non-learning-based) clustering algo-

rithm [14] to segment a scene. The segmentation ‘approximates’ individual objects;

negative pairs are selected such that each member belongs to a different segment. The

advantage is that no labels are required for pseudo-label generation.

Chapter 3. Related Work 34

The method used in this thesis for learning 3D features most closely resembles Point-

Contrast in terms of its operation. PointContrast requires two overlapping registered

scans, however, while our method uses a single scan and an image from the same view-

point (captured concurrently). Operating with single scans individually eliminates any

reliance on a sophisticated point cloud registration pipeline, simplifying the data collec-

tion process in many cases.

3.3 Multi-Modal Contrastive Learning

The pre-training method presented in this thesis leverages images and point clouds to

improve performance on downstream 3D tasks. In this section, we cover methods that

also leverage self-supervised pre-training across different modalities. Note that all the

algorithms discussed in this section operate solely at the point and pixel level.

We first cover algorithms that pre-train models for image understanding tasks. Pri3D

[22] relies on standard perspective projection (see Section 2.3) to produce pixel-point

pairs. The pixel-point pairs that map to the same physical 3D location in a common

frame are subsequently used as positive pairs in the (pixel-only) contrastive loss. In

addition to the 2D loss, Pri3D also employs a 2D-to-3D loss where each pixel and back-

projected point forms a positive pair and all other 3D points are used as negative samples.

SimIPU [31] differs from Pri3D in that it clusters 3D points into local regions prior to

pixel-based matching. The authors of [31] show that SimIPU outperforms other 2D

pre-training techniques on an outdoor autonomous dataset, even beating DenseCL (see

Section 3.1.2).

Other works have shown that features learned from images can be useful for many

3D tasks. CrossPoint [1] applies contrastive learning to global scene features generated

from synthetic point clouds of computer-modelled objects and corresponding rendered

images. The CrossPoint algorithm computes three different feature vectors: two vectors

are produced by applying a 3D feature extraction model to two different transformations

of the synthetic point cloud, where each point cloud produces a single global feature

vector, while the third feature vector is derived by applying a 2D feature extraction

model to the rendered image of the object. The full contrastive loss has two parts, a

contrastive loss between the augmented point cloud feature vectors and a contrastive loss

between the image feature vector and the point cloud feature vectors. A major limitation

of CrossPoint is that it operates on synthetic object-centric datasets and has not been

shown to scale effectively to real-world 3D scans. Superpixel-driven Lidar Representa-

tions (SLidR) [47] uses self-supervised 2D features to train a 3D model by projecting

Chapter 3. Related Work 35

each 3D point to a feature coordinate in the image. Pixel features are learned through

a contrastive loss with positive pairs selected by a ‘classical’ (i.e., non-learning) image

segmentation algorithm. A similar algorithm is P4Contrast [33], which performs sensor

fusion and self-supervised pre-training on fused 2D-3D inputs. P4Contrast fuses both

modalities during pre-training and at runtime, and hence always requires access to im-

ages. This means P4Contrast cannot operate on colourized point clouds (by themselves)

at runtime.

Pixel-to-Point Knowledge Transfer [34] also projects point cloud data into images.

The method first pre-trains a 2D model on ImageNet. The 2D model is subsequently

frozen (i.e., all parameters fixed) and the pixel-level features are matched to point-level

features using the projected point-pixel pairs. A contrastive InfoNCE loss is then utilized

to pre-train the 3D model. The contrastive loss uses the features from the point-pixel

matches as positive pairs and treats the features derived from all other 3D points as

negative samples. We follow roughly the same process in this thesis, with the differences

being the specific model architectures involved and the datasets we use for pre-training

and evaluation. We also pre-train our 2D model on images specific to the target dataset,

while Pixel-to-Point Knowledge Transfer pre-trains on ImageNet only. The advantage of

pre-training on images related to the target environment (e.g., indoor office scenes), on

top of general datasets, is that the features learned are optimized to better match the

target (image and point cloud) dataset.

Chapter 4

Methodology

This chapter describes our method for self-supervised contrastive learning using both 2D

and 3D data, applied to downstream 3D scene understanding tasks. Our method can be

split into two distinct and sequential stages. The first stage applies a 2D CNN to generate

image features at the pixel level, based on a contrastive loss on the individual pixels. The

second stage then uses these image features to train a 3D model. A visualization of both

stages is provided in Figure 4.1. Below, we describe our model architectures for feature

extraction and downstream scene understanding tasks. We then explain both of our pre-

training stages in detail. For more details about specific augmentation implementations,

please refer to Appendix A.

4.1 Perception Models

We use self-supervised contrastive learning to pre-train models prior to their use in down-

stream 3D scene understanding tasks. In this section, we cover the model architecture

used for extracting point-level features from point clouds. We then cover downstream

models that leverage this feature extractor for 3D semantic segmentation, instance seg-

mentation, and object detection tasks.

Feature Extraction For point cloud feature extraction, we first convert an input point

cloud to a voxel grid and use a 3D convolutional neural network to compute a feature

for each voxel. Specifically, we use the 3D UNet model presented in Choy et al. [8] that

computes sparse convolutions on the voxel grid. We select this architecture because of

its popularity among contrastive learning methods (see Section 3.2).

36

Chapter 4. Methodology 37

Semantic Segmentation The features from the 3D UNet are used for semantic seg-

mentation. Features are passed through a single convolutional layer that reduces the

channel size of the feature to the number of classes being learned. All other dimensions

are left unchanged. The output of the last convolutional layer is then passed through a

softmax function (see Section 2.6.1) to obtain a class label for each voxel.

Instance Segmentation For the instance segmentation task, we use the architecture

from PointGroup [25]. PointGroup first learns the offset between each point and the 3D

centroid of the object to which the point belongs. Object centroids are approximated

during training by computing the average coordinates of all points belonging to the

same object instance. PointGroup then shifts each point by the predicted offset so that

the points belonging to the same object are grouped together. By moving the points

together, PointGroup is able to cluster points more easily in the model that it produces.

The proposed clusters are evaluated by a separate scoring network, which uses a small

UNet to extract a single feature vector from each cluster. The feature is passed through

a fully connected network with sigmoid activation functions (see Section 2.6.1) to obtain

a final score. Clusters with low scores are pruned. Each point is then assigned to the

cluster with the nearest centroid to the point (in terms of the Euclidean distance). We

modify the feature extraction backbone of PointGroup to use the 3D UNet presented

in [8] so that the backbone is standardized across all tasks.

Object Detection For object detection, we use VoteNet [42], since it is a standard

among contrastive learning algorithms (see Section 3.2). VoteNet also predicts the cen-

troid of the object instance that a point belongs to, as is done by PointGroup. The

predictions are grouped into a fixed number of clusters based on the spatial proximity

of each instance centroid prediction. The bounding box size, location, orientation, and

semantic class are computed by passing the set of aggregated features from each cluster

through a separate network. We modify the feature extraction backbone of VoteNet to

also utilize the same 3D UNet used for all of our other scene understanding tasks (i.e.,

the Minkowski UNet [8]).

4.2 Stage 1 - Learning Image features

In this section we describe our method for generating 2D features from unlabeled images—

this step corresponds to Stage 1 of Figure 4.1. We follow the ResUNet architecture from

Godard et al. [16], which is a UNet-style network architecture commonly used for monoc-

Chapter 4. Methodology 38

ular depth estimation. The backbone consists of a ResNet34 network with its final and

intermediate encodings passed into the decoder via skip connections. We modify the

decoder to compute a 16-dimensional feature vector for each pixel in the input image,

instead of a depth estimate. A diagram showing our modified network is provided in

Figure 4.3. The use of a 2D model also allows us to leverage other sources of data,

for example, we pre-load the weights of the encoder from a model trained on the large

ImageNet corpus [12].

To pre-train the full model, images are selected from a desired pre-training dataset.

We follow roughly the same data augmentation and use the same InfoNCE loss function

as SimCLR, except that we compare pixel-level features instead of image-level features.

Positive samples are generated by randomly cropping an image and then applying the

following transformations sequentially: resized crop, horizontal flip, image-wide colour-

to-greyscale conversion, gaussian blurring, and colour jitter. The augmentation procedure

follows the description in Section 3.1 and the visualization in Figure 3.1. All transfor-

mation parameters are randomly sampled at each iteration. Each transformation has a

pre-defined random chance of being applied to the input. Only pixels identified within

the overlap region of the two crops are used in the objective function. Pixels that map

back to the same coordinates in the original image are considered as positive samples,

while all others, including those from other images in a batch, are considered as nega-

tive samples. These positive and negative samples are passed into the contrastive loss

function described in Equation (2.42). As discussed in Section 2.3, the resizing operation

results in fractional pixel coordinates when the augmented image coordinates are mapped

back to the original image. This means that positive pairs must be selected according to

the Euclidean distance between fractional pixel coordinates. Those pairs with a distance

below a given threshold (e.g., 1.5 pixels in our work) are considered to form a positive

pair.

In order to find positive pairs, we keep track of how the coordinates of the original

image are modified by the transformations applied to each augmented view. We build a

separate image with the same shape as the original but with the pixel values representing

(or encoding) coordinates rather than colour. We pass this coordinate image through the

same transformations as the augmented image. The coordinate image output represents

the fractional pixel coordinates of the augmented image pixels in the original image. We

then find which pixels from the two augmentations that map to the same point in the

original image. This search can be performed efficiently using a k-d tree. Pixels that

are not from the overlap region of the two crops are discarded. Note that positive pair

selection is discrete and non-differentiable and hence does not appear in the loss function.

Chapter 4. Methodology 39

Pseudocode for the InfoNCE loss is listed in Algorithm 1, while pseudocode for Stage

1 of our pipeline is listed in Algorithm 2. One potential source of confusion in the pseu-

docode for the InfoNCE loss function is that negative samples are not explicit inputs into

the loss calculation. Instead, negative samples for a given query point are derived from

the set of all other positive samples. Defining negative samples in this way is common

practice in most algorithms using an InfoNCE loss. Examples of algorithms that use

more sophisticated approaches for producing negative samples can be found at the end

of Section 3.1. The loss can be calculated efficiently by assembling the feature vectors

into two matrices, one for the query points, z1, and another for the positive samples, z2.

Each column of these matrices defines an individual feature vector. The columns are nor-

malized according to the ℓ2 metric, which improves the training stability (as discussed in

Section 2.6.4). The similarity between feature vectors in z1 and z2 is then determined by

a single matrix multiplication, where the similarity scores are defined by the vector dot

product (i.e., rows times columns). We refer to the output as a similarity matrix. Subse-

quently, the Stage 1 InfoNCE loss is computed according to Equation (2.42). First, each

element in the similarity matrix is transformed by the following sequence of operations:

1) inverse scaling by a temperature parameter τ and 2) application of an exponential

function. These operations are applied to each dot product (i.e., similarity score) in

the InfoNCE loss. Second, the similarity between positive pairs is extracted from the

diagonal elements of the updated similarity matrix. The diagonal elements of the sim-

ilarity matrix represent the similarity between feature vectors in matrices z1 and z2 at

the same index position (which we have defined as a positive pair). Conversely, negative

samples are defined as all other points in z2. Thus the denominator of the InfoNCE loss

is computed by summing the rows of the similarity matrix. This result represents the

sum of similarities between query points and all other points in z2. Finally, each positive

similarity value (diagonal entry) is divided by the sum of similarities to all other points

in z2 and passed through a logarithm function. The loss is averaged over all query points.

4.3 Stage 2 - Learning Point Features

In this section, we describe our approach for pre-training a 3D point-level feature extrac-

tion model using pixel-level features from Stage 1—this step corresponds to Stage 2 of

Figure 4.1. Mapping between 3D points and 2D features is done via perspective projec-

tion using the pinhole model (see Section 2.3). We use the same 3D model as in [59]

and treat the final 1× 1 convolution as the decoder, which we initialize from scratch for

training on downstream tasks. A diagram of this network can be found in Figure 4.2.

Chapter 4. Methodology 40

S
tag

e 1

S
tag

e 2

T2

2D UNet

Sparse 3D UNet

T3

Input

T1

Augmentation Model Features

Point Cloud

Image

Query Point

Corresponding Point

Non-Corresponding Point

Forward Pass

Backward Pass

Shared Weights

+

-

-

+

Feature Mapping

Figure 4.1: Overview of our multi-modal contrastive learning framework. The first stage
trains a 2D model on images at the pixel level. The next stage then uses the learned
image image features as targets for pre-training a 3D model.

Chapter 4. Methodology 41

We use the same contrastive loss as defined by Equation (2.42) and follow the same

notation and positive and negative sampling strategies as defined in Section 2.6.4. The

query point features, zi, are obtained from the point-level output of the 3D model. The

corresponding positive samples, z+i , are obtained from the feature vectors of the 2D model

using the point-pixel pairs computed in the perspective projection. Negative samples,

z−i , are any outputs from the 3D model not derived from the query point. Note that

the feature output of the 3D model is set to match the pixel-level features of the 2D

model. Stage 2 can be visualized by referring to Figure 2.12, where the 3D query points

are passed through the 3D model along the top pathway, while 2D pixel values (acting

as positive sample points) are passed through the 2D model along the bottom pathway.

We find that using a contrastive loss where pixel features serve as positive samples is the

most effective method to pre-train the 3D network using 2D features. Alternatively, the

features of each point-pixel pair could be compared directly in a different loss function

such as an ℓ2 loss (See Section 2.6.1), without the use of negative samples. However, we

found that an ℓ2 loss did not improve performance on downstream tasks. This suggests

that the negative samples play an important role in the learning of high-quality features.

During Stage 2 training, our 2D network model is held frozen. The fixed 2D features

then act as a target for the 3D model to learn. Images are augmented before being passed

through the 2D model by sequentially applying the following transformations: resizing,

square centre cropping, and colour normalization. Note that these image transforma-

tions are deterministic with no random component. Each point cloud is also augmented

so that the model learns to be invariant to differences in orientation, point density and

colour fluctuations. We transform point clouds with a random horizontal flip and ran-

dom rotation around the z axis while each point colour is transformed using auto-contrast

blending, colour translation, and colour jitter. The colour transformations do the follow-

ing: auto-contrast blending mixes the original input with a modified version of the input

that maximizes contrast by re-scaling the colours (so that the lowest value is totally black

and the highest value is bright white), colour translation shifts all the colours by a set

amount, and colour jitter adds random noise to the colour of each data point. The types

of augmentations applied are different for images and point clouds because the modalities

differ. Pseudocode detailing how these augmentations are implemented can be found in

Sections A.2 and A.3. Pseudocode for Stage 2 is listed in Algorithm 3.

Chapter 4. Methodology 42

Conv3D(input_channels, output_channels,
kernel, stride)

BatchNorm(channels)

Conv3D(3, 32, 3, 1)

2 x Block(32,32)

Conv3D(32, 32, 3, 1)

Block(32,64) +
2 x Block(64,64)

Conv3D(64, 64, 2, 2)

Block(64,128) +
3 x Block(128,128)

Conv3D(128, 128, 2, 2)

Block(128,256) +
5 x Block(256,256)

Block(384,256) +
Block(256,256)

Conv3DTranspose(
256, 256, 2, 2)

Block(320,256) +
Block(256,256)

Conv3DTranspose(
256, 256, 2, 2)

Block(288,256) +
Block(256,256)

Conv3DTranspose(
256, 256, 2, 2)

Conv3D(
256, #classes, 1, 1)

Res16UNet34C

Block(288,256) +
Block(256,256)

Conv3D(32, 32, 2, 2)

ReLU()

Legend

Conv3D(in, out, 3, 1)

Block(in, out)

Conv3D(out, out, 3, 1)
Conv3D(in, out, 1, 1)

if (in != out) then

Residual Block

Input

Conv3DTranspose(
256, 256, 2, 2)

Figure 4.2: Network diagram of a 3D Res16UNet34C model. This network is used as
the backbone for all 3D tasks. The model computes sparse 3D convolutions as described
in Section 2.6.3. All kernels and stride parameters are 3D and symmetrical. The kernel
used is a hypercube (i.e., the same size in all dimensions).

Chapter 4. Methodology 43

Legend

MaxPool(kernel=3, stride=2)

Upsample(scale=2, mode='nearest')

BatchNorm(channels)

ReLU()

Conv2D(input_channels, output_channels,
kernel, stride)

Conv2D(
in, out, 3, 1)

Conv2D(
out + N, out, 3, 1)

skip connection
(with N channels)

Upsample Block UpsampleBlock(in, out)

3 x Block(64,64,1)

Block(64,128,2) +
3 x Block(128,128,1)

Block(128,256,2) +
5 x Block(256,256,1)

Block(256,512,2) +
2 x Block(512,512,1)

ResUNet34

Conv2D(3, 64, 7, 2)

UpsampleBlock(
512,256)

UpsampleBlock(
256,128)

UpsampleBlock(
128,64)

UpsampleBlock(
64,32)

UpsampleBlock(
32,16)

Input
Conv2D(

in, out, 3, stride)

Block(in, out, stride)
if (in != out)

Residual Block

Conv2D(
out, out, 3, 1)

Conv2D(
in, out, 1, stride)

else

Figure 4.3: Network diagram of a 2D ResUNet34 feature extractor. This network is used
to extract features from 2D images. All convolutions, kernels and strides are expressed
in two dimensions. The last two layers have no skip connections and only reduce the size
of the feature channel.

Chapter 4. Methodology 44

Algorithm 1 Contrastive Loss Pseudocode

m: number o f samples
tau : smoothing parameter
z1 : f e a t u r e s o f query po in t s
z2 : f e a t u r e s o f p o s i t i v e samples cor re spond ing to z1
Note that z1 and z2 are matr i ce s with i nd i v i dua l
f e a t u r e s as columns
de f l o s s (z1 , z2) :

L2 norma l i za t i on along columns
z1 = normal i ze a long co lumns (z1)
z2 = normal i ze a long co lumns (z2)

Compute the s im i l a r i t y between augmented data po in t s
s im i l a r i t y = mat r i x mu l t i p l i c a t i on (z1 , t ranspose (z2))
s im i l a r i t y = s im i l a r i t y / tau

Apply element−wise exponent i a l
s i m i l a r i t i e s = exp (s i m i l a r i t i e s)

Se l e c t p o s i t i v e l a b e l s by s im i l a r i t y
between the same points , which corresponds
to d iagona l e n t r i e s in the s im i l a r i t y matrix
p o s i t i v e s i m i l a r i t i e s = g e t d i a g o n a l e n t r i e s (s i m i l a r i t i e s)

Se l e c t negat ive l a b e l s as a l l po in t s
f o r each query po int
n e g a t i v e s im i l a r i t i e s = sum along rows (s i m i l a r i t i e s)

Compute l o s s in s t ep s . Note that the d i v i s i o n
and logar i thm are app l i ed element−wise .
The l a s t s tep averages a c r o s s a l l query po in t s
l o s s = p o s i t i v e s i m i l a r i t i e s / n e g a t i v e s im i l a r i t i e s
l o s s = log (l o s s)
l o s s = sum(l o s s) / m
return l o s s

Chapter 4. Methodology 45

Algorithm 2 Stage 1 Pseudocode

f : model
tau : smoothing parameter
m: number o f p i x e l s to sample per p o s i t i v e image pa i r

f o r images in l oade r : # load a s e t o f images
L = 0 # Zero the l o s s
f o r image in images :

Apply random augmentations whi l e keeping t rack
of the coo rd ina t e s o f each augmented p i x e l
in the o r i g i n a l image
x1 , coo rd ina t e s1 = augment (image)
x2 , coo rd ina t e s2 = augment (image)

Model outputs
z1 , z2 = f (x1) , f (x2)

Match p i x e l s between augmentations (us ing a KD−t r e e)
matches1 , matches2 = match (coord inates1 , coo rd ina t e s2)
z1 , z2 = z1 [matches1] , z2 [matches2]

Randomly sample m p i x e l s
i n d i c e s = random(m)
z1 , z2 = z1 [i n d i c e s] , z2 [i n d i c e s]

Add to l o s s
L += l o s s (z1 , z2)

L . backward () # Back−propagate
update (f) # Update model parameters

Chapter 4. Methodology 46

Algorithm 3 Stage 2 Pseudocode

f : 2D model
h : 3D model
m: number o f point−p i x e l p a i r s to sample per image−scan pa i r

f o r pa i r s in l oade r :
L = 0 # Zero the l o s s

Load each image and scan
f o r image , scan in pa i r s :

Apply random augmentations depending on the modal ity
Image augmentations keep track o f the augmented
p i x e l c oo rd ina t e s in the o r i g i n a l image
x1 , c oo rd ina t e s = augment 2D (image)
x2 = augment 3D (scan)

Get model outputs
z1 , z2 = h(x1) , f (x2)

Upsample image f e a t u r e s to match o r i g i n a l
p i x e l c oo rd ina t e s
z1 = i n t e r p o l a t e (z1 , c oo rd ina t e s)

Get matches between image p i x e l s and scan points ,
generated e i t h e r from s t e r e o matching
or by p r o j e c t i n g 3D po in t s i n to the image
pixe l matches , po int matches = match (image , scan)
z1 , z2 = z1 [p ixe l matches] , z2 [po int matches]

Randomly sample m point−p i x e l p a i r s
i n d i c e s = random(m)
z1 , z2 = z1 [i n d i c e s] , z2 [i n d i c e s]

Add to l o s s
L += l o s s (z1 , z2)

L . backward () # Back−propagate
update (f) # Update model parameters

Chapter 5

Results

In this chapter, we benchmark the performance of our pre-trained model on a variety

of popular datasets and tasks. We compare our method to state-of-the-art baselines on

three different downstream tasks: semantic segmentation, instance segmentation, and

object detection. An overview of our results, across different datasets and tasks, can be

found in Table 5.1.

5.1 Datasets

We use three indoor stereo datasets that are commonly used to benchmark 3D contrastive

learning [21, 24, 59, 63] together with an extra outdoor lidar dataset [4]. In this section,

we describe each dataset in detail. We use ScanNet to pre-train our backbone network

as it is the largest indoor dataset available. ScanNet shares many of the same classes

and types of indoor scenes as S3DIS and SUNRBGD and therefore is a good candidate

for demonstrating the impact of pre-training on a large unlabelled dataset. We also use

ScanNet to pre-train our SemanticKITTI model, in order to evaluate how learned 3D

features can generalize to substantially different environments and sensor types.

ScanNet [11]: The main indoor dataset is ScanNet, which comprises of roughly 1,600

reconstructed scenes of indoor environments. The raw data comprises individual RGB-D

images. The depth channel from the RGB-D output is converted into a point cloud using

Equation (2.20). ScanNet scenes are mostly of individual rooms and range in size from

2 metres to 10 metres on a side, with a standard ceiling height of about 3 metres. The

various rooms contain 20 different classes of labelled objects. We use the dataset-defined

training and validation splits, and use the validation set as our test set.

47

Chapter 5. Results 48

S3DIS [2]: S3DIS is a much smaller dataset than ScanNet and only comprises of 300

reconstructed scenes. However, the size of these scenes varies quite drastically; some

are of rooms and others are of entire auditoriums. The scenes are mainly of indoor

office environments and each scan is an RGB-D image (see Section 2.1). There are 13

different semantic classes and all scenes contain point-level semantic and instance labels.

Following [21,59], we use the Area 5 split for our validation and test sets.

SunRGBD [23,49,50,58]: SunRGBD is a 3D dataset of indoor office environments.

SunRGBD contains roughly 10,000 RGB-D scans and corresponding 3D bounding box

annotations for 10 different classes, with labels similar to those of ScanNet and S3DIS.

There is no scene reconstruction available. We use the dataset-defined training and

validation split.

SemanticKITTI [4, 15]: SemanticKITTI contains roughly 25,000 laser scans of out-

door driving environments. It has 20 different classes with 3D semantic and instance

labels. The scans are of a full rotation around the vehicle, going out to a range of about

20 metres, with the spatial resolution decreasing with distance. We use sequences 1-7

and 9-10 as our training set and sequence 8 as our validation set.

5.2 Baselines

To verify the effectiveness of our method, we compare against three state-of-the-art base-

line algorithms: PointContrast [59], Contrastive Scene Contexts (CSC) [21], and Depth-

Contrast [63]. Both PointContrast and Contrastive Scene Contexts require pairs of scans

with known poses and at least 30% overlap, while DepthContrast and our method operate

on single scans only.

Due to our own resource limitations, we run DepthContrast with a batch size of 32

on a single graphics processing unit (GPU), instead of with a batch size of 1,024 split

across 32 GPUs. We run DepthContrast for 40 epochs instead of 400, which still takes

twice as long as any other method. This should serve as a more fair comparison between

algorithms when access to large compute clusters is not possible. Where applicable, we

also compare against a fully-supervised backbone to give an idea of a reasonable upper-

bound on performance improvement.

Chapter 5. Results 49

5.3 Implementation Details

Our model is built using the PyTorch [40] package. We use PyTorch for all deep learning

tasks, including data loading, model building, and backpropagation during training.

Model Our backbone network is the standardized UNet described in Section 4.1, which

is implemented with the sparse convolutional library developed by [8]. The backbone,

shown in Figure 4.2, uses a Res16UNet34 structure with non-bottleneck blocks and a

maximum feature embedding size of 256. The outputs of the model are used directly

for semantic segmentation. Instance segmentation is done using the same backbone; ex-

tracted features are subsequently fed into PointGroup [25]. Object detection is performed

with VoteNet [42].

Pre-training of the 2D Backbone For pre-training of the 2D backbone on images,

we use a batch size of 64 image pairs. For each pair, we sample 4,092 pixels to contrast

in our loss function (see Equation (2.42)). The total loss for each training iteration is

the sum of the loss for each image pair. The loss function uses a τ of 0.4, a learning

rate of 0.01, an SGD optimizer with a momentum of 0.9, dampening of 0.1, and a weight

decay of 0.004. We decrease the learning rate according to an exponential scheduler with

an exponential rate of 0.99. Positive samples are generated using the transformations

described in Section 4.2. We pre-train the image network for 20,000 iterations.

Pre-training of the 3D Backbone Pre-training of the 3D backbone is carried out

on the ScanNet dataset. We use a batch size of 8 scan-image pairs and select 2,000

point-pixel correspondences per pair. This is a significantly smaller number than for 2D

pre-training because of the increased compute and memory usage required by point cloud

data (compared to image-data). The images are centre-cropped to 224 × 224 pixels to

conform to the expected input size of the 2D model. We voxelize the points, with a voxel

size of 5 cm per side. The hyper-parameters are the same as those for 2D training except

that the learning rate is set to 0.1. The 3D model is pre-trained for 20,000 iterations.

Downstream Tasks All downstream tasks are run using the pipeline and parameters

from CSC [21]. Note that we obtain slightly different numbers from those originally

reported in [21]. We believe this is due to a required update to the core sparse convolution

library (to run on our newer GPU). We also use a single GPU instead of eight. In this

case, all pre-training was run from scratch.

Chapter 5. Results 50

(a) Input image on the left with corresponding feature visualization on the right.

(b) Point features on the left with corresponding image features on the right.

(c) Point features before (left) and after (right) pre-training with our method.

Figure 5.1: Visualization of 2D and 3D feature vectors.

Chapter 5. Results 51

(a) Original (b) Closest (c) Bilinear

Figure 5.2: Comparison of feature interpolation methods for upsampling the representa-
tion to the original image size.

5.4 Visualization of Image Features

Before pre-training a 3D model with 2D features, we first verify that the 2D features

learned using our 2D pre-training scheme have some connection to the original image.

We do so qualitatively following the approach from [9]. We bring each pixel feature into

a 1D colour space using the t-SNE [54] algorithm and build a heat map image using the

pixel’s original coordinates. Figure 5.1a shows a comparison between the visualizations

and the original image. The visualizations show a clear mapping between input image

and output features. The heatmaps tend to ‘highlight’ structures such as lines and surface

patches that are present in the input image. Key parts of the image share similar feature

vectors (e.g., individual shelves, tables and chairs).

Using the same technique, we also visualize what the interpolation of the features

looks like in Figure 5.2. We compare the following interpolation schemes: closest pixel

and bilinear interpolation. Using closest-pixel interpolation produces abrupt changes

between pixels whereas the bilinear interpolation yields a much smoother result. Note

that the visualizations are a 1D approximation of a higher-dimensional feature space, so

small changes to the input may cause small deviations and colour changes. However, the

general structural components should be distinguishable.

5.5 Visualization of Point Features

Similar to the visualization of 2D features, we visualize point features from individual

scans by mapping them into a common color space using the t-SNE algorithm. The

features are the outputs of models, having passed through both stages of our pre-training

Chapter 5. Results 52

framework. Figure 5.1b shows the relation between the 2D and 3D features. There is

a clear mapping between the image and the corresponding point cloud heatmaps. This

correlation verifies that the 3D model has indeed learned to ‘mimic’ the features of the

2D model without relying on the image. Parts of the scene, such as walls and shelves,

have consistent features that are present across both modalities. Figure 5.1c shows the

difference between randomly initialized and pre-trained features. Features that are pre-

trained follow visible object boundaries.

5.6 Semantic Segmentation

Our first test case is pre-training our model on ScanNet and fine-tuning on S3DIS. Re-

sults are found in Table 5.1, with a detailed class breakdown found in Table 5.2. Fully-

supervised pre-training on ScanNet has a drastic impact on the final downstream per-

formance (+5.1 mIOU) and is used as a rough upper bound on expected performance.

Almost all pre-training algorithms improve downstream results, except DepthContrast.

Our algorithm is comparable to PointContrast in terms of performance, since both meth-

ods achieve an mIOU increase of more than 1% but perform worse than CSC.

When ScanNet is used for both pre-training and supervised learning (under the Scan-

Net column in Table 5.1), all methods fail to improve semantic segmentation. Although

we see no improvement on ScanNet, we find that pre-training methods do improve per-

formance when the number of annotations during supervised training on downstream

tasks is reduced, as seen in Figure 5.4. Using varying proportions of labels for the raw

data simulates the use case where only a portion of the data collected are annotated.

When ScanNet is restricted to only 5% of the raw data labels, all methods show an

improvement.

Using the model pre-trained on ScanNet shows performance improvements on Se-

manticKITTI as well, even though the datasets are quite different. In Figure 5.6, we

test the effect of varying the amount of labelled data on SemanticKITTI. We find that

in almost all scenarios, pre-training methods are able to help improve performance. Our

method, when applied to SemanticKITTI, however, falls short of all other algorithms.

Interestingly, the performance gain of pre-training algorithms improves as more labelled

data for downstream supervised training becomes available. Since there is no overlap

between the pre-training and training datasets, increasing the ratio of labelled to un-

labelled data does not expose the model to previously-seen samples. Therefore, when

pre-training and training datasets have no overlap, pre-training offers a performance im-

provement even when labels are plentiful. The performance improvements on S3DIS

Chapter 5. Results 53

and SemanticKITTI suggest that exposing models to different environments and sensor

setups helps to learn features that are better able to generalize.

To visualize the impact that pre-training has on downstream semantic segmentation,

in Figure 5.3 we colourize scenes from S3DIS with their semantic labels. The visualization

shows that the segmentation of the model without pre-training is already quite good and

that there is a minimal difference between the different pre-training methods. The differ-

ences that appear are usually confined to the boundaries of walls and objects. Although

the metrics show clear differences, these differences may play only a small practical role

in the real world.

5.7 Instance Segmentation

As in the previous section, we evaluate the performance of pre-training on ScanNet and

training on S3DIS for instance segmentation. Results are found in Table 5.1 with a

detailed class breakdown found in Table 5.3. Almost all pre-training methods are able

to come close to or even surpass supervised results with the exception—again—being

DepthContrast. The best-performing method is CSC, which achieves a performance

boost of 4.8 mAP@0.5. Our own method performs similarly to supervised pre-training,

with a boost of 2.8.

As with semantic segmentation, all methods struggle to improve on ScanNet instance

segmentation, even when access to labelled data is limited as shown in Figure 5.4. In

most cases, the algorithms perform substantially worse than training from scratch. This

is in spite of the boost on semantic segmentation with the same data ratios.

5.8 Object Detection

Our last test case is the downstream task of object detection. Results for the ScanNet

and SunRBGD datasets are found in Table 5.1. This task is interesting because, unlike

segmentation, it operates at an object level instead of a point level (which is our pre-

training objective). All methods besides DepthContrast show a strong improvement on

both datasets. CSC exhibits the best performance with a boost on SunRGBD of 3.1 mAP,

while our method attains the largest boost on ScanNet with an increase of 2.5 mAP. For

the segmentation task, using the same dataset for both pre-training and the downstream

task yields no performance gain. However, object detection on ScanNet shows strong

improvements even when access to the full dataset is available. This outcome suggests

Chapter 5. Results 54

that pre-trained point-level features generalize well to object-level tasks when using the

same raw data for both.

5.9 Varying Overlap

A key distinguishing advantage of single-scan methods (i.e., our method and DepthCon-

trast) versus multi-scan methods (i.e., PointContrast and CSC) is that single-view algo-

rithms do not require a robust point cloud registration pipeline. In terms of single-scan

methods, we believe that ours is superior owing to the extreme computational complex-

ity and the deserved poor performance of DepthContrast. However, before definitively

concluding that our method is the best for single-scan pre-training, we wanted to ex-

plore what effect varying the overlap region of multiple scans had on the performance of

PointContrast and CSC. Specifically, we wanted to see whether the multi-scan methods

can perform just as well when given access to single scans only. We tested two scenarios:

one where the minimum overlap was raised from 30% to 70% and another where the

same scan was used for both pathways (i.e., minimum 100% overlap). By increasing the

minimum overlap ratio, the area around points from different scans contains less infor-

mation, because the matched scans are from almost the same viewpoint. For this reason,

restricting the overlap ratio should decrease the performance of multi-view algorithms.

Tabular results for S3DIS are found in Tables 5.2 and 5.3, while plots of performance

on varying ScanNet data portions are found in Figure 5.5. The effect is highly variable.

Generally, using the same scan has a negative effect and performance is substantially

worse than when using an overlap of 30%. However, in some rare cases such as semantic

segmentation with only 5% of the labelled ScanNet data, using the same scan with CSC

achieves the best results of any method. At 40% labelled ScanNet data, the performance

gain of using CSC with a single scan performs much worse than using CSC with a min-

imum overlap of 30%. Using a larger minimum overlap of 70% has a positive effect in

many situations, such as for S3DIS semantic segmentation and instance segmentation,

but again the results are highly variable. This variability further emphasizes the diffi-

culty of finding features that are meaningful across multiple tasks and datasets. Small

variations in an algorithm or a dataset can yield wildly different results. Pre-training

may require a large amount of experimentation and fine-tuning for a particular dataset

to achieve the best performance. Our method does not require overlapping scans at all,

which is an advantage since the choice of overlap ratio can lead to large variability for

downstream tasks. As we discuss in Section 5.11, we find that our method does achieve

more consistent gains in performance when compared to other methods.

C
h
a
p
t
e
r
5
.

R
e
su

lt
s

55

Pre-Training Method
S3DIS ScanNet KITTI SUNRGBD

Semantic Instance Semantic Instance Object Semantic Object

Scratch 65.1 53.0 67.4 49.0 35.2 41.0 32.0
Supervised 70.2 (+5.1) 56.2 (+3.2) – – – – –

Multi-Scan
PointContrast [59] 66.2 (+1.1) 54.8 (+1.8) 66.9 (-0.5) 49.1 (+0.1) 36.7 (+1.5) 42.1 (+1.1) 34.2 (+2.2)

CSC [21] 69.0 (+3.9) 57.8 (+4.8) 67.6 (+0.2) 49.3 (+0.3) 36.1 (+0.9) 43.0 (+2.0) 35.1 (+3.1)

Single-Scan
DepthContrast [63] 64.9 (-0.2) 52.3 (-0.7) 67.4 (+0.0) 48.7 (-0.3) 33.9 (-1.3) 42.0 (+1.0) 32.9 (+0.9)

Ours 66.5 (+1.4) 55.8 (+2.8) 67.7 (+0.3) 48.5 (-0.5) 37.7 (+2.5) 42.0 (+1.0) 33.1 (+1.1)

Table 5.1: Downstream performance comparison of pre-training methods. All methods use weights pre-trained on ScanNet.
The difference in brackets is with respect to training from scratch. Semantic segmentation uses the mIOU metric, while both
instance segmentation and object detection tasks use the mAP@0.5 metric with a minimum correct overlap ratio of 0.5. The
best self-supervised pre-training result for each task and dataset combination is highlighted in bold.

C
h
a
p
t
e
r
5
.

R
e
su

lt
s

56

Pre-Training Method Min Overlap ceiling floor wall beam column window door table chair sofa bookcase board clutter mIOU

Scratch - 90.34 96.84 80.63 0 25.5 56.95 62.93 75.14 86.21 65.77 72.12 76.91 56.4 65.06
Supervised - 91.81 96.74 84.11 0.21 34.68 57.64 81.53 77.63 89.82 85.76 76.03 79.27 57.67 70.22 (+5.16)

PointContrast 30% 91.97 96.67 82.4 0 17.84 56.49 75.39 77.63 87.35 63.3 73.53 79.55 58.76 66.22 (+1.16)
PointContrast 70% 91.85 96.56 83.55 0 28.25 59.36 73.53 78.51 88.28 79.95 74.61 76 61.08 68.58 (+3.52)

CSC 30% 92.34 96.02 83.53 0 40.88 57.73 72.11 77.5 88.15 74.61 74.52 76.45 62.64 68.96 (+3.9)
CSC 70% 92.68 96.63 83.99 0 42.37 55.95 77.17 75.74 89.57 82.74 73.45 80.67 60.55 70.12 (+5.06)

PointContrast Single-Scan 91.03 96.27 82.8 0 31.53 57.27 69.33 76.97 88.83 45.49 71.02 77.09 57.06 64.97 (-0.09)
CSC Single-Scan 91.68 96.59 83.21 0 40.38 58.12 70.42 76.77 87.13 69.33 68.77 82.34 58.45 67.94 (+2.88)

DepthContrast Single-Scan 90.99 95.45 80.99 0 32.52 51.94 61.57 74.55 87.28 71.62 71.34 67.71 57.85 64.91 (-0.15)
Ours Single-Scan 90.8 96.57 82.52 0.110 30.94 56.94 68.71 75.12 88.48 71.7 72.17 73.783 56.35 66.48 (+1.42)

Table 5.2: S3DIS semantic segmentation results (mIOU). The best self-supervised pre-training result for each task and dataset
combination is highlighted in bold.

Pre-Training Method Min Overlap beam column window door table chair sofa bookcase board clutter mAP@0.5

Scratch - 0 12.8 61.7 92.0 51.4 87.3 62.4 38.5 87.0 37.1 53.0
Supervised - 0 26.0 74.3 84.5 43.3 87.3 81.8 37.4 85.4 41.2 56.2 (+3.2)

PointContrast 30% 0 24.7 67.9 90.7 43.8 92.0 72.7 32.3 85.6 38.0 54.8 (+1.8)
PointContrast 70% 0 22.6 71.6 94.6 45.8 87.9 71.7 37.0 81.0 40.9 55.3 (+2.3)

CSC 30% 0 32.9 69.2 93.0 47.6 87.5 80.9 39.6 87.5 40.4 57.8 (+4.8)
CSC 70% 0 27.2 76.9 95.4 42.2 90.3 90.9 42.6 84.7 38.7 58.9 (+5.9)

PointContrast Single-Scan 0 19.8 70.7 92.1 48.4 90.5 81.8 38.4 90.4 34.1 56.6 (+3.6)
CSC Single-Scan 0 32.0 69.3 96.1 38.7 89.4 87.6 38.8 81.3 38.8 57.2 (+4.2)

DepthContrast Single-Scan 0 40.3 68.4 74.9 42.2 87.8 62.4 33.3 78.1 35.5 52.3 (-0.7)
Ours Single-Scan 0 35.0 70.0 83.4 53.9 88.9 71.7 42.2 76.1 36.7 55.8 (+2.8)

Table 5.3: S3DIS instance segmentation results (mAP@0.5). The best self-supervised pre-training result for each task and
dataset combination is highlighted in bold.

Chapter 5. Results 57

P
oi
n
tC

on
tr
as
t
[5
9]

C
S
C

[2
1]

D
ep
th
C
on

tr
as
t
[6
3]

O
u
rs

S
cr
at
ch

G
ro
u
n
d
T
ru
th

Figure 5.3: Visual comparison of semantic segmentation performance. All results are
from pre-training on ScanNet and running on the S3DIS dataset.

Chapter 5. Results 58

5 10 15 20 25 30 35 40
Labelled Data Ratio (%)

1

0

1

2

3

4

5

6

7

Di
ffe

re
nc

e
fro

m
 S

cr
at

ch
 (m

IO
U)

ScanNet: Semantic Segmentation
Ours
PointContrast
CSC
DepthContrast

5 10 15 20 25 30 35 40
Labelled Data Ratio (%)

4

3

2

1

0

1

2

3

Di
ffe

re
nc

e
fro

m
 S

cr
at

ch
 (m

AP
)

ScanNet: Instance Segmentation
Ours
PointContrast
CSC
DepthContrast

Figure 5.4: Performance on ScanNet over varying labelled data proportions. The per-
formance is measured relative to training from scratch (with no pre-training). Positive
differences indicate better performance.

Chapter 5. Results 59

5 10 15 20 25 30 35 40
Labelled Data Ratio (%)

2

0

2

4

6

Di
ffe

re
nc

e
fro

m
 S

cr
at

ch
 (m

IO
U)

ScanNet: Semantic Segmentation
PointContrast
PointContrast >70%
PointContrast Same Scan
CSC
CSC >70%
CSC Same Scan

5 10 15 20 25 30 35 40
Labelled Data Ratio (%)

4

3

2

1

0

1

2

3

Di
ffe

re
nc

e
fro

m
 S

cr
at

ch
 (m

AP
)

ScanNet: Instance Segmentation
PointContrast
PointContrast >70%
PointContrast Same Scan
CSC
CSC >70%
CSC Same Scan

Figure 5.5: Effect of point cloud overlap on downstream performance. The performance
is measured relative to training from scratch (with no pre-training). Positive differences
indicate better performance.

Chapter 5. Results 60

5 10 15 20 25 30 35 40
Labelled Data Ratio (%)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Di
ffe

re
nc

e
fro

m
 S

cr
at

ch
 (m

IO
U)

KITTI: Semantic Segmentation
Ours
PointContrast
CSC
DepthContrast

Figure 5.6: Performance on SemanticKITTI across varying labelled data proportions.
The performance is measured relative to training from scratch (with no pre-training).
Positive differences indicate better performance.

5.10 Pre-Training on Out-of-Distribution Data

We find that using a pre-training dataset that is out-of-distribution relative to the down-

stream dataset leads to more consistent and greater performance gains than using the

same dataset for both pre-training and fine-tuning. Table 5.1 shows that using model

weights pre-trained on ScanNet offers very little performance improvement when fine-

tuned on ScanNet. However, those same weights result in much larger gains when ap-

plied to a different dataset such as S3DIS or SemanticKITTI. A similar discrepancy

is found when varying the proportion of labelled data available. Using weights pre-

trained and fine-tuned on ScanNet, we find that the biggest performance gain occurs

when the proportion of labelled data available during fine-tuning is the most restricted

(shown in Figure 5.4). The same weights have the opposite effect when fine-tuning on

SemanticKITTI, which sees the largest performance boost as the proportion of labelled

data increases, (shown in Figure 5.6). The discrepancy suggests that the relationship

between the data available during pre-training and the data available during fine-tuning

is a key contributing factor to the effectiveness of pre-training. A potential explanation is

that using the same dataset already exposes the network to the same information, hence

the backbone is not gaining as much new information as it could from a different dataset.

Chapter 5. Results 61

5.11 Inconsistencies in Performance Boost

In this section, we investigate the relationship between unlabelled and labelled data

proportions on downstream performance, by limiting the available label amounts (details

shown in Figure 5.4). While we expect the benefits of pre-training to increase during

downstream supervised training in situations with fewer labels available, we find that

the actual performance gains are inconsistent. For example, CSC, which achieves a

3% boost using 30% of the labelled data, has reduced downstream performance with

20% of the labelled data. Interestingly, DepthContrast, which is the least effective on

S3DIS, is the most effective on ScanNet at 5% of the labelled data. Performances are also

unpredictable across different tasks. Although most techniques have a positive impact on

semantic segmentation, they have a mostly negative impact on instance segmentation,

as shown in Figure 5.4. We also see in Section 5.9 that changing parameters such as

the minimum overlap ratio between scans has a dramatic and inconsistent impact on

downstream performance.

To demonstrate the inconsistency that pre-training has on downstream accuracy, we

plot the distribution of semantic segmentation accuracy with varying amounts of labelled

ScanNet data in Figure 5.7. The mean improvement of our method is higher than both

PointContrast and DepthContrast. Our method also has a much smaller variance and

greater lower bound on performance gain. Therefore, given a dataset with a limited

amount of labelled data, our method is more likely to offer a consistent performance

boost than other pre-training approaches.

Our results give no definitive answer as to which algorithm works best for a specific

task or dataset. Since there is no way (at present) to accurately measure the quality of

features produced from a pre-training algorithm, the only way to quantitatively evaluate

features is to compare downstream performance. Downstream performance is highly

variable and without knowing what makes a ‘good feature’ for these tasks, we are forced

to proceed with development following a mostly trial-and-error methodology. Therefore,

during algorithm development on a new dataset, experimentation may be required to see

which method can improve downstream performance the most. However, our method

may be a good first candidate given its relatively large performance gain, consistency

across dataset sizes, and the simplicity gained from using individual scans.

Chapter 5. Results 62

5.12 Training Speed-up

Figure 5.8 shows the validation curves versus the training steps and compares training

from scratch versus other methods of training. All techniques show an immediate im-

provement early on in the training cycle. This is potentially useful during development

for downstream tasks: the final performance can be determined roughly within the first

2,000 cycles, instead of 20,000. For S3DIS for example, algorithms like PointContrast can

reach a performance level that is within 1 mIOU of the final from-scratch performance

in just 1,000 cycles. This early improvement observation should potentially drastically

reduce training and development time.

Chapter 5. Results 63

Ours PointContrast CSC DepthContrast
Method

1

0

1

2

3

4

5

6

7

Di
ffe

re
nc

e
fro

m
 S

cr
at

ch
 (m

IO
U)

Scannet: Distribution of Semantic Segmentation Performance

Figure 5.7: Distribution of performance improvements by pre-training methods. All
differences are computed with respect to scratch performance. Measurements were taken
on ScanNet semantic segmentation across labelled data ratios used in Figure 5.4.

Chapter 5. Results 64

0 2000 4000 6000 8000 10000
Steps

40

50

60

70

Va
lid

at
io

n
(m

IO
U)

S3DIS Semantic Segmentation

CSC
Supervised
Scratch
Ours
PointContrast

2000 4000 6000 8000
Steps

25

30

35

40

45

Va
lid

at
io

n
(m

IO
U)

Scannet (data limited 5%) - Semantic Segmentation

Scratch
DepthContrast
Ours
PointContrast

Figure 5.8: Comparison of validation performance over training steps. Models were
pre-trained on ScanNet and fine-tuned for semantic segmentation on S3DIS (top) and
ScanNet (bottom) with only 5% labelled data.

Chapter 6

Conclusions

In this thesis, we presented a method for transferring self-supervised features derived

from dense images to models that operate on sparse point clouds. Point clouds are a

vital modality for scene understanding tasks owing to their ability to represent scenes

in 3D space. However, point clouds have many drawbacks, including being extremely

sparse and diffiult to annotate. Alternatively, images offer a rich source of scene infor-

mation. Images are often included with 3D datasets but are overlooked by many point

cloud processing approaches. In addition, the difficulty of annotating point clouds can be

alleviated through self-supervised feature learning, which leverages unlabelled raw data

and is especially effective on image-related tasks. The density of image data along with

the proven usefulness of image features led us in this work to explore how image features

may be used to improve performance on point cloud-related tasks. To verify that perfor-

mance gains are possible, we compared our method against three competing pre-training

methods on three different downstream tasks and datasets.

6.1 Contributions

The core contribution of this thesis is a framework for learning dense pixel-level features

from raw unlabelled images, which are then used as targets in a contrastive loss to pre-

train a 3D model. We modified the InfoNCE loss function to work with multi-modal

image and point cloud inputs, where a 3D model was trained from frozen 2D features.

We visualized these features and found that the 2D features were successfully ‘mimicked’

by the 3D model. We then initialized our backbone model parameters using these features

and fine-tuned the model for downstream tasks.

65

Chapter 6. Conclusions 66

There were several key findings from our experiments. First, we found that the perfor-

mance of existing methods was inconsistent relative to our own; specifically, our approach

had a smaller variance in terms of accuracy when training on different amounts of labelled

data from a given dataset. Second, we found—for all methods that we evaluated—that

using the same data for pre-training and training yields no performance improvement;

instead, larger amounts of data (or a different dataset entirely) are required for pre-

training to improve downstream performance. Finally, we showed that incorporating

visual data into the pre-training procedure is a viable strategy to reduce the requirement

for registered point clouds as part of pre-training. By relaxing this requirement, our

method scales more readily when compared to other pre-training techniques that require

multiple (registered) scans for contrastive learning. With this improved scalability, more

consistent performance across a number of downstream tasks, and the obviation of the

need for registered point clouds, we believe that our approach is a reasonable starting

point when choosing a pre-training strategy for 3D data.

6.2 Potential Improvements

The most challenging aspect of using an InfoNCE loss is selecting negative samples to

contrast against a given query point. Usually, negative samples are selected randomly

from all the input data points. Random sampling often selects points that either belong

to the same class or contribute very little to feature learning. One option to choose more

informative negative samples is to explore negative mining techniques, such as debiased

sampling [10], hard negative sampling [45] and hard negative mixing [26]. These methods

were originally developed and tested on images and have not been applied to point cloud

data. Through initial experimentation, we found that these methods did not work well

on point clouds and that further tuning and development is needed. One potential

explanation for the lack of success is that the mining techniques have no knowledge of

specific classes and so cannot prevent negative pairs from being drawn from the same

class. A promising alternative is to use pseudo-labels generated from a network previously

trained in a supervised manner, as is done by SupCon [27]. Alternatively, negative

samples could be removed altogether by employing contrastive algorithms that rely on

positive samples only (e.g., BYOL [17]).

Another improvement would be to experiment with datasets collected in different

environments during pre-training. Perhaps the best example would be pre-training and

training on outdoor autonomous driving datasets. Outdoor lidar-based datasets present

a good use case for self-supervised learning since the lidar scans are usually much more

sparse than indoor scans produced by stereo cameras.

Chapter 6. Conclusions 67

6.3 Future work

Beyond the potential improvements discussed in the previous section, there exist other

applications of self-supervised feature learning that could prove promising. We found that

self-supervised features can improve performance on downstream supervised learning

tasks, but that the improvements were minimal, highly inconsistent, and only useful

when the datasets were extremely small. Instead, self-supervised features may prove

much more useful in tasks where the objective is to learn with very few examples of

each class. Specifically, self-supervised features can be useful for few-shot or zero-shot

learning, where access to labels is limited to just a handful for each class. Good features

for these applications are vital and may prove beneficial when large supervised datasets

are unavailable for learning.

The self-supervised techniques could also be used more extensively in unsupervised

learning for scene understanding tasks. For example, unsupervised learning can be used

to detect similar objects (e.g., chairs) between frames [61]. In [61], the authors show that

a self-supervised contrastive loss can be applied to train a network that automatically

segments out objects without requiring any pixel-level annotations. The approach in

[61] could be extended to operate on entire reconstructed point clouds by automatically

identifying similar regions belonging to the same object type. Extending contrastive

learning to unsupervised segmentation of entire scenes is non-trivial, however, but this

should be possible in theory and could be very impactful.

Appendices

68

Appendix A

Augmentations

This appendix provides pseudocode for each algorithm applied to transform (augment)

images and point clouds as part of our contrastive training process.

A.1 Image Transformations

Algorithm 4 Gaussian Blur

sigma : var iance o f Gaussian ke rne l
H, W: he ight and width o f k e rne l
k e rne l = ze ro s (W, H)
f o r x , y in ke rne l . shape :

k e rne l [x , y] = gauss ian (x , y , sigma)
image = convolve (image , k e rne l)
r e turn image

Algorithm 5 Horizontal Flip

H, W: he ight and width o f image
f o r i , j in image . shape :

image [i , j] = image [i , W − j − 1]
r e turn image

69

Appendix A. Augmentations 70

Algorithm 6 Vertical Flip

H, W: he ight and width o f image
f o r i , j in image . shape :

image [i , j] = image [H − i − 1 , j]
r e turn image

Algorithm 7 Random Resized Crop

Hi , Wi : he ight and width o f input image
Hf , Wf: he ight and width o f d e s i r ed output image
sca l e 1 , s c a l e 2 : range o f cropped s i z e s
ra t i o x , r a t i o y : range o f aspect r a t i o s
whi l e w < Wi and h < Hi

t a r g e t a r e a = rand (s c a l e 1 , s c a l e 2) ∗ Wi ∗ Hi
l o g r a t i o = (log (r a t i o x) , l og (r a t i o y))
a s p e c t r a t i o = exp (rand (l o g r a t i o))
w = in t (sq r t (t a r g e t a r e a ∗ a s p e c t r a t i o))
h = in t (sq r t (t a r g e t a r e a / a s p e c t r a t i o))

i = rand (0 , Wi − w)
j = rand (0 , Hi − h)
image = image [j : j + h , i : i + w]
image = r e s i z e w i t h i n t e r p o l a t i o n (image , Hf , Wf)
re turn image

Appendix A. Augmentations 71

Algorithm 8 Centre Resized Crop

Hi , Wi : he ight and width o f input image
Hf , Wf: he ight and width o f d e s i r ed output image
ra t i o x , r a t i o y : range o f aspect r a t i o s
a s p e c t r a t i o = Hi / Wi
i f a s p e c t r a t i o < min(r a t i o x , r a t i o y) :

w = Wi
h = in t (Hi / min (r a t i o x , r a t i o y))

e l s e i f a s p e c t r a t i o > max(ra t i o x , r a t i o y) :
w = in t (Wi / max(r x , r y))
h = Hi

e l s e :
w = Wi
h = Hi

i = in t ((Wi − w) / 2)
j = in t ((Hi − h) / 2)
image = image [j : j + h , i : i + w]
image = r e s i z e w i t h i n t e r p o l a t i o n (image , Hf , Wf)
re turn image

Appendix A. Augmentations 72

A.2 Point Cloud Transformations

Algorithm 9 Random Dropout

i n d i c e s = rand (l ength (po in t c l oud) , d ropou t r a t i o)
re turn po in t c l oud [i n d i c e s]

Algorithm 10 Random Rotate

theta = ze ro s (3)
f o r i in range (3) :

theta [i] = rand (p i)
r o t a t i on = eu l e r a n g l e s t o r o t a t i o n ma t r i x (theta)
po in t c l oud = mat r i x mu l t i p l i c a t i on (ro ta t i on , po in t c l oud)
re turn po in t c l oud

Algorithm 11 Axis Flip

ax i s : ax i s that i s be ing f l i p p ed
axis max = max(po in t c l oud [: , a x i s])
po in t c l oud [: , a x i s] = axis max − po in t c l oud [: , a x i s]
r e turn po in t c l oud

Appendix A. Augmentations 73

A.3 General Colour Transformations

Algorithm 12 Chromatic Translation

co l ou r s : array o f R G B co lour e lements
r a t i o : r a t i o o f t r a n s l a t i o n
t r a n s l a t i o n = (rand (rows=1, c o l s =3) − 0 . 5) ∗ 255 ∗ 2 ∗ r a t i o
c o l ou r s = co l ou r s + t r a n s l a t i o n
co l ou r s = c l i p (co lour s , min val=0, max val=255)
re turn co l ou r s

Algorithm 13 Chromatic Auto-Contrast Blending

co l ou r s : array o f R G B co lour e lements
l = min (c o l ou r s)
h = max(co l ou r s)
s c a l e = (h − l) / 255
con t ra s t = (co l ou r s − l) ∗ s c a l e
blend = rand ()
c o l ou r s = (1 − blend) ∗ c o l ou r s + blend ∗ con t ra s t
re turn co l ou r s

Algorithm 14 Chromatic Jitter

co l ou r s : array o f R G B co lour e lements
std : standard dev i a t i on o f no i s e to be added
no i s e = rand (rows = length (c o l ou r s) , c o l s =3)
no i s e = no i s e ∗ std
co l ou r s = co l ou r s + no i s e
c o l ou r s = c l i p (co lour s , min val = 0 , max val = 255)
re turn co l ou r s

Bibliography

[1] Mohamed Afham, Isuru Dissanayake, Dinithi Dissanayake, Amaya Dharmasiri, Kan-

chana Thilakarathna, and Ranga Rodrigo. CrossPoint: Self-supervised cross-modal

contrastive learning for 3D point cloud understanding. In IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pages 9902–9912, 2022.

[2] Iro Armeni, Ozan Sener, Amir R. Zamir, Helen Jiang, Ioannis Brilakis, Martin Fis-

cher, and Silvio Savarese. 3D semantic parsing of large-scale indoor spaces. In IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pages 1534–1543,

2016.

[3] Timothy D. Barfoot. State Estimation for Robotics, chapter 6: Primer on Three-

Dimensional Geometry, pages 165–204. Cambridge University Press, 2017.

[4] Jens Behley, Martin Garbade, Andres Milioto, Jan Quenzel, Sven Behnke, Cyrill

Stachniss, and Jürgen Gall. SemanticKITTI: A dataset for semantic scene un-

derstanding of lidar sequences. In International Conference on Computer Vision

(ICCV), pages 9296–9306, 2019.

[5] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and

Armand Joulin. Unsupervised learning of visual features by contrasting cluster

assignments. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin,

editors, Advances in Neural Information Processing Systems (NeurIPS), volume 33,

pages 9912–9924. Curran Associates, Inc., 2020.

[6] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A sim-

ple framework for contrastive learning of visual representations. In International

Conference on Machine Learning (ICML), volume 119 of Proceedings of Machine

Learning Research, pages 1597–1607. PMLR, 2020.

[7] Xinlei Chen and Kaiming He. Exploring simple siamese representation learning.

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages

15745–15753, 2021.

74

Bibliography 75

[8] Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4D spatio-temporal con-

vnets: Minkowski convolutional neural networks. In IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 3070–3079, 2019.

[9] Christopher Choy, Jaesik Park, and Vladlen Koltun. Fully convolutional geometric

features. In International Conference on Computer Vision (ICCV), pages 8957–

8965, 2019.

[10] Ching-Yao Chuang, Joshua D. Robinson, Yen-Chen Lin, Antonio Torralba, and Ste-

fanie Jegelka. Debiased contrastive learning. In H. Larochelle, M. Ranzato, R.

Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural Information Pro-

cessing Systems (NeurIPS), volume 33, pages 8765–8775. Curran Associates, Inc.,

2020.

[11] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser,

and Matthias Nießner. ScanNet: Richly-annotated 3D reconstructions of indoor

scenes. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

pages 2432–2443, 2017.

[12] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet:

A large-scale hierarchical image database. In IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 248–255, 2009.

[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-

training of deep bidirectional transformers for language understanding. In Confer-

ence of the North American Chapter of the Association for Computational Linguis-

tics: Human Language Technologies (NAACL-HLT), volume 1, pages 4171–4186,

Minneapolis, Minnesota, 2019. Association for Computational Linguistics.

[14] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based

algorithm for discovering clusters in large spatial databases with noise. In Interna-

tional Conference on Knowledge Discovery and Data Mining (KDD), pages 226–231.

AAAI Press, 1996.

[15] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous

driving? The KITTI vision benchmark suite. In IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 3354–3361, 2012.

[16] Clement Godard, Oisin Mac Aodha, Michael Firman, and Gabriel Brostow. Digging

into self-supervised monocular depth estimation. In International Conference on

Computer Vision (ICCV), pages 3827–3837, 2019.

Bibliography 76

[17] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre

Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo,

Mohammad Gheshlaghi Azar, Bilal Piot, koray kavukcuoglu, Remi Munos, and

Michal Valko. Bootstrap your own latent - A new approach to self-supervised learn-

ing. In Advances in Neural Information Processing Systems (NeurIPS), volume 33,

pages 21271–21284. Curran Associates, Inc., 2020.

[18] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum

contrast for unsupervised visual representation learning. In IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pages 9726–9735, 2020.

[19] Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. Mask R-CNN. In

International Conference on Computer Vision (ICCV), 2017.

[20] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages

770–778, 2016.

[21] Ji Hou, Benjamin Graham, Matthias Nießner, and Saining Xie. Exploring data-

efficient 3D scene understanding with contrastive scene contexts. In IEEE Con-

ference on Computer Vision and Pattern Recognition (CVPR), pages 15582–15592,

2021.

[22] Ji Hou, Saining Xie, Benjamin Graham, Angela Dai, and Matthias Nießner. Pri3D:

Can 3D priors help 2D representation learning? In International Conference on

Computer Vision (ICCV), pages 5673–5682, 2021.

[23] Allison Janoch, Sergey Karayev, Yangqing Jia, Jonathan T. Barron, Mario Fritz,

Kate Saenko, and Trevor Darrell. A category-level 3-D object dataset: Putting the

kinect to work. In International Conference on Computer Vision (ICCV), pages

1168–1174, 2011.

[24] Li Jiang, Shaoshuai Shi, Zhuotao Tian, Xin Lai, Shu Liu, Chi-Wing Fu, and Ji-

aya Jia. Guided point contrastive learning for semi-supervised point cloud seman-

tic segmentation. In International Conference on Computer Vision (ICCV), pages

6403–6412, 2021.

[25] Li Jiang, Hengshuang Zhao, Shaoshuai Shi, Shu Liu, Chi-Wing Fu, and Jiaya Jia.

PointGroup: Dual-set point grouping for 3D instance segmentation. In IEEE Con-

ference on Computer Vision and Pattern Recognition (CVPR), pages 4866–4875,

2020.

Bibliography 77

[26] Yannis Kalantidis, Mert Bulent Sariyildiz, Noe Pion, Philippe Weinzaepfel, and

Diane Larlus. Hard negative mixing for contrastive learning. In Advances in Neural

Information Processing Systems (NeurIPS), volume 33, pages 21798–21809. Curran

Associates, Inc., 2020.

[27] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip

Isola, Aaron Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learn-

ing. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors,

Advances in Neural Information Processing Systems (NeurIPS), volume 33, pages

18661–18673. Curran Associates, Inc., 2020.

[28] Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton. ImageNet classification with

deep convolutional neural networks. In Advances in Neural Information Processing

Systems (NeurIPS), volume 25. Curran Associates, Inc., 2012.

[29] Phuc H. Le-Khac, Graham Healy, and Alan F. Smeaton. Contrastive representation

learning: A framework and review. IEEE Access, 8:193907–193934, 2020.

[30] Junnan Li, Pan Zhou, Caiming Xiong, and Steven C. H. Hoi. Prototypical con-

trastive learning of unsupervised representations. In International Conference on

Learning Representations (ICLR). OpenReview.net, 2021.

[31] Zhenyu Li, Zehui Chen, Ang Li, Liangji Fang, Qinhong Jiang, Xianming Liu, Jun-

jun Jiang, Bolei Zhou, and Hang Zhao. SimIPU: Simple 2D image and 3D point

cloud unsupervised pre-training for spatial-aware visual representations. Association

for the Advancement of Artificial Intelligence Conference (AAAI), 36(2):1500–1508,

2022.

[32] T. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie. Feature

pyramid networks for object detection. In IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 936–944, 2017.

[33] Yunze Liu, Li Yi, Shanghang Zhang, Qingnan Fan, Thomas Funkhouser, and Hao

Dong. P4Contrast: Contrastive learning with pairs of point-pixel pairs for RGB-D

scene understanding. arXiv:2012.13089v1 [cs.CV], 2020.

[34] Yueh-Cheng Liu, Yu-Kai Huang, Hung-Yueh Chiang, Hung-Ting Su, Zhe-Yu Liu,

Chin-Tang Chen, Ching-Yu Tseng, and Winston H. Hsu. Learning from 2D: Con-

trastive pixel-to-point knowledge transfer for 3D pretraining. arXiv:2104.04687v3

[cs.CV], 2021.

[35] David G. Lowe. Object recognition from local scale-invariant features. In Interna-

tional Conference on Computer Vision (ICCV), volume 2, pages 1150–1157, 1999.

Bibliography 78

[36] Raúl Mur-Artal, J. M. M. Montiel, and Juan D. Tardós. ORB-SLAM: A versatile

and accurate monocular SLAM system. IEEE Transactions on Robotics, 31(5):1147–

1163, 2015.

[37] Yoshikuni Nomura, Li Zhang, and Shree K. Nayar. Scene collages and flexible cam-

era arrays. In Eurographics Symposium on Rendering (EGSR). The Eurographics

Association, 2007.

[38] Lucas Nunes, Rodrigo Marcuzzi, Xieyuanli Chen, Jens Behley, and Cyrill Stachniss.

SegContrast: 3D point cloud feature representation learning through self-supervised

segment discrimination. IEEE Robotics and Automation Letters (RA-L), 7(2):2116–

2123, 2022.

[39] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with

contrastive predictive coding. arXiv:1807.03748v2 [cs.LG], 2018.

[40] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-

gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban

Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan

Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith

Chintala. PyTorch: An imperative style, high-performance deep learning library. In

Advances in Neural Information Processing Systems (NeurIPS), pages 8024–8035.

Curran Associates, Inc., 2019.

[41] Trung Pham, Chaoning Zhang, Axi Niu, Kang Zhang, and Chang D. Yoo. On

the pros and cons of momentum encoder in self-supervised visual representation

learning. arXiv:2208.05744v1, 2022.

[42] Charles R. Qi, Or Litany, Kaiming He, and Leonidas J. Guibas. Deep hough voting

for 3D object detection in point clouds. In International Conference on Computer

Vision (ICCV), pages 9276–9285, 2019.

[43] Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. PointNet: Deep

learning on point sets for 3D classification and segmentation. In IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages 77–85, 2017.

[44] Charles R. Qi, Li Yi, Hao Su, and Leonidas J. Guibas. PointNet++: Deep hi-

erarchical feature learning on point sets in a metric space. In Advances in Neu-

ral Information Processing Systems (NeurIPS), volume 30. Curran Associates, Inc.,

2017.

Bibliography 79

[45] Joshua D. Robinson, Ching-Yao Chuang, Suvrit Sra, and Stefanie Jegelka. Con-

trastive learning with hard negative samples. In International Conference on Learn-

ing Representations (ICLR), 2021.

[46] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional

networks for biomedical image segmentation. In Medical Image Computing and

Computer-Assisted Intervention – MICCAI 2015, pages 234–241. Springer Interna-

tional Publishing, 2015.

[47] Corentin Sautier, Gilles Puy, Spyros Gidaris, Alexandre Boulch, Andrei Bursuc, and

Renaud Marlet. Image-to-lidar self-supervised distillation for autonomous driving

data. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

pages 9891–9901, 2022.

[48] Jianbo Shi and Tomasi. Good features to track. In IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 593–600, 1994.

[49] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. Indoor segmen-

tation and support inference from rgbd images. In European Conference Computer

Vision (ECCV), pages 746–760, Berlin, Heidelberg, 2012. Springer Berlin Heidel-

berg.

[50] Shuran Song, Samuel P. Lichtenberg, and Jianxiong Xiao. SUNRGBD: A RGBD

scene understanding benchmark suite. In IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 567–576, 2015.

[51] Richard Szeliski. Computer Vision: Algorithms and Applications, chapter 2: Image

Formation, pages 51–60. Springer Cham, 2nd edition, 2022.

[52] Richard Szeliski. Computer Vision: Algorithms and Applications, chapter 3: Image

Processing, pages 118–119. Springer Cham, 2nd edition, 2022.

[53] Richard Szeliski. Computer Vision: Algorithms and Applications, chapter 5: Deep

Learning, pages 239–336. Springer Cham, 2nd edition, 2022.

[54] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal

of Machine Learning Research, 9(86):2579–2605, 2008.

[55] WenguanWang, Tianfei Zhou, Fisher Yu, Jifeng Dai, Ender Konukoglu, and Luc Van

Gool. Exploring cross-image pixel contrast for semantic segmentation. In Interna-

tional Conference on Computer Vision (ICCV), pages 7283–7293, 2021.

[56] Xinlong Wang, Rufeng Zhang, Chunhua Shen, Tao Kong, and Lei Li. Dense con-

trastive learning for self-supervised visual pre-training. In IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pages 3023–3032, 2021.

Bibliography 80

[57] Zhirong Wu, Yuanjun Xiong, Stella X. Yu, and Dahua Lin. Unsupervised feature

learning via non-parametric instance discrimination. In IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), pages 3733–3742, 2018.

[58] Jianxiong Xiao, Andrew Owens, and Antonio Torralba. SUN3D: A database of big

spaces reconstructed using SfM and object labels. In International Conference on

Computer Vision (ICCV), pages 1625–1632, 2013.

[59] Saining Xie, Jiatao Gu, Demi Guo, Charles R. Qi, Leonidas J. Guibas, and Or

Litany. PointContrast: Unsupervised pre-training for 3D point cloud understanding.

In European Conference Computer Vision (ECCV), pages 574–591, Cham, 2020.

Springer International Publishing.

[60] Zhenda Xie, Yutong Lin, Zheng Zhang, Yue Cao, Stephen Lin, and Han Hu. Prop-

agate yourself: Exploring pixel-level consistency for unsupervised visual represen-

tation learning. In IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pages 16679–16688, 2021.

[61] Cheng-Kun Yang, Yung-Yu Chuang, and Yen-Yu Lin. Unsupervised point cloud

object co-segmentation by co-contrastive learning and mutual attention sampling.

In International Conference on Computer Vision (ICCV), pages 7335–7344, 2021.

[62] Richard Zhang, Phillip Isola, and Alexei A. Efros. Colorful image colorization. In

Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling, editors, European Confer-

ence Computer Vision (ECCV), pages 649–666. Springer International Publishing,

2016.

[63] Zaiwei Zhang, Rohit Girdhar, Armand Joulin, and Ishan Misra. Self-supervised pre-

training of 3D features on any point-cloud. In International Conference on Computer

Vision (ICCV), pages 10232–10243, 2021.

	Introduction
	Reducing Reliance on Annotations
	Contributions

	Background
	Data Structures for Scene Representations
	Coordinate Frames
	Projective Geometry
	Features
	Tasks and Metrics for Scene Understanding
	Learning-Based Methods
	Deep Neural Networks
	Convolutional Neural Networks in 2D
	Convolutional Neural Networks in 3D
	Self-Supervised Contrastive Learning

	Related Work
	Contrastive Learning in 2D
	Learning Image Features
	Learning Pixel Features

	Contrastive Learning in 3D
	Learning Point Cloud Features
	Learning Point Features

	Multi-Modal Contrastive Learning

	Methodology
	Perception Models
	Stage 1 - Learning Image features
	Stage 2 - Learning Point Features

	Results
	Datasets
	Baselines
	Implementation Details
	Visualization of Image Features
	Visualization of Point Features
	Semantic Segmentation
	Instance Segmentation
	Object Detection
	Varying Overlap
	Pre-Training on Out-of-Distribution Data
	Inconsistencies in Performance Boost
	Training Speed-up

	Conclusions
	Contributions
	Potential Improvements
	Future work

	Appendices
	Augmentations
	Image Transformations
	Point Cloud Transformations
	General Colour Transformations

	Bibliography

