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Mobile robots perceive and move through the three-dimensional space of the approximately

Euclidean world we share with them. In order to safely and accurately accomplish their goals,

they must be able to reason about the nonlinear and nonconvex geometry of the manifold

of rotations. Without this ability, tracking the poses of objects from noisy measurements

and avoiding obstacles in their environment becomes impossible. Traditional approaches use

local information and structure to estimate and optimize rotations of interest, making them

susceptible to suboptimal performance. In this dissertation, we apply recent advancements

in global convex optimization to two fundamental geometric problems in robotics: extrinsic

sensor calibration and inverse kinematics in cluttered workspaces. We begin with a summary

and extension of the semidefinite relaxation machinery that we apply to both problems. This

machinery is used to develop fast and accurate extrinsic calibration algorithms with novel

performance guarantees provided by certificates of global optimality. We proceed to develop

a novel perspective of inverse kinematics inspired by noisy state estimation problems, leading

to fast and accurate algorithms appropriate for a variety of challenging scenarios. We provide

free and open source implementations of our algorithms, and demonstrate their superiority over

conventional approaches on a variety of simulated and real-world data.
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Epigraph

Upward, not Northward.

Edwin A. Abbott, Flatland

A point is that which has no part.

Euclid, Elements

Do you have the patience to wait until

your mud settles and the water is clear?

Lao Tzu, Tao Te Ching

iii



To my wife Cassandra.
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Notation

a : Lower-case Latin and Greek letters in this font are real scalars.

a : Lower-case Latin and Greek letters in this font are real column vectors.

a : Symbols in this font are real column vectors in homogeneous coordinates.

A : Capital Latin and Greek letters in this font are real matrices.

A(i) : The ith column of matrix A.

Ai,j : The element of A in column i and row j.

N (µ,Σ) : Normally distributed with mean µ and covariance Σ.

·̂ : An estimate of a scalar, vector, or matrix.

·̃ : A scalar, vector, or matrix corrupted by noise.

E [·] : The expectation operator.

1 : The vector of ones.

I : The identity matrix.

0 : The zero matrix.

F−→a : A reference frame in three dimensions.

pcba : A vector from point b to point c (denoted by the superscript) and expressed

in F−→a (denoted by the subscript).

Rab : The 3 × 3 rotation matrix that transforms vectors from F−→b to F−→a: pcba =

Rabp
cb
b .

Tba : The 4× 4 transformation matrix that transforms homogeneous points from

F−→a to F−→b: p
cb
b = Tbap

ca
a .

(·)∧ : An operator associated with the Lie algebra for rotations and poses. It

produces a matrix from a column vector.

(·)∨ : The inverse operation of (·)∧.

⊗ : The matrix Kronecker product.

vec (·) : The column-wise vectorization operator.

[n] : The set of integer indices {1, . . . , n}.
Sn : The set of n× n real symmetric matrices.

Sn+ : The set of n× n real symmetric positive semidefinite matrices.

Sn++ : The set of n× n real symmetric positive definite matrices.

∇f : The gradient (Jacobian) of a scalar-valued (vector-valued) function f .
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Chapter 1

Introduction

The whole is greater than the part.

Euclid, Elements

With few exceptions, autonomous robots need to navigate through three-dimensional space.

To achieve this, robots must be equipped with the ability to represent and track the motion

of their own bodies along with elements of their environment. This capability is intrinsic to

many estimation and planning components in an autonomous guidance, navigation, and control

pipeline. While the positions of objects of interest can be described in the vector space R3, their

orientations are elements of a nonlinear manifold describing 3D rotations: the Lie group SO(3).

In the context of optimization, ensuring that a variable resides on this manifold (i.e., it is in

fact a valid rotation) introduces difficult nonlinear and nonconvex constraints. Dealing with

this nonlinearity is not unique to robotics: it is a central challenge in aerospace engineering,

biomedical imaging, and many other application domains.

The heart of this dissertation is the application of convex analysis and optimization to the

nonlinearities that result from a robot’s need to estimate and control rotations. The approach

we develop is enabled by the recent improvement of convex optimization software, as well

as theoretical progress that provides insights into the applicability of convex relaxations for

challenging nonconvex problems in the applied sciences. A key feature of this approach is the

global nature of convex optimization techniques, which is relevant to robotics for two important

reasons:

1. truly autonomous systems cannot rely on local optimization that is sensitive to initial

conditions which are often provided or tuned by a human operator; and

2. unlike stable aircraft in cruise or systems mostly limited to two-dimensional motion (e.g,

many industrial machines or warehousing systems), autonomous mobile robots may find

themselves or objects of interest in orientations that span the entirety of SO(3).1

1This is a characteristic shared with many astronautical applications.

1



2 Chapter 1. Introduction

We will demonstrate that applying a convex relaxation-based perspective to fundamental prob-

lems in robotics leads to algorithms which are geometrically elegant, perform well, and provide

theoretical guarantees that are absent from traditional approaches. In the remainder of this in-

troduction, we provide a high-level review of related literature before summarizing the structure

and contributions of this dissertation.

1.1 Related Work: A Bird’s-Eye View

Our global approach is complementary to the Lie-theoretic machinery developed in Barfoot

(2017), which exploits the local structure of the SO(3) and SE(3) manifolds to construct and

optimally solve precise probabilistic formulations of noisy state estimation problems in robotics.

Olsson (2009) is a doctoral thesis that similarly applies global optimization methods to problems

in computer vision: since its publication, convex techniques have become increasingly popular

in robotics. Global optimality is particularly important to roboticists because of the safety

requirements unique to our field. Accordingly, the publication of a certifiably globally optimal

solution to simultaneous localization and mapping (SLAM) in Rosen et al. (2019) ignited a

research trend (see, for example, Rosen et al. (2021) for a comprehensive review and discussion).

Applications of interest for which convex semidefinite programming (SDP) relaxations have

proven fruitful include point cloud registration (Briales et al., 2017; Yang et al., 2020), variants

of SLAM (Tian et al., 2021; Briales and Gonzalez-Jimenez, 2017; Fan et al., 2020; Iglesias et al.,

2020; Holmes and Barfoot, 2022), rotation averaging (Eriksson et al., 2018), and relative pose

estimation (Briales et al., 2018; Zhao, 2020; Garcia-Salguero et al., 2021). The first part of

this dissertation is based closely on Cifuentes et al. (2022), which presents a broadly applicable

theory for proving the “stability” of SDP relaxations to the aforementioned problems. We

extend this theory to problems involving inequality constraints, and we apply the certifiable

global optimization paradigm to extrinsic calibration, which is the problem of finding the relative

pose of two sensors mounted on the same rigid body.

We would be remiss to ignore a powerful algebraic alternative to SDP relaxations that has

emerged in recent years. One example of this approach described is in Wu et al. (2022), which

uses a Gröbner-basis method to find globally optimal solutions to quadratic pose estimation

problems (QPEPs). While extremely effective for optimization problems involving a single ro-

tation or pose variable, algebraic approaches suffer from poor scaling as the number of variables

increase, limiting their promise for more complex geometric problems in robotics (Wu et al.,

2020).

1.2 Thesis Structure and Original Contributions

This dissertation presents material from five published contributions: three journal papers, and

two peer-reviewed conference papers. In addition to these works, a few results and details



1.2. Thesis Structure and Original Contributions 3

that are in preparation for submission to academic journals at the time of writing have been

included. In Chapter 2, we introduce the basic notation and mathematical concepts needed

to understand the main body of work. What follows is a concise summary of each remaining

chapter and its associated published contributions.

1. Local Stability of SDP Relaxations over Semialgebraic Sets

Chapter 3 begins with some fundamental tools in the form of convexity, quadratically

constrained quadratic programs (QCQPs), Lagrangian duality, constraint qualification,

and semidefinite programming. We proceed with a summary of the relevant theory for

Cifuentes et al. (2022) and present a novel extension of local stability results to QCQPs

involving inequality constraints. This extension is not yet published, but simplifies and

extends some of the contributions in three publications: Giamou et al. (2019), Marić et al.

(2020), and Wise et al. (2020).

2. Globally Optimal Extrinsic Calibration

In Chapter 4, we describe a certifiably globally optimal approach to extrinsic sensor

calibration for mobile robots. This chapter is based on two publications: Giamou et al.

(2019) and Wise et al. (2020). In addition to summarizing these publications, we also

present a novel maximum likelihood interpretation of our approach, and use the novel

refinements of the theory in Chapter 3 to discuss and characterize extensions to our

approach.

3. Global Optimization for Planar and Spherical Inverse Kinematics

Chapter 5 presents SOS-IK (Sum-of-Squares Inverse Kinematics), an algorithm developed

in Marić et al. (2020). SOS-IK is notable in that it solves inverse kinematics, a planning

problem, with ideas from the literature on noisy state estimation, highlighting the ever-

present duality between estimation and “control.” Once again, we include extensions and

simplifications to the theory in Marić et al. (2020) based on the methods developed in

Chapter 3.

4. Semidefinite Programming for Revolute Inverse Kinematics

Chapter 6 adapts the ideas in Chapter 5 to more general revolute manipulators and

introduces obstacles in the robot’s workspace. It is based on two published contributions:

Marić et al. (2021) and Giamou et al. (2022).

Finally, Chapter 7 recapitulates the main contributions and themes of this dissertation, while

also briefly sketching a path for future research. Robotics and related fields are full of problems

to which the methods of this work are directly applicable, and there is also a parallel need for

further field testing of these ideas on challenging robotics applications outside of academic labs.



Chapter 2

Mathematical Preliminaries

Numbers and rows and series—the

nightmare and malediction harrowing

pure thought and pure time—seemed

bent on mechanizing his mind.

Vladimir Nabokov, Ada, or Ardor

This chapter covers the mathematics, primarily geometry and probability, required to un-

derstand subsequent chapters. The notation and conventions used draw heavily from Barfoot

(2017).

2.1 Rotations and Poses

We describe the position of a point in d-dimensional physical space with a vector pa ∈ Rd

containing the coordinates of the point with respect to frame of reference F−→a. Since we are

modelling classical mechanics in realistic environments for physical robots, d ∈ {2, 3} through-

out this work. When the vector describes the relative translation from point b to c, we write

pcba —this notation is especially useful when b and c represent the origins of coordinate frames

F−→b and F−→c.

2.1.1 Rotation Matrices

The d×d rotation matrix Rab translates a vector of coordinates in F−→b to its equivalent expression

in a frame F−→a which shares its origin with F−→b:

pa = Rabpb. (2.1)

4



2.1. Rotations and Poses 5

The set of valid rotation matrices is the special orthogonal matrix Lie group SO(d), which

contains all orthogonal matrices with unit determinant:

SO(d) : R ∈ Rd×d

s.t. R>R = R R> = I

det (R) = 1.

(2.2)

For d = 3, we will find it useful to replace the determinant constraint with an equivalent

expression using the following cross-product identities in R3:

R(i) ×R(j) = R(k), i, j, k ∈ cyclic(1, 2, 3), (2.3)

where R(i) is the ith 3 × 1 column of R, and cyclic(1, 2, 3) indicates the cyclic permutations

(including identity) of the set {1, 2, 3}. These “right-handedness” constraints distinguish SO(3)

from its complement in the orthogonal matrix Lie group O(3), which contains reflections. Since

O(3) is a disjoint union of these two sets, orthogonality constraints alone are often sufficient

for estimation problems (Rosen et al., 2019). However, we will demonstrate in Chapter 4 that

the handedness constraints are useful for many optimization problems. Equation (2.3) replaces

the cubic determinant constraint in Equation (2.2) with three quadratic constraints, giving

us a purely quadratic polynomial description of SO(3). This description of rotation matrices

is therefore a quadratic algebraic variety and in Chapter 3 will be used to connect estima-

tion over SO(3) to the rich literature of optimization methods using concepts from algebraic

geometry (Cifuentes et al., 2022).

2.1.2 Spatial Transformations

In order to completely describe the pose of rigid bodies in Euclidean space, we introduce

homogeneous transformation matrices and the special Euclidean group SE(d):

SE(d) : Tbc ∈ R(d+1)×(d+1)

s.t. Tbc =

[
Rbc pcbb
01×d 1

]

Rbc ∈ SO(d), pcbb ∈ Rd.

(2.4)

To make use of transformation matrices, we introduce homogeneous coordinates:

p =

[
p

1

]
. (2.5)



6 Chapter 2. Mathematical Preliminaries

This allows us to convert coordinates for a point between frames F−→a and F−→b which do not

necessarily share an origin as follows:

[
pabb
1

]
= pabb = Tbcp

ac
c =

[
Rbc pcbb
01×d 1

][
pacc

1

]
. (2.6)

Lastly, we note that since R−1 = R> ∀ R ∈ SO(d), transformation matrices can also be

efficiently inverted:

Tbc
−1 =

[
R>bc − R>bc pcbb
01×d 1

]
=

[
Rcb pbcc

01×d 1

]
= Tcb. (2.7)

2.2 Probability and Statistics

When modelling noisy sensor measurements of translation vectors, we will assume that noise is

normally distributed and denote these random variables as follows:

p̃ ∼ N (µ,Σ) , (2.8)

where µ ∈ Rd is the mean and Σ ∈ Sd++ is the covariance.

Noisy three-dimensional rotation measurements will be modelled with the isotropic Langevin

distribution (Rosen et al., 2019):

R̃ ∼ Lang (Rµ, κ) , (2.9)

where Rµ ∈ SO(3) is the mode and κ ≥ 0 is the concentration parameter. This distribution’s

probability density function (PDF) is

p(R; Rµ, κ) =
1

c(κ)
exp

(
κ tr

(
R>µ R

))
, (2.10)

where c(κ) is a normalization constant. We use the Langevin distribution for two key rea-

sons: first, it is defined directly over the entirety of SO(3) and therefore appropriate for global

optimization without an accurate initialization.1 Second, the exponential form of its PDF in

Equation (2.10) allows us to construct quadratic maximum likelihood cost functions for extrinsic

calibration problems in Chapter 4. This quadratic form is essential for the convex relaxations

we will develop in Chapter 3.

2.3 Linear Algebra

This section contains some useful linear algebra results that will help us prove key theorems.

1This is in contrast to normal distributions defined over the Lie algebra so(3) used for local optimization in
Barfoot (2017).
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2.3.1 Rank of Positive Semidefinite (PSD) Matrices

In Section 3.5, we make use of the fact that the sum of the ranks of two particular matrices is

bounded. This fact is used without proof in Cifuentes et al. (2022), but we could not find a

concise reference containing a proof and therefore present one here.

Lemma 1 (Rank of PSD Matrices Connected by a Trace Identity). Let A,B ∈ Sn+ such that

tr (AB) = 0. Then, rank (A) + rank (B) ≤ n.

Proof. Let a = rank (A) and b = rank (B). Since both matrices are PSD, we can write their

rank-1 decompositions

A =
a∑

i=1

ai a>i

B =

b∑

i=1

bi b>i

(2.11)

such that {ai}ai=1 and {bi}bi=1 are each linearly independent. We can then use the linear and

cyclic2 properties of the trace function to write

tr (AB) = tr

((
a∑

i=1

ai a>i

)(
b∑

i=1

bi b>i

))

=
a∑

i=1

b∑

j=1

tr
(

(ai a>i )(bj b>j )
)

=
a∑

i=1

b∑

j=1

tr
(

a>i bj b>j ai

)

=
a∑

i=1

b∑

j=1

(a>i bj)
2.

(2.12)

Since the trace of each summand is nonnegative and tr (AB) = 0, we conclude that each

summand is equal to zero and a>i bj = 0 for all i ∈ [a] and all j ∈ [b]. This implies that

S = {ai}ai=1 ∪ {bi}bi=1 is linearly independent. However, the Fundamental Theorem of Linear

Algebra (Strang, 1993) states that the dimensions of a matrix’s row and column spaces are

equal. Applying this fact to the matrix with columns formed by the linearly independent

elements of S yields a+ b ≤ n as desired.

2.4 Real Analysis

An open cover of a set A is a collection F of open sets whose union contains A. A set A
is compact if every open cover F admits a finite subcover (i.e., there exists a finite subset of

2tr (AB) = tr (BA).
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F which is also covers A). In this section, we present a short non-constructive proof of the

existence of an arbitrarily precise union of balls representation for compact obstacles used in

Chapter 6.3

Theorem 1 (Heine-Borel cover Theorem (Apostol, 1974)). Let F be an open cover of a closed

and bounded set A ⊂ Rn. Then a finite subcollection of F also covers A.

Theorem 1 essentially states that the compact subsets of Rn are in fact the closed and

bounded subsets of Rn. As Corollary 1 demonstrates, this is convenient for representing objects

in Rn up to arbitrary precision with a finite number of elements.

Corollary 1. Let O be a closed and bounded subset of Rn. Then for any ε > 0, there exists a

finite union of open balls with radius ε that covers O.

Proof. Let

F , {B(x, ε) | x ∈ O} , (2.13)

where B(x, ε) is an open ball centred at x with radius ε. Since F is clearly an open cover of O
and O is closed and bounded, by Theorem 1 we have a finite subcover F ′ ⊂ F which satisfies

our requirement.

3While trivial, we were unable to find a simple proof of this fact in the robotics literature.



Chapter 3

Semidefinite Relaxations

You’re simply the best,

Better than all the rest.

Tina Turner, Simply the Best

This chapter begins with a review of elementary material on the theory of optimization,

specifically for quadratically constrained quadratic programs (QCQPs). In addition to their

broad relevance to problems outside of robotics, these tools are essential for the applications

in subsequent chapters. Our focus is on convex semidefinite programming (SDP) relaxations

for QCQPs, and we conclude with a novel extension of the theory of parametric stability

developed in Cifuentes et al. (2022) to SDP relaxations of QCQPs with inequality constraints.

We make heavy use of the treatment of convex optimization in Boyd and Vandenberghe (2004),

but modify and mix its notation and conventions with those found in Cifuentes et al. (2022)

to better suit our purposes. Readers interested in a rich geometric treatment of semidefinite

programming are advised to consult Dattorro (2005).

3.1 Quadratically Constrained Quadratic Programs

Our main objects of study are quadratically constrained quadratic programs. QCQPs are

optimization problems with quadratic cost and constraints:

min
x∈Rn

x>Cx + c> x

s.t. x>Aix + a> x ≤ ai, i = 1, . . . , l

x>Bix + b> x = bi, i = 1, . . . ,m,

(3.1)

where C,Bi,Ai ∈ Sn. We denote the optimal value of the objective function by p∗ and the

optimal decision variable by x∗.

Note that Equation (3.1) is nonconvex in general, and can model NP-hard problems. For

example, integer constraints like xi ∈ {−1, 1} can be expressed quadratically as x2
i = 1, allowing

9
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Nonconvex

Figure 3.1: Two sets illustrating the definition of convexity in R2. The “bite” taken out of the set on
the right renders it nonconvex, as the line joining two of its elements is no longer completely contained
in the set.

us to formulate MAX CUT1 as a QCQP (Goemans and Williamson, 1995). Thus, we should

not expect any solution method to act as a “silver bullet” for QCQPs in general, and instead

focus on properties of QCQPs that arise as a consequence of the specific structure of geometric

problems in robotics.

3.1.1 Homogeneous QCQPs

We can simplify a great deal of our analysis by considering only homogeneous QCQPs (i.e.,

those that do not contain any linear terms in the cost or constraints):

min
x∈Rn

x>Cx

s.t. x>Aix ≤ ai, i = 1, . . . , l

x>Bix = bi, i = 1, . . . ,m.

(3.2)

Thankfully, restricting our attention to homogenous QCQPs does not limit the variety of QC-

QPs we are able to study: any linear terms can be made quadratic with the addition of a

homogenizing variable s2 = 1 to our decision variable x. With s, linear constraints like right-

handedness for SO(3) in Equation (2.3), for example, can be made purely quadratic as follows:

R(i) ×R(j) = sR(k). (3.3)

This procedure introduces a spurious solution x′ = −x∗, but selecting the true solution is trivial

in practice and does not impede our theoretical analysis.
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Convex Cone

Figure 3.2: Two cones in R2 with black lines indicating their boundaries. The convex cone on the left
has a green interior and is clearly convex by inspection. The nonconvex cone is simply the union of two
non-parallel lines through the origin. Note that both cones have infinite extent.

3.2 Convex Optimization

In order to understand convex optimization problems and their unique properties, we must

introduce some basic convex analysis and geometry. For a detailed theoretical treatment of

convex analysis and the remarkable properties of convex sets, see Barvinok (2002).

3.2.1 Convex Sets

A set S ⊂ Rn is convex if the line segment connecting any two points in S is also contained in

S, i.e.,

S is convex ⇐⇒ ∀ x1,x2 ∈ S : αx1 + (1− α)x2 ∈ S ∀α ∈ [0, 1]. (3.4)

Figure 3.1 illustrates an example of a convex and a nonconvex set in R2.

One important type of convex set is a convex cone. A set C is a cone if for every element,

any dilation of that element is also in C:

C is a cone ⇐⇒ ∀ x ∈ C : αx ∈ C ∀α ≥ 0. (3.5)

A convex cone is, thankfully, a cone which is also convex. Figure 3.2 contains some examples

of convex and nonconvex cones. We are most interested in a particular convex cone: the

semidefinite cone Sn+, which we discuss in detail in Section 3.4.

1Finding a “maximum cut” (or MAX CUT) of a graph is an important NP-complete problem. A cut is defined
as a partition of a graph’s vertices into two complementary sets, and its size is the number of edges between
these two sets. Therefore, a maximum cut is a cut with the largest size possible.
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Figure 3.3: The epigraphs of a convex function f and a nonconvex function g. In contrast to the
convex function f on the left, the nonconvex function g on the right has a nonconvex epigraph. Note
that the epigraphs are truncated to fit on a finite page: they both extend infinitely in the y-direction.

3.2.2 Convex Functions

Building on the concept of convexity for sets, a function f : S → R with domain dom (f) =

S ⊂ Rn is convex if for any α ∈ [0, 1]:

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2) ∀ x1,x2 ∈ S. (3.6)

For a more geometrically satisfying definition, we introduce the epigraph of f :

epi (f) =
{

[x> t]
> ∣∣ x ∈ dom (f) , f(x) ≤ t

}
⊆ Rn+1. (3.7)

Intuitively, the epigraph is the hypervolume “above” the hypersurface described by f in Rn+1.

We can now elegantly define a convex function as one whose epigraph is a convex set: Figure 3.3

demonstrates this for simple univariate functions. Lastly, a function is strictly convex if the

inequality in Equation (3.6) holds strictly, and a function f is (strictly) concave if −f is (strictly)

convex.2

3.2.3 Convex Optimization Problems

With convex sets and functions in hand, we can now define a convex optimization problem

(or convex program) as a minimization of a convex objective function over a convex feasible

set. For the QCQPs defined in Section 3.1, convexity is equivalent to all three of the following

conditions being met:

1. a semidefinite cost matrix (C � 0);

2. affine equality constraints (B = 0 ∀i ∈ [m]); and

2Maximization of concave functions over convex sets is therefore reducible to convex optimization, removing
the need for further elaboration on concave functions.



3.2. Convex Optimization 13

4

<latexit sha1_base64="jqylwcxBagMhesCQ8VFOWEkScmo=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNUY9ELx4hkUcCGzI79MLI7OxmZtZICF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmhdl77JcqVdK1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOknjQU=</latexit>x

<latexit sha1_base64="+uQyNRflh6ZfpBt0Osl+e4sjuBk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOl5qRfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJ+6LqXVZrzVqlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8f6quNBg==</latexit>y

<latexit sha1_base64="Fi79m6BLMeeJ+naeE3AOF0on0Bo=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsxIUZdFNy4r2Ae2Q8mkd9rQTGZIMkIZ+hduXCji1r9x59+YtrPQ1gOBwzn3knNPkAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHssHM0nQj+hQ8pAzaqz02IuoGQVh5k775Ypbdecgq8TLSQVyNPrlr94gZmmE0jBBte56bmL8jCrDmcBpqZdqTCgb0yF2LZU0Qu1n88RTcmaVAQljZZ80ZK7+3shopPUkCuzkLKFe9mbif143NeG1n3GZpAYlW3wUpoKYmMzOJwOukBkxsYQyxW1WwkZUUWZsSSVbgrd88ippXVS9y2rtvlap3+R1FOEETuEcPLiCOtxBA5rAQMIzvMKbo50X5935WIwWnHznGP7A+fwBkr+Q3Q==</latexit>

0

<latexit sha1_base64="mp7XUCJshrQhlrcRsBwK2jP37UA=">AAACFnicbVDLSgMxFM3UV62vqks3wSIIapkpRd0Uim5cVrQP6LQlk2ba0MyD5I50GPsVbvwVNy4UcSvu/BvTx0KrB244nHMvN/c4oeAKTPPLSC0sLi2vpFcza+sbm1vZ7Z2aCiJJWZUGIpANhygmuM+qwEGwRigZ8RzB6s7gcuzX75hUPPBvIQ5ZyyM9n7ucEtBSJ3ty07ZwCduCuWAnw2McYxvf6xq2C/gIx/otYcuWvNcHe9TJ5sy8OQH+S6wZyaEZKp3sp90NaOQxH6ggSjUtM4RWQiRwKtgoY0eKhYQOSI81NfWJx1QrmZw1wgda6WI3kLp8wBP150RCPKViz9GdHoG+mvfG4n9eMwL3vJVwP4yA+XS6yI0EhgCPM8JdLhkFEWtCqOT6r5j2iSQUdJIZHYI1f/JfUivkrdN88bqYK1/M4kijPbSPDpGFzlAZXaEKqiKKHtATekGvxqPxbLwZ79PWlDGb2UW/YHx8A+slnCE=</latexit>

S1 =
�
x, y | x2 + y2 = 1

 

<latexit sha1_base64="bUSm6MNSfGdeX3FG6kqcSF+WN1M="></latexit>
cos ✓ � sin✓
sin ✓ cos ✓

�
2 SO(2)

<latexit sha1_base64="9Yw+pQTJVJ63X0flu6Fq26A0Rdo=">AAAB63icbVBNSwMxEJ3Ur1q/qh69BIvgqeyKqMeiF48V7Ae0S8mm2TY0yS5JVihL/4IXD4p49Q9589+YbfegrQ8GHu/NMDMvTAQ31vO+UWltfWNzq7xd2dnd2z+oHh61TZxqylo0FrHuhsQwwRVrWW4F6yaaERkK1gknd7nfeWLa8Fg92mnCAklGikecEptLfR5Fg2rNq3tz4FXiF6QGBZqD6ld/GNNUMmWpIMb0fC+xQUa05VSwWaWfGpYQOiEj1nNUEclMkM1vneEzpwxxFGtXyuK5+nsiI9KYqQxdpyR2bJa9XPzP66U2ugkyrpLUMkUXi6JUYBvj/HE85JpRK6aOEKq5uxXTMdGEWhdPxYXgL7+8StoXdf+qfvlwWWvcFnGU4QRO4Rx8uIYG3EMTWkBhDM/wCm9Iohf0jj4WrSVUzBzDH6DPHwQ2jjw=</latexit>

(
) <latexit sha1_base64="h0nDPowWwi181CSSAAi+pEsiQrc=">AAACCnicbZDLSgMxFIYzXut4G3XpJloUV2VGiroRim5cVrAX6JSSSdM2NJMMyRlxKF278VXcuFDErU/gzrcxvSy09YfAz3fO4eT8USK4Ad//dhYWl5ZXVnNr7vrG5ta2t7NbNSrVlFWoEkrXI2KY4JJVgINg9UQzEkeC1aL+9aheu2facCXvIEtYMyZdyTucErCo5R084ONLHFJlQugxIGHoZmNiuJyQlpf3C/5YeN4EU5NHU5Vb3lfYVjSNmQQqiDGNwE+gOSAaOBVs6IapYQmhfdJlDWsliZlpDsanDPGRJW3cUdo+CXhMf08MSGxMFke2MybQM7O1Efyv1kihc9EccJmkwCSdLOqkAoPCo1xwm2tGQWTWEKq5/SumPaIJBZuea0MIZk+eN9XTQnBWKN4W86WraRw5tI8O0QkK0DkqoRtURhVE0SN6Rq/ozXlyXpx352PSuuBMZ/bQHzmfP9tImSI=</latexit>

x = cos ✓

y = sin ✓

Figure 3.4: The special orthogonal Lie group SO(d) is defined by quadratic equality constraints and is
therefore nonconvex. This is easiest to visualize for SO(2) because it is isomorphic to the unit circle S1.

3. semidefinite inequality constraint matrices (Ai � 0 ∀i ∈ [l]).

The QCQPs studied in this dissertation are all nonconvex because of the nonconvex constraints

required to describe the feasible sets for SO(d) and distance geometry problems. Figure 3.4

visually demonstrates that SO(2) is nonconvex via its isomorphism to the unit circle S1.

When discussing general optimization problems, we will use the following notation:

min
x∈Rn

f(x)

s.t. gi(x) ≤ 0, i = 1, . . . , l

hi(x) = 0, i = 1, . . . ,m.

(3.8)

This problem is convex when f is convex, equality constraints hi are affine, and inequality

constraints gi are convex. For reasons that will be made clear in Section 3.3, we will refer

to Equation (3.8) as the primal problem. This notation is convenient for developing duality

theory in Section 3.3, but we replace it with specialized forms for QCQPs and their semidefinite

relaxations in Section 3.4 and subsequent chapters.

Convex optimization problems are particularly exciting because every local minimum is

also a global minimum (Boyd and Vandenberghe, 2004, Sec. 4.2.2). This means that efficient

local optimization methods, such as gradient descent and its ilk, converge to global minima.3

3This wonderful property led R.T. Rockafellar to sagely point out that “...the great watershed in optimization
isn’t between linearity and nonlinearity, but convexity and nonconvexity” in Rockafellar (1993). This will serve
as a major theme of this dissertation, which reveals “hidden” convexity in seemingly difficult nonlinear and
nonconvex problems.
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In light of this fact, in subsequent chapters we primarily treat convex solvers as black boxes,

abstracting away their details and assuming that they return a global optimum in polynomial

time. Interested readers can consult Boyd and Vandenberghe (2004) for details on interior-point

solvers and other methods.

3.3 Lagrangian Duality

Every optimization problem, convex or nonconvex, is intimately related to a convex problem

that arises from its Lagrangian:

L (x,λ,ν) = f(x) +
l∑

i=1

λigi(x) +
m∑

i=1

νihi(x), (3.9)

with function definitions from Equation (3.8). The variables λ ∈ Rl and ν ∈ Rm are called

Lagrange multipliers or dual variables. The Lagrangian is a powerful tool for solving nonlinear

programs. One way to conceptualize dual variables is as “penalties” for breaking the constraints

of our optimization problem. Minimizing the Lagrangian for a given set of multiplier values

defines the dual function d : Rl × Rm → R:

d(λ,ν) = inf
x∈D
L (x,λ,ν) = inf

x∈D

(
f(x) +

l∑

i=1

λigi(x) +
m∑

i=1

νihi(x)

)
, (3.10)

where D is the intersection of the domains of the cost and constraint functions. The dual

function is concave, even when the original optimization problem Equation (3.8) is not convex.

This concavity allows us to define a convex optimization problem called the dual problem:

max
λ≥0l, ν∈Rm

d(λ,ν). (3.11)

Critically, the optimal solution d∗ of Equation (3.11) never overestimates the solution to the

primal problem:

d∗ ≤ p∗. (3.12)

The inequality in Equation (3.12) is known as weak duality, and it is an important result because

it reveals that the convex dual problem gives us a way to efficiently4 compute lower bounds for

the primal problem.

4We come to this conclusion by recalling that convex optimization problems yield global solutions with local
search methods, and that weak duality holds even for nonconvex primal problems.
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3.3.1 Strong Duality

We are particularly interested in cases where the lower bound provided by Equation (3.11) is

tight, that is,

d∗ = p∗. (3.13)

When this is the case, we say that strong duality holds. One important class of problems

for which strong duality holds is convex optimization problems that satisfy certain constraint

qualifications (Boyd and Vandenberghe, 2004). Slater’s condition is one example of a simple

constraint qualification that is relevant to convex optimization problems. It states that there

exists an x which is in the relative interior5 of the domain of Equation (3.8) such that

gi(x) < 0, i = 1, . . . , l

hi(x) = 0, i = 1, . . . ,m.
(3.14)

In other words, x is “strictly feasible” for Equation (3.8). We will discuss other constraint

qualifications in greater detail in Section 3.5.2, as they are important tools for guaranteeing

certain properties (like strong duality) hold for optimization problems.

Slater’s condition can be used to demonstrate that convex optimization problems exhibit

strong duality, but we are more interested in nonconvex problems for which strong duality

holds. Essentially, strong duality allows us to extract the global optimizer x∗ for the nonconvex

primal from the global optimizer (λ∗,ν∗) of the convex, and therefore easier to solve, dual

problem.

3.3.2 Optimality Conditions

In this section, we discuss the Karush-Kuhn-Tucker (KKT) necessary conditions for local min-

ima of (possibly nonconvex) optimization problems. Let x∗ be a local minimum with for some

general nonlinear program of the form in Equation (3.8) with continuously differentiable cost

and constraint functions f , gi, and hi. Then, if x∗ is regular (i.e., some constraint qualification6

holds), their exist Lagrange multipliers λ∗ ∈ Rl and ν∗ ∈ Rm such that (Bertsekas, 1999)

∇xL (x∗,λ∗,ν∗) = 0

gi(x
∗) ≤ 0, i = 1, . . . , l

hi(x
∗) = 0, i = 1, . . . ,m

λ∗i ≥ 0, i = 1, . . . , l

λ∗i = 0, ∀i /∈ A (x∗) ,

(KKT)

5As opposed to the interior, the relative interior of a set is the interior of its affine hull. This distinction is
only salient for problems where the feasible set has an affine dimension that is less than the dimension n of the
decision variable x ∈ Rn.

6Depending on the particular constraint qualification used, the statement of the KKT conditions can be
strengthened to the existence of unique Lagrange multipliers. For example, the strong linear independence
constraint qualification (LICQ) of Section 3.5.2 provides this uniqueness guarantee.
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where A (x) ⊆ [l] is the index set of the active inequality constraints at x, i.e.,

A (x) , {i ∈ [l] | gi(x) = 0} . (3.15)

The first line of Equation (KKT) is often called stationarity, and it states that any primal/dual

pair of optimal values x∗, (λ∗,ν∗) is a critical point of the Lagrangian. The second and third

lines are simply the primal feasibility of x∗, and the fourth is the nonnegativity of the Lagrange

multipliers λ∗ which penalize inequality constraints in the Lagrangian. The final line of Equa-

tion (KKT) is called complementary slackness, and it can be alternatively stated, alongside the

nonnegativity of each λ∗i , as

λ∗i g(x∗) = 0, i = 1, . . . , l. (3.16)

The KKT conditions are an essential tool for connecting primal and dual solutions, and some of

our results rely on the existence of Lagrange multipliers. The example illustrated in Figure 3.5

demonstrates a case where Lagrange multipliers do not exist for the global optimum x∗.

3.4 Semidefinite Programming Relaxations

In this section, we will introduce two semidefinite programs (SDPs) which are convex relaxations

of the homogeneous QCQP in Equation (3.2). These relaxations lead to optimizations over

feasible sets that involve semidefinite matrix constraints. In subsequent chapters, we include

some visualizations of toy SDPs which provide geometric intuition about problems of interest

and the SDP cone in general. We strongly recommend Dattorro (2005) to readers interested in

geometric interpretations of semidefinite optimization.

3.4.1 The Positive Semidefinite Cone

We begin by demonstrating that the set of n×n symmetric positive semidefinite (PSD) matrices

Sn+ is a convex cone. First, we prove that Sn+ is a cone:

A ∈ Sn+ =⇒ x>Ax ≥ 0 ∀x ∈ Rn

=⇒ α(x>Ax) ≥ 0 ∀x ∈ Rn, ∀α ≥ 0

=⇒ αA ∈ Sn+ ∀α ≥ 0.

(3.17)

Next, we prove that it is convex. Recalling the definition of a convex set in Equation (3.4), let

C = αA + (1− α)B for any α ∈ [0, 1] and arbitrary A,B ∈ Sn+. Using the definition of Sn+, for

any x ∈ Rn we have:

x>Cx = α x>Ax + (1− α) x>Bx ≥ 0, (3.18)

i.e., C ∈ Sn+ and Sn+ is convex. In the next section, we show that the semidefinite cone arises

naturally as a constraint on the feasible set of the Lagrangian dual for QCQPs.
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3.4.2 Semidefinite Programs

A semidefinite program is an optimization problem with a linear cost, linear constraints, and one

or more constraints involving the semidefinite cone. We mainly consider SDPs in the following

standard form:
min
Z∈Sn+

tr (CZ)

s.t. tr (AiZ) ≤ ai, i = 1, . . . , l

tr (BiZ) = bi, i = 1, . . . ,m,

(3.19)

where the cost matrix C and constraint matrices Ai and Bi are all elements of Sn. Since Sn+ is

a convex cone and the trace function is linear, it is easy to see that Equation (3.19) is a convex

optimization problem. For notational convenience, we will often write Equation (3.19)’s linear

constraints as
A (Z) ≤ a

B (Z) = b,
(3.20)

where A : Sn → Rl and B : Sn → Rm are linear operators.

3.4.3 The Lagrangian Dual of a QCQP

Let us apply the procedure in Section 3.3 to derive the Lagrangian dual problem for the homo-

geneous QCQP in Equation (3.2). We begin by forming the Lagrangian:

L (x,λ,ν) = x>Cx +

l∑

i=1

λi(x>Aix− ai) +

m∑

i=1

νi(x>Bix− bi). (3.21)

Using Equation (3.11), we can compute the dual function:

d(λ,ν) = inf
x∈Rn

L (x,λ,ν)

= inf
x∈Rn

(
x>Cx +

l∑

i=1

λi(x>Aix− ai) +
m∑

i=1

νi(x>Bix− bi)
)

= inf
x∈Rn

(
x> (C +

l∑

i=1

λiAi +
m∑

i=1

νiBi)x− a> λ− b> ν

)

=




− a> λ− b> ν, C +

∑l
i=1 λiAi +

∑m
i=1 νiBi � 0

−∞, otherwise.

(3.22)
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The final equality follows from the definition of Sn+: if the quadratic form is not PSD, then

Equation (3.22) is unbounded below.7 We can now state the dual problem

max
λ≥0,ν∈Rm

− a> λ− b> ν

s.t. C +
l∑

i=1

λiAi +
m∑

i=1

νiBi � 0,
(3.23)

which we recognize as an SDP, but not in the standard form of Equation (3.19).

3.4.4 The Primal SDP Relaxation

In this section, we explore an alternative SDP relaxation of QCQPs that ends up being closely

related to the dual SDP relaxation in Equation (3.23). We begin by reformulating Equation (3.2)

with the addition of auxiliary variable Z:

min
x∈Rn

tr (CZ)

s.t. tr (AiZ) ≤ ai, i = 1, . . . , l

tr (BiZ) = bi, i = 1, . . . ,m

Z = x x> ,

(3.24)

where all the nonlinearity (and therefore nonconvexity) has been “packed” into the quadratic

definition of Z. Equation (3.24) can be simplified further to remove x completely:

min
Z∈Sn+

tr (CZ)

s.t. tr (AiZ) ≤ ai, i = 1, . . . , l

tr (BiZ) = bi, i = 1, . . . ,m

rank (Z) = 1.

(3.25)

We now relax the rank-1 constraint to derive the convex primal SDP relaxation8 of Equa-

tion (3.2):

min
Z∈Sn+

tr (CZ)

s.t. A (Z) ≤ a

B (Z) ≤ b,

(3.26)

7Please refer to Boyd and Vandenberghe (2004) for further details on deriving the dual of various problems,
and for the useful concepts of generalized inequalities and dual cones.

8This is sometimes also referred to as the Shor relaxation (Cifuentes et al., 2022).
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which is identical to the standard form of Equation (3.19) when using the compact shorthand

for constraints defined in Equation (3.20). Since this SDP is a “relaxation” of constraints,9 we

know that its optimal value underestimates the optimal value p∗ of the primal QCQP. We are

interested in cases where this relaxation is tight: that is, the optimal value of Equation (3.26)

is equal to p∗. When this is the case and rank (Z∗) = 1, we can extract x∗ from Z∗.

Finally, we note that the Lagrangian dual of Equation (3.23) is in fact Equation (3.26).

Therefore, since SDPs are convex, when Slater’s condition (or some other constraint qualifica-

tion) holds, we have strong duality between Equation (3.23) and Equation (3.26). Furthermore,

when one of these SDPs is tight to the primal QCQP, we can conclude that the remaining SDP

is also a tight relaxation. In subsequent chapters, we make use of the rich theory of Lagrangian

duality and study Equation (3.23) closely, but we will mostly solve the primal QCQP relaxation

in Equation (3.26).10

3.5 Parametric Stability

In this section, we summarize the key results from Cifuentes et al. (2022) that we will extend and

apply to geometric problems in robotics. These results are reproduced in a notation consistent

with the rest of this dissertation, and therefore may appear slightly different than their original

form in Cifuentes et al. (2022).

The central object of study in this section is the following family of homogeneous QCQPs

with identical constraints and cost functions that vary with respect to some parameter:

Problem 1 (Parameteric QCQP). Let Ξ ⊆ Rd be a space parameterizing our problem. Find

the solution x∗ of the following homogeneous QCQP whose cost function varies continuously

with ξ ∈ Ξ:

min
x∈Rn

cξ(x) , x>C(ξ)x

s.t. gi(x) , x>Aix− ai ≤ 0, i = 1, . . . , l

hi(x) , x>Bix− bi = 0, i = 1, . . . ,m.

(Qξ)

In order to avoid the trivial solution x = 0, we assume that ∃ i ∈ [m] such that bi 6= 0.

Recalling Section 3.4, the QCQP with parametric cost in Problem 1 has the following primal/dual

pair of SDP relaxations:

Problem 2 (Parameteric SDP Relaxations). The primal and dual SDP relaxations of Problem 1

are:

9This can be understood by noting that each element x of the feasible set of Equation (3.2) corresponds to
an element Z = x x> of the feasible set of Equation (3.26). In other words, the SDP relaxation’s feasible set is
a superset of the primal problem’s feasible set when “lifted” to Sn. Thus, it can do no worse and underestimates
the primal’s optimal value.

10The performance of numerical solvers varies greatly with problem details and parameter settings, but we
found that the primal SDP is faster to solve for the specific problems addressed in this dissertation.



20 Chapter 3. Semidefinite Relaxations

min
Z∈Sn+

tr (C(ξ)Z)

s.t. A (Z) ≤ a

B (Z) = b,

(Pξ)
max

λ≥0,ν∈Rm
− a> λ− b> ν

s.t. Qξ(λ,ν) � 0,
(Dξ)

where Qξ(λ,ν) , C(ξ) +
∑l

i=1 λiAi +
∑m

i=1 νiBi is half the Hessian of the Lagrangian of Qξ.

In general, the optimal values of the three programs in Problem 1 and Problem 2 are related

via weak duality (Cifuentes et al., 2022):

val (Dξ) ≤ val (Pξ) ≤ val (Qξ) , (3.27)

where val (·) denotes the value of its argument’s cost function at a global optimum. When

strong duality holds for Qξ and its dual Dξ, the entire inequality chain in Equation (3.27)

becomes equalities (i.e., both convex relaxations are tight).

3.5.1 Tight or Zero-Duality-Gap Parameters

Consider some nominal parameter value ξ̄ ∈ Ξ for which Pξ and Dξ are tight relaxations of Qξ

(i.e., equality is attained in Equation (3.27)). We refer to any parameter ξ which encodes a

QCQP exhibiting strong duality as zero-duality-gap (ZDG). We are interested in determining

whether this tightness is stable to perturbations of ξ̄. To this end, we present a combination

of two lemmas found in Cifuentes et al. (2022) and Zheng et al. (2012) respectively, which

identifies a useful class of ZDG parameters ξ̄.

Lemma 2 (Sufficient Condition for Tightness). Consider the QCQP Qξ for any fixed ξ ∈ Ξ.

Let x ∈ Rn, λ ∈ Rl+, and ν ∈ Rm be such that

i) gi(x) ≤ 0 ∀ i ∈ [l], hi(x) = 0 ∀ i ∈ [m] (i.e., x is feasible for the primal problem Qξ);

ii) ∀ i ∈ [l], λi > 0 =⇒ gi(x) = 0 (i.e., complementary slackness from KKT);

iii) Qξ(λ,ν) � 0, λ ≥ 0 (i.e., feasibility for the dual problem Dξ),

iv) Qξ(λ,ν)x = 0 (i.e., stationarity from KKT).

Then, x is optimal for Qξ, λ and ν are optimal for Dξ, and val (Qξ) = val (Dξ). In addition, if

Qξ(λ,ν) is corank-1 (equivalently, rank (Qξ(λ,ν)) = n−1), then x x> is the unique optimum

of Pξ and x is the unique optimum of Qξ, up to sign.11

Proof. From stationarity we have that

0 = x>Qξ(λ,ν)x = x>C(ξ)x +

l∑

i=1

λi x>Ax +

m∑

i=1

νi x>Bx, (3.28)

11This sign ambiguity is due to the assumption from 3.1.1 that we have homogenized any linear constraints
with the auxiliary variable s2 = 1.
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and primal feasibility of the equality constraints gives us

0 = x>C(ξ)x +

l∑

i=1

λi x>Ax +

m∑

i=1

νibi. (3.29)

Complementary slackness tells us that if λi 6= 0, then gi(x) = x>Aix−ai = 0 and λi x>Aix =

λiai. Otherwise λi = 0 and λi x>Aix = 0 = λiai trivially. Combining this with Equation (3.29)

we have

0 = x>Cx +

l∑

i=1

λiai +

m∑

i=1

νibi = x>Cx− (− a> λ− b> ν) ≥ val (Qξ)− val (Dξ) , (3.30)

where the final inequality follows from the fact that Qξ is a minimization and Dξ is a maxi-

mization. Combining Equation (3.30) with Equation (3.12) proves strong duality and that x

and (λ, ν) are primal/dual optimal.

Next, suppose Z is an optimal solution of Pξ. Since ∃ i ∈ [m] such that bi 6= 0 by assumption,

Z 6= 0. Since strong duality holds between Qξ and Dξ, Equation (3.27) tells us that it also holds

between Pξ and Dξ. By complementary slackness for SDPs,12 tr (Qξ(λ,ν)Z) = 0. Since both

Qξ(λ,ν) and Z are PSD, Lemma 1 tells us that rank (Qξ(λ,ν)) + rank (Z) ≤ n. Therefore, if

rank (Qξ(λ,ν))) = n− 1 (i.e., it is corank -1), then

0 < rank (Z) ≤ n− rank (Qξ(λ,ν))) = 1

=⇒ rank (Z) = 1.
(3.31)

We conclude that Z is the unique optimal solution of Pξ since a second distinct optimal solution

Z′ would imply the existence of a rank-two optimal solution in the convex hull of Z and Z′.

Finally, since every rank-1 optimal solution of Pξ corresponds to an optimal solution of Qξ, we

conclude that x is the unique optimal solution of Qξ up to sign and Z = x x>.

Lemma 2 is a statement that alongside dual feasibility, the necessary conditions in KKT are

also sufficient for strong duality in the specific class of problems Qξ. We will use it as a tool

to prove that problems of the form Qξ have ZDG parameters ξ̄.

3.5.2 Constraint Qualification

In Section 3.3.1, we noted that Slater’s condition is an important constraint qualification for

convex optimization problems. In order to prove that interesting and practical nonconvex

problems of the form in Qξ exhibit tightness (equivalently, have ZDG parameters), we need

additional theoretical tools in the form of constraint qualifications. Before introducing these,

12See Section 5.9.2 of Boyd and Vandenberghe (2004) for details on duality and optimality conditions for cones
like Sn

+.
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Figure 3.5: An illustration of Problem 4, for which Slater’s condition and LICQ both fail to hold. The
linear cost function’s contours are drawn as diagonal lines. The feasible set is a singleton containing
x∗, and the span of the constraint gradients does not contain the cost function gradient. Therefore,
Lagrange multipliers satisfying the KKT conditions do not exist.
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we investigate a pair of toy problems for which Slater’s condition (Equation (3.14)) does not

hold.

Problem 3 (Constraint Qualification Example: Nonzero Duality Gap). Consider the following

convex optimization problem (Nedich, 2008):

min
x∈R2

− x2

s.t. x2 ≥ 0

‖x‖ ≤ x1.

(CQ-DG)

The feasible set of CQ-DG is
{
x ∈ R2

∣∣x1 ≥ 0, x2 = 0
}

, which does not strictly satisfy the in-

equality constraints. Therefore, Slater’s condition does not hold and strong duality is not guar-

anteed.

Problem 3 is trivial to solve by inspection: the entire feasible set has a constant cost function

value of 0. In order to compute the dual problem and check if strong duality holds, we begin

by writing the Lagrangian of Equation (CQ-DG):

L (x,λ) = −x2 + λ1(‖x‖ − x1)− λ2x2. (3.32)

The dual function is therefore

d(λ) = inf
x∈R2

{−λ1x1 − (1 + λ2)x2 + λ1 ‖x‖} , (3.33)

which is unbounded below for all λ2 ≥ 0. Therefore, the dual problem’s value is d∗ = −∞ 6= 0

and strong duality is not attained. Let’s examine another example of a problem which does not

satisfy the requirements of Slater’s condition.

Problem 4 (Constraint Qualification Example: No KKT Point). Consider the convex opti-

mization problem illustrated in Figure 3.5:

min
x∈R2

x1 + x2

s.t. x1 = 1

‖x‖2 ≤ 1.

(CQ-KKT)

The feasible set of CQ-KKT only contains the optimum x∗ = [1 0]>, which does not strictly

satisfy the inequality constraint. Therefore, Slater’s condition does not hold and strong duality

is once again not guaranteed.

While trivial, Problem 4’s low-dimensional geometry allows us to understand the impor-

tance of Slater’s condition and other constraint qualifications. We begin by constructing the
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Lagrangian for Problem 4:

L (x, λ, ν) = x1 + x2 + λ(‖x‖2 − 1) + ν(x1 − 1). (3.34)

Next, the stationarity condition is

∇xL (x∗, λ, ν) = 0 = 12 + 2λx∗ + [ν 0]> , (3.35)

where 1n is the n×1 column vector of ones. Since λ and ν only appear in the vector equation’s

first dimension, Equation (3.35) has no solution for the optimum x∗ = [1 0]>. Geometrically,

this means that the space spanned by the gradients of the active constraints at x∗ does not

contain the cost function’s gradient 12. Therefore, there are no dual variables which form a

“KKT point” with x∗ and results like Lemma 2 cannot be applied to this problem.

Interestingly, in spite of the fact that the stationarity condition from Equation (KKT) does

not apply to Problem 4, we can still prove that strong duality holds. To see this, we begin by

solving the stationarity condition in Equation (3.35) for x in terms of our dual variables:

x =
−1

2λ

[
1 + ν

1

]
. (3.36)

Since Equation (3.34) is a quadratic function and its Hessian is positive definite for λ > 0, strict

convexity tells us that the critical point in Equation (3.36) is the global minimum and we can

use it to write the dual function (Equation (3.10)) for CQ-KKT:

d(λ, ν) = inf
x∈R2

{
[1 + ν 1]x + λ ‖x‖2 − λ− ν

}

= −(1 + ν)2 + 1

4λ
− λ− ν

=




− (1+ν)2+1

4λ − λ− ν, λ > 0

−∞, λ = 0.

(3.37)

The dual problem (Equation (3.11)) can now be stated in terms of the first case (λ > 0) alone

as

max
λ>0, ν∈R

−(1 + ν)2 + 1

4λ
− λ− ν, (3.38)

and we can reveal the relationship between λ and ν at a critical point by taking a partial

derivative:
∂d(λ, ν)

∂ν
= −ν + 1

2λ
− 1 = 0

=⇒ ν = −2λ− 1.

(3.39)
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Substituting this expression for ν into Equation (3.38) gives us

− (1− 2λ− 1)2 + 1

4λ
− λ+ 2λ+ 1 = −4λ2 + 1

4λ
+ λ+ 1 =

4λ− 1

4λ
, (3.40)

which implies λ∗ → ∞ and d∗ → 1. Therefore, the duality gap in the limit is in fact zero,

and this example illustrates a subtler lesson than Problem 3: a problem that does not satisfy

constraint qualification may exhibit strong duality while failing to provide a dual solution

(λ∗,ν∗) that forms a KKT point with x∗.

In conclusion, even for simple convex problems, Slater’s condition is critical for ensuring de-

sirable properties like strong duality and the existence of Lagrange multipliers. Similarly, other

constraint qualifications play an important role in understanding and solving the challenging

QCQPs we examine in this dissertation.

Linear Independence Constraint Qualification

While useful for convex primal problems, Slater’s condition will not be sufficient for proving nice

properties about the nonconvex QCQPs that arise in robotics. The strongest (and therefore

easiest to prove) constraint qualification we will consider is the linear independence constraint

qualification (LICQ). We will say that LICQ holds at some feasible x̄ if the gradients

∇hi(x̄), i = 1, . . . ,m

∇gi(x̄), i ∈ A (x̄) ,
(LICQ)

are linearly independent, where A (x̄) ⊆ [l] is the index set of the active inequality constraints

at x̄:

A (x̄) , {i ∈ [l] | gi(x̄) = 0} . (3.41)

We will also write “LICQ (x̄)” as shorthand for “LICQ holds at x̄”.

Abadie Constraint Qualification

Let h : Rn → Rm describe the constraints for an optimization problem constrained only by

equalities (i.e., no inequalites). Denote the feasible set of this program as

X , {x ∈ Rn| h(x) = 0} . (3.42)

The Abadie constraint qualification (ACQ) holds at x ∈ X , denoted ACQX (x), if X is a smooth

manifold nearby x and rank (∇h(x)) = codimx (X ).13 Note that ACQ is weaker than LICQ,

i.e., LICQ (x̄) =⇒ ACQX (x̄), but they can both be used to prove the existence of Lagrange

multipliers. While stronger and therefore applicable to fewer problems, LICQ is in general much

easier to prove than ACQ and other constraint qualifications. In Section 3.6, we will require

13The codimension codimx (X ) , n−dimx (X ) where dimx (X ) is the local dimension of the manifold X at x.
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that LICQ holds for problem instances in order to prove that their strong duality is stable to

perturbations of the cost function’s parameters.

3.5.3 Stability for Equality Constraints

In this section, we present a theorem from Cifuentes et al. (2022) that gives sufficient conditions

for the SDP-stability of Qξ to perturbations of ξ. We denote the optimizer to Qξ̄, which is

simply Qξ with nominal ZDG parameter ξ̄, as x̄. Similarly, λ̄ and ν̄ are the corresponding

optimal dual variables of Dξ̄. We say that Qξ is SDP-stable near a ZDG parameter ξ̄ if there

exists some ε > 0 such that ξ is ZDG if
∥∥ξ − ξ̄

∥∥ < ε.

Theorem 2 (Theorem 3.2 from Cifuentes et al. (2022)). Consider the family Qξ where C(ξ) is

a continuous function of ξ and there are no inequality constraints. Let ξ̄ be such that C(ξ̄) � 0,

Qξ̄(ν̄) has corank-1, and val
(
Qξ̄
)

= 0. If ACQX (x̄) holds, then Qξ is SDP-stable near ξ̄, and

its primal SDP relaxation Pξ recovers its minimizer.

We omit the full proof of Theorem 2, which can be found in Cifuentes et al. (2022).14 Theorem 2

trivially applies to the case of inactive inequality constraints:

Corollary 2 (Inactive Inequality Constraints). Consider the general equality- and inequality-

constrained QCQP of Problem 1. When the zero-duality-gap point x∗ is strictly feasible, the

equality-constrained theorem applies since λ∗i = 0 when inequality constraint hi is inactive (i.e.,

strictly obeyed).

However, we will encounter QCQPs that are cost-perturbations of zero-duality gap QCQPs

with active inequality constraints, and inequality constraints are only interesting when they

are active at a solution of interest. To determine whether SDP relaxations of these perturbed

QCQPs are globally optimal, we must extend Theorem 2 to QCQPs which include inequality

constraints.

3.6 Extending Parametric Stability to Semialgebraic Sets

We begin by stating the main result of this section, which is simply an extension of Theorem 2

to include inequality constraints.

Theorem 3 (SDP Stability of Qξ). Consider the family Qξ where C(ξ) is a continuous function

of ξ. Let ξ̄ be such that C(ξ̄) � 0, Qξ̄(λ̄, ν̄) has corank-1, and val
(
Qξ̄
)

= 0. If LICQ (x̄) holds,

then Qξ is SDP-stable near ξ̄, and its primal SDP relaxation Pξ recovers its minimizer.

14The statement of Theorem 2 as presented in Cifuentes et al. (2022) also includes the requirement that b 6= 0.
However, in this dissertation we deal exclusively with QCQPs homogenized by s2 = 1 which trivially satisfies
this requirement. Therefore, we have omitted b 6= 0 for brevity’s sake.
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Remark 1 (Key Assumptions of Theorem 3): The requirements that C(ξ̄) � 0 and val
(
Qξ̄
)

=

0 are equivalent to requiring that λ̄ = 0 and ν̄ = 0 are optimal for Dξ̄. This is not particularly

restrictive, as the problems we study in this dissertation all have convex cost functions (ensuring

C(ξ̄) � 0), and our choice of ξ̄ will correspond to some “noise-free” or base case such that

val
(
Qξ̄
)

= 0 by construction. Therefore, for both Theorem 2 and Theorem 3, the constraint

qualifications and a corank-1 Hessian Qξ̄(λ̄, ν̄) = C(ξ̄) are the key assumptions.

The inclusion of polynomial inequality constraints makes the feasible set of Problem 1 a

semialgebraic set. This is in contrast to an algebraic set, which is defined as the locus of zeros

of a collection of polynomials. It is possible to convert quadratic inequalities into quadratic

equalities via the introduction of auxiliary variables:

gi(x) ≤ 0 ⇐⇒ ∃ si ∈ R : gi(x) + s2
i = 0. (3.43)

However, this procedure is both computationally inefficient and mathematically inelegant.

The main difference between the sufficient conditions of Theorem 3 and Theorem 2 is the

stronger constraint qualification requirement when inequalities are present. Proving Theorem 3

will require the introduction of a few concepts and tools. We define the Lagrange multiplier

mapping15 M : Ξ⇒ Rn × Rl × Rm as

ξ 7→ {(xξ,λξ,νξ) : xξ feasible for Qξ, (λξ,νξ) ∈ Λξ (xξ)}
= {(xξ,λξ,νξ) : g(xξ) ≤ 0, h(xξ) = 0, Qξ(λξ,νξ)xξ = 0} ,

(3.44)

where Λξ (x) ⊆ Rl+×Rm is the space of Lagrange multipliers16 at x (i.e., Λξ (x) is shorthand for

the set of (λξ,νξ) such that Qξ(λξ,νξ)xξ = 0). We say that the mapping in Equation (3.44)

is weakly continuous at η̄ , (x̄, λ̄, ν̄) ∈ M(ξ̄) if there exists ηξ ∈ M(ξ) such that ηξ → η̄ as

ξ → ξ̄. As a first step to proving Theorem 3, we establish that weak continuity is a sufficient

condition for SDP-stability.

Proposition 1 (Weak Continuity is Sufficient for Stability). Let ξ̄ be a ZDG parameter, and let

(x̄, λ̄, ν̄) be primal/dual optimal values of Qξ̄. Suppose that Qξ̄(λ̄, ν̄) has corank-1 and that M
is weakly continuous at (λ̄, ν̄). Then Qξ is SDP-stable near ξ̄ and Pξ recovers its minimizer.

Proof. Weak continuity ensures that there exists ηξ = (xξ,λξ,νξ) with xξ feasible for Qξ

and (λξ,νξ) ∈ Λξ (xξ) such that λξ → λ̄, νξ → ν̄ as ξ → ξ̄. By the continuity of C(ξ)

with respect to ξ, Qξ(λ,ν) → Qξ̄(λ̄, ν̄) as ξ → ξ̄. Since (λξ,νξ) ∈ Λξ (xξ), we have that

15The double-arrow notation ⇒ is borrowed from Cifuentes et al. (2022) and indicates that the codomain of
M is the set of subsets of Rn × Rl × Rm instead of individual elements.

16In some works, “Lagrange multipliers” refer only to the equality constrained case, and they are instead called
“KKT multipliers” when inequalities are introduced. We follow the notation of Boyd and Vandenberghe (2004)
and use the term Lagrange multipliers for the general case including both inequality and equality constraints.
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Qξ(λξ,νξ)xξ = 0 and Qξ(λξ,νξ) therefore has a zero eigenvalue. Since dual feasibility of (λ̄, ν̄)

implies Qξ̄(λ̄, ν̄) � 0 and rank
(
Qξ̄(λ̄, ν̄)

)
= n − 1, Qξ̄(λ̄, ν̄) has n − 1 positive eigenvalues.

Finally, by continuity of eigenvalues, Qξ(λξ,νξ) also has n−1 positive eigenvalues when ξ → ξ̄.

Therefore, Qξ(λξ,νξ) � 0 and has corank-1, and Lemma 2 completes the proof.

Proposition 1 is a modified version of Proposition 3.5 in Cifuentes et al. (2022). The main

difference is our inclusion of inequality constraints, but we also ignore cases where the problem’s

constraints g and h are parameterized by ξ.17 With Proposition 1, we have shown that proving

weak continuity of Equation (3.44) is sufficient for proving Theorem 3. Before tackling the dual

variables, we will first prove that x∗ξ → x̄ as ξ → ξ̄, where x∗ξ denotes an optimal solution to

Qξ. To do this, we can simply apply Lemma 3.7 from Cifuentes et al. (2022).

Lemma 3 (Continuity of the Primal Variable). For each ξ, let x∗ξ be an optimal solution of

Qξ. Then x∗ξ converges to x̄, up to sign.

Lemma 3 gives us a useful corollary regarding the set of active inequality constraints:

Corollary 3. For any ξ̄, there is a neighbourhood within which A (xξ) ⊆ A (x̄).

Proof. Since for each inactive constraint we have strict compliance gi(x̄) < 0, the continuity of

x∗ξ with respect to ξ ensures that there is a neighbourhood around ξ̄ within which all inactive

constraints remain inactive.

In Cifuentes et al. (2022), Lemma 3 is proved in the context of QCQPs without inequality

constraints, but it still applies to our more general family of QCQPs. The proof relies on the

assumption that b 6= 0, which ensures that x∗ξ deviates from x̄ continuously as ξ diverges from

ξ̄. This property is not affected by the presence of inequality constraints in Qξ.

Finally, recalling Remark 1, we need to prove that the Lagrange multipliers (λξ,νξ) both

converge to 0 as ξ → ξ̄. Our approach once again mirrors that of Cifuentes et al. (2022),

with a strengthened constraint qualification that helps account for the inclusion of inequality

constraints. In our proof, fξ : Rn → Rk denotes the vector function containing all equality

and active inequality constraints at xξ, where k ≤ l +m is the sum of the number of equality

constraints (m) and active inequality constraints (|A (xξ)| ≤ l). The vector µξ ∈ Rk contains

the Lagrange multipliers corresponding to xξ for the constraints in fξ.

Lemma 4 (Continuity of Dual Variables). Let xξ be a critical point of Qξ for ξ in the neigh-

bourhood of a ZDG parameter ξ̄ such that, by Corollary 3, A (xξ) ⊆ A (x̄). Let σξ > 0 be the

smallest nonzero singular value of the Jacobian Jξ , ∇fξ(xξ) ∈ Rk×n.

i) If LICQ (xξ) holds, then there exists (λξ,νξ) ∈ Λξ (xξ) with
∥∥µξ

∥∥ ≤ 1
σξ
‖∇cξ(xξ)‖ .

17For the robotics problems we are interested in, the constraints are fixed properties of physical space (e.g.,
rigid transformations in Equation (2.4)) or known static parameters of a particular robot. Therefore, we do not
make use of the more general theory in Cifuentes et al. (2022) for problems with parametric constraints.
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ii) If LICQ (x̄) holds and xξ → x̄, then there exists (λξ,νξ) ∈ Λξ (xξ) such that λξ → 0 and

νξ → 0.

Proof. i) The space of Lagrange multipliers Λξ (xξ) is the intersection of the solution space of

the linear system

µξ
> Jξ = −∇cξ(xξ), (3.45)

and the nonnegative orthant λ ≥ 0 for the active inequalities’ multipliers. Since xξ is a critical

point, we know that µξ exists. Since LICQ (xξ) holds, rank (Jξ) = k ≤ n and we know that µξ

is in fact the unique solution recovered by the pseudoinverse:

µξ
> = −∇cξ(xξ)J†ξ. (3.46)

Noting that
∥∥∥J†ξ

∥∥∥ = 1
σξ

completes the first part of the proof.

ii) Since LICQ (x̄) holds, A (xξ) ⊆ A (x̄), and full rank is an open condition,18 we know that

LICQ (xξ) holds in a neighbourhood of x̄ for ξ sufficiently close to ξ̄. Accordingly, σξ > 0 also

holds in this neighbourhood of ξ̄. By assumption, ∇cξ̄(x̄) = 2C(ξ̄)x̄ = 0. Therefore, applying

part i) of this lemma we see that

∥∥µξ
∥∥ ≤ 1

σξ
‖∇cξ(xξ)‖ → 0 (3.47)

as ξ → ξ̄. This means that νξ → 0, and since A (xξ) ⊆ A (x̄), we also have that the λi’s

corresponding to inactive constraints remain zero via complementary slackness, and λξ → 0 as

desired.

Lemma 4 is the final tool we need to prove Theorem 3:

Proof of Theorem 3. Recalling Remark 1, we know that λ̄ = 0, ν̄ = 0 are optimizers of Dξ̄.

Additionally, Qξ̄(λ̄, ν̄) = C(ξ̄) has corank-1 by assumption. Lemma 3 gives us that x∗ξ → x̄

as ξ → ξ̄. Lemma 4 proves that νξ → 0 = ν̄ and λξ → 0 = λ̄ as ξ → ξ̄. Therefore, the

assumptions of Proposition 1 hold, which proves Theorem 3.

3.6.1 Twisted Cubic Example

In this section, we test Theorem 3 on a simple toy problem. Our example is based on the twisted

cubic variety studied in Cifuentes et al. (2018):

Y ,
{
y ∈ R3 | y2 = y2

1, y3 = y1y2

}
, (3.48)

which is depicted in Figure 3.6. In the example in Cifuentes et al. (2022), Theorem 2 predicts

a zero-duality-gap region for a nearest point problem. This region is displayed in Figure 3.7.

18I.e., it holds in a neighbourhood (Lewis, 2009).
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Problem 5 (Truncated Twisted Cubic). Consider the semialgebraic set

Y ′ ,
{
y ∈ R3 | y2 = y2

1, y3 = y1y2, y1 ≥ 0
}
, (3.49)

which we refer to as the truncated twisted cubic. For some point ξ ∈ R3, consider the problem

of finding the nearest (in a Euclidean sense) point y ∈ Y ′ to ξ, i.e.:

min
y∈Y ′

‖y − ξ‖2 . (3.50)

Since Y ′ is a quadratic semialgebraic set, Equation (3.50) is a QCQP. For what values of

ξ /∈ Y ′ is the SDP relaxation of Equation (3.50) tight? More specifically, can we use Theorem 3

to prove that Equation (3.50) is stable to perturbations of ξ̄ ∈ Y ′?

The only nontrivial application of Theorem 3 to Problem 5 is for ξ̄ = 0, because this is the

only point in Y ′ where the inequality constraint is active. Since Equation (3.50) is a Euclidean

nearest point problem, we have that C(ξ̄) � 0, Qξ̄(λ̄, ν̄) has corank-1, and val
(
Qξ̄
)

= 0 for

ξ̄ = 0 and λ̄ = 0.19 Therefore, it remains to show that LICQ (ȳ) holds in order to satisfy the

requirements of Theorem 3. The equality and active inequality constraints at ȳ = 0 are

fξ̄(y) =



y2 − y2

1

y3 − y1y2

y1


 = 0 (3.51)

and the Jacobian is

∇fξ̄(y) =



−2y1 1 0

−y2 −y1 1

1 0 0


 , (3.52)

which we evaluate at ȳ = 0 to obtain

∇fξ̄(0) =




0 1 0

0 0 1

1 0 0


 . (3.53)

Since Equation (3.53) has full rank, LICQ (ȳ) holds and Theorem 3 tells us that SDP relaxations

of Equation (3.50) are tight for ξ in the neighbourhood of 0. This prediction is experimentally

verified in Figure 3.8, which displays a contour map of the SDP relaxation gap for values of

ξ ∈ R3.

19See Cifuentes et al. (2022) and Corollary 6 for details.
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Figure 3.6: The twisted cubic described by Equation (3.48) and used in Problem 5.

<latexit sha1_base64="mZYlPV1WpE4AxklMarmPwg7ZSTo=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KokW9Vj04rGCaQttKJvtpF262YTdjVhKf4MXD4p49Qd589+4bXPQ1gcDj/dmmJkXpoJr47rfzsrq2vrGZmGruL2zu7dfOjhs6CRTDH2WiES1QqpRcIm+4UZgK1VI41BgMxzeTv3mIyrNE/lgRikGMe1LHnFGjZX8zhPvXnRLZbfizkCWiZeTMuSod0tfnV7CshilYYJq3fbc1ARjqgxnAifFTqYxpWxI+9i2VNIYdTCeHTshp1bpkShRtqQhM/X3xJjGWo/i0HbG1Az0ojcV//PamYmugzGXaWZQsvmiKBPEJGT6OelxhcyIkSWUKW5vJWxAFWXG5lO0IXiLLy+TxnnFu6xU76vl2k0eRwGO4QTOwIMrqMEd1MEHBhye4RXeHOm8OO/Ox7x1xclnjuAPnM8fiNWOhA==</latexit> ⇠ 3

<latexit sha1_base64="bDyk8gJsaL7eBekgqexBCN+8/d0=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48VTFtoQ9lsN+3SzSbsTsRS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNEmmGfdZIhPdDqnhUijuo0DJ26nmNA4lb4Wj25nfeuTaiEQ94DjlQUwHSkSCUbSS330SPa9XrrhVdw6ySrycVCBHo1f+6vYTlsVcIZPUmI7nphhMqEbBJJ+WupnhKWUjOuAdSxWNuQkm82On5MwqfRIl2pZCMld/T0xobMw4Dm1nTHFolr2Z+J/XyTC6DiZCpRlyxRaLokwSTMjsc9IXmjOUY0so08LeStiQasrQ5lOyIXjLL6+S5kXVu6zW7muV+k0eRxFO4BTOwYMrqMMdNMAHBgKe4RXeHOW8OO/Ox6K14OQzx/AHzucPhc2Ogg==</latexit>

⇠1

Figure 3.7: Recreation of Figure 1 from Cifuentes et al. (2022) depicting the SDP relaxation gap for

the nearest point problem to Equation (3.48) for parameters of the form ξ , [ξ1 ξ
2
1 ξ3]

>
. Note that

Theorem 2 correctly predicts that there is a ZDG region in black surrounding each point of the twisted
cubic, which is plotted in white.
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Figure 3.8: The SDP relaxation gap for Equation (3.50) for parameters of the form ξ , [ξ1 ξ
2
1 ξ3]

>
.

Note that Theorem 3 correctly predicts that there is a ZDG region in black surrounding each point of
the truncated twisted cubic, which is plotted in white.



Chapter 4

Hand-Eye Calibration

I must first know myself, as the Delphian

inscription says; to be curious about that

which is not my concern, while I am still

in ignorance of my own self, would be

ridiculous.

Socrates, Plato’s Phaedrus

Robots rely on calibrated sensors in order to safely and effectively carry out complex tasks.

For mobile robots equipped with multiple instruments, an accurate estimate of the relative pose

(extrinsic calibration) between each pair of sensors is crucial in enabling capabilities like reliable

localization and mapping. Commercial robots may ship with a factory calibration performed

by experts using precision equipment that is unavailable to the end user. During operation,

intentional adjustments or unintended mechanical stresses may necessitate recalibration in the

field. This need for recalibration outside of a factory or laboratory setting has led to a plethora

of automatic calibration methods for a variety of sensor combinations (Pandey et al., 2015;

Brookshire and Teller, 2013; Kelly and Sukhatme, 2011; Lambert et al., 2017). These methods

operate with varying speed, accuracy, and assumptions about the robot’s environment, and

also differ in the level of sensor specificity and technician involvement required. Robots capable

of true long-term autonomy must leverage accurate and fully automatic calibration procedures

that work in their deployed environments. However, most existing approaches do not come with

any guarantee that globally optimal1 calibration parameters will be found. Convergence to a

local minimum may result in very poor calibration quality, compromising both the reliability

and safety of the robot system.

In this chapter, we develop a procedure for quickly determining the extrinsic calibration

between any pair of sensors capable of producing egomotion estimates. This approach is often

1It is important to note that global optimality is defined in terms of the available measurements. There
is no “magical” method for obtaining the ground truth, and we can expect the global optimum to degrade
proportionally to sensor noise, while remaining superior to local minima.
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Primal Problem 
Nonconvex  

QCQP

Dual Problem 
Convex SDP

Redundant 
Constraints

Convex, globally 
optimal solver

Global 
Optimum

minimize
R,t

JR + Jt,

subject to R 2 SO(3)
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Figure 4.1: We compute the extrinsic calibration between two egomotion sensors by solving the La-
grangian dual of a nonconvex quadratically constrained quadratic program. The dual is a convex prob-
lem, meaning it can be efficiently solved to find the global optimum. We leverage recent theoretical
results and prove that the primal solution can be extracted from the dual solution, even in the presence
of very significant noise. This leads to a certifiably globally optimal approach that outperforms local
optimization methods that have no formal guarantees.

referred to as hand-eye calibration from its use in determining the extrinsic transformation

between a robotic manipulator and a sensor (typically a camera) mounted on or held by the

manipulator. The formulation we use is also called the AX = XB problem. The novelty of our

approach stems from its use of recent advances in the optimization of quadratically constrained

quadratic programs (QCQPs). This enables us to provide a certifiably globally optimal solution

to our cost function, even when severe measurement noise is present, guaranteeing that our

approach avoids local minima. The main contributions of our work are:

1. a QCQP formulation of extrinsic calibration from per-sensor egomotion measurements;

2. a fast, certifiably globally optimal convex solution method for our formulation;

3. an application of Theorem 2 which connects calibration observability and the tightness of

our Lagrangian dual solution; and

4. an open source implementation and experimental analysis of our algorithm in MATLAB

and Python.2

In our experiments we compare our work with a method that uses a maximum likelihood

estimation (MLE) problem formulation over dual quaternions and a local solver (Brookshire

and Teller, 2013). This comparison highlights the viability of our cost function in terms of

representing the problem and getting an accurate estimate, while also demonstrating the speed

and guaranteed avoidance of local minima that our formulation enables through global convex

2See http://github.com/utiasSTARS/certifiable-calibration for code.

http://github.com/utiasSTARS/certifiable-calibration
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optimization. Additionally, the global optimality guarantees could be useful in providing a

first estimate for a more precise method using more probabilistic information or dense recon-

structions from sensor data, or to present a hypothesis that helps reject outliers for a robust

estimation scheme.

4.1 Related Work

We begin with a brief survey of hand-eye calibration algorithms. This well known problem has

been studied since the 1980s and we direct readers to the short literature reviews in Heller et al.

(2014) and Hu et al. (2019) for more information on recent approaches. We also specifically

review the limited literature on extrinsic calibration approaches that use global optimization.

Finally, in Section 4.1.3, we summarize the state of the art in the application of convex relaxation

techniques to estimation problems in computer vision and robotics.

4.1.1 Hand-Eye Calibration

Much of the early research on hand-eye calibration explored fast, closed-form solutions ap-

propriate for the limited computational resources available at the time. These methods are

tailored to the literal hand-eye case, where a robot arm with accurate forward kinematics

moves a camera, usually in front of a known calibration target (Tsai and Lenz, 1989). A dual

quaternion-based formulation is explored in Daniilidis (1999) and the advantages of coupling

translation and rotation estimation are reviewed. The experimental investigation in Horaud

and Dornaika (1995) concludes that nonlinear optimization approaches that couple translation

and rotation estimation, like the algorithm developed in this paper, provide more accurate

solutions in the presence of noise than the simpler but decoupled, closed-form methods. Our

problem formulation is similar to the one in Andreff et al. (2001), where observability criteria

and different solution methods are presented in a systematic fashion. The unknown scale case

is also studied in Wei et al. (2018), where a second-order cone programming solution without

optimality guarantees is proposed.

Recent research extends the hand-eye formulation to generic robotic platforms (e.g., self-

driving vehicles Walters et al. (2019)) and noisy egomotion measurements. Principled prob-

abilistic (i.e., maximum likelihood) formulations of hand-eye calibration are the subject of

Brookshire and Teller (2012) and Brookshire and Teller (2013). A similar approach is applied

to a related multi-robot calibration problem in Ma et al. (2016). Our technique eschews a

probabilistic cost function in order to leverage the simplicity of a classic geometric formulation,

however combining the two approaches is a promising future direction.

4.1.2 Globally Optimal Calibration

The majority of automatic extrinsic calibration approaches do not guarantee that the global

optimum will be found. In Levinson and Thrun (2014), the extrinsic calibration of a multi-beam
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lidar sensor relative to a robot’s base frame is computed with a local optimization method. The

authors demonstrate that their approach avoids converging to inaccurate local optima, even

when initialized with highly inaccurate parameter values, but they provide no formal guaran-

tee that this condition holds in general. Certain bespoke algorithms involving specific sensor

pairs and environmental features can be solved in closed form with a minimal set of measure-

ments (Gomez-Ojeda et al., 2015; Zhang and Pless, 2004), but these methods require a local

optimization when noise is present. The approach for calibrating extrinsic sensor parameters

relative to a manipulator base in Limoyo et al. (2018) relies on solving a point cloud registra-

tion problem. While there are globally optimal branch-and-bound (BnB) algorithms that can

guarantee a solution to point cloud registration up to a desired accuracy Straub et al. (2017),

these techniques can be extremely slow. Similarly, the global optimum of a hand-eye calibration

problem is found in Heller et al. (2012) and Ruland et al. (2012) using BnB, but its runtime is

orders of magnitude greater than convex methods.

The calibration methods closest to our own are found in Heller et al. (2014) and Heller and

Pajdla (2014), where certifiably globally optimal solutions for hand-eye calibration are recovered

using the method of convex linear matrix inequality relaxations (Lasserre, 2001). However, in

this paper we focus on mobile robotic platforms, provide an MLE formulation distinct from

those found in Heller et al. (2014), certify global optimality for more severe noise, theoretically

prove the global optimality of our approach with new convex optimization theory (Cifuentes

et al., 2022), and connect our approach with a well-known observability result.

4.1.3 Certifiably Globally Optimal Algorithms

Recently, a number of certifiably correct solutions to estimation problems in robotics have

been developed. In Carlone et al. (2015), Lagrangian duality was used to verify whether a

candidate solution to a pose graph optimization (PGO) is globally optimal. This approach led

to fast solvers in Rosen et al. (2019) and Briales and Gonzalez-Jimenez (2017) that exploit the

strong duality of PGO when measurement noise is not severe. The related problem of rotation

averaging has also proven amenable to globally optimal duality-based solution methods in

Fredriksson and Olsson (2012) and Eriksson et al. (2018).

Other problems involving optimization over SO(3) or SE(3) variables that can be solved

via their Lagrangian dual include generalized point cloud registration with known correspon-

dences (Briales et al., 2017; Olsson and Eriksson, 2008) and the relative camera pose prob-

lem (Briales et al., 2018). Both of these problems involve optimization over a single rotation

argument, and both use the method of adding redundant orthogonality constraints found in

Anstreicher and Wolkowicz (2000) and Wolkowicz (2002) for recovering a tight dual. In this

work, we develop a problem structure similar to that of Briales et al. (2017) and use the same

basic solution procedure. In addition to local stability properties examined in Cifuentes et al.

(2022), tools from algebraic geometry are used in Brynte et al. (2022) to explain the success of

SDP relaxations on nonconvex QCQPs involving SO(3) variables.
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Figure 4.2: We perform extrinsic calibration by using a pair of egomotion sensors a and b fixed to
a robot or other mobile rig. The constant extrinsic calibration X ∈ SE(3) relates the poses the two
sensors, which remain rigidly attached during measurement acquisition. At each timestep t, the sensors
produce egomotion measurements At,Bt ∈ SE(3), which are used to estimate X.

4.2 Problem Formulation

In this section, we derive the AX = XB equation and relate it to an MLE formulation of

hand-eye calibration. This MLE formulation is a QCQP to which we can apply the convex

relaxation-based solution methods of Chapter 3.

4.2.1 Kinematics

Consider two sensors labelled a and b which are rigidly attached to a mobile robot as in Fig-

ure 4.2. The sensor rig can move around its environment relative to a static world frame F−→w,

and we denote the coordinate frames for a and b at time step t with F−→at and F−→bt . We assume

that the sensors produce pairs of noisy egomotion estimates represented by homogeneous trans-

formation matrices T̃at−1at , T̃bt−1bt ∈ SE(3) corresponding to the motion from time step t−1 to

time step t. For unsynchronized sensors, this can be achieved via temporal calibration (Kelly

and Sukhatme, 2014) and an interpolation procedure (Brookshire and Teller, 2012).

We represent the constant extrinsic calibration between F−→at and F−→bt with the homogeneous

transformation matrix

X , Tab =

[
R p

0 1

]
∈ SE(3), (4.1)

where the sub- and superscripts in Rab and pbaa have been dropped for convenience. At any

time t, the following relationship holds between X and the absolute pose of sensors a and b in

the world frame F−→w:

Tbt , Twbt = TatX, (4.2)
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where Tat , Twat . We define the egomotion of sensor a from time step t− 1 to time step t as

At , Tat−1at =

[
Rat pat
0 1

]
, (4.3)

and denote the equivalent egomotion of sensor b as Bt.

We now use the fact that the extrinsic calibration is constant to derive a useful equation

relating X to the egomotions At and Bt:

TatX = Tbt

Tat−1AtX = Tbt−1Bt

AtX = T−1
at−1

Tbt−1Bt

AtX = XBt.

(4.4)

Equation (4.4) allows us to formulate an optimization-based estimator of X from the noisy

relative motion measurements Ãt and B̃t for t ∈ [T ], where T is the number of measurements

available.

4.2.2 QCQP Formulation

We are now able to formulate a QCQP that seeks an optimal X matrix:

min
R∈SO(3), p∈R3

JR + Jp, (4.5)

where

JR =
1

2

T∑

t=1

κt

∥∥∥R̃atR−RR̃bt

∥∥∥
2

F

(4.6)

is the rotation cost and

Jp =
1

2

T∑

t=1

τt

∥∥∥Rp̃bt + p− R̃atp− p̃at

∥∥∥
2

(4.7)

is the translation cost. The cost function is derived by expanding the expression
∥∥∥ÃtX−XB̃t

∥∥∥
2

F

and weighting each term with rotational and translational measurement parameters κt and τt.

These parameters have a probabilistic interpretation which we will derive in Section 4.2.3.

Since the terms within both quadratic norms in the primal problem Equation (4.5) are either

constant or linear with respect to our optimization variables R and p, the resulting cost function

is quadratic. The constraint R ∈ SO(3) can also be enforced through quadratic equations in

Equation (2.2) and Equation (2.3). These are orthogonality and “right-handedness” constraints

on R. While the handedness constraints distinguish SO(3) from its complement in O(3), O(3)

is the disjoint union of these sets and therefore the orthogonality constraints alone are often
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sufficient for estimation problems (Rosen et al., 2019). However, our experimental results in

Section 4.4.1 suggest that enforcing handedness is useful for our particular problem and solution

method.

We add an additional homogenizing variable s that makes the objective and constraints

purely quadratic (i.e., no linear or constant terms in the objective and no linear terms in the

equality constraints). This trick lets us apply our analysis from Chapter 3, where we dealt

exclusively with homogenized QCQPs of the form in Equation (3.2). The homogenized primal

problem has modified translational cost

J ′p =
1

2

T∑

t=1

τt

∥∥∥Rp̃bt + p− R̃atp− sp̃at
∥∥∥

2
(4.8)

and includes the additional constraint s2 = 1. Finally, the homogenized SO(3) constraints are

R>R = s2I,

Ri ×Rj = sRk, (i, j, k) ∈ cyclic(1, 2, 3).
(4.9)

Note that while the orthogonality constraints matched the form of Problem 1 before homog-

enization in Equation (4.9), the implementation of our method closely follows Briales et al.

(2017) and therefore includes this factor of s2, which does not affect the solution or our solver’s

performance.

4.2.3 Maximum Likelihood Interpretation

Typically, a sensor’s egomotion estimates Ã or B̃ are computed from noisy measurements. In

this section, we demonstrate that the minimizer of the QCQP formulation in Equation (4.5)

is actually a maximum likelihood estimate (MLE) for a particular model of sensors a and b,

namely, we assume that

1. sensor a produces idealized egomotion estimates (i.e., Ãt = At ∀t ∈ [T ]);

2. sensor b produces egomotion translation estimates corrupted by independent zero-mean

isotropic Gaussian noise (i.e., p̃bt ∼ N
(
pbt , σ

2
t I
)

and τt , σ−2
t ); and

3. sensor b produces egomotion rotation estimates corrupted by noise drawn from indepen-

dent isotropic Langevin distributions (i.e., R̃bt ∼ Lang (Rbt , κt)).

These assumptions are not too unrealistic in practice. For example, in the actual “hand-

eye” setup involving a robot manipulator and a camera, the manipulator’s joint encoders may

provide precise measurements leading to egomotion estimates that are far more accurate than

the camera’s. In this case, we would treat the manipulator’s encoders as the idealized sensor

a and assume that the noisier camera is sensor b. As our experimental results in Section 4.4
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reveal, ignoring a probabilistic formulation altogether and setting κt = τt = 1 at all time steps

t is often sufficient for an accurate estimate of X.

In order to prove that Equation (4.5) yields an MLE solution under these assumptions, let

us recall that the joint probability over independent random variables is simply the product

p(
{

B̃t

}T
t=1
| X) =

T∏

t=1

p(B̃t | X) =

T∏

t=1

p(p̃bt | X)p(R̃bt | X). (4.10)

Since both the Gaussian and Langevin distributions are in the exponential family, we can

simplify our development by taking the log-likelihood of Equation (4.10):

log p(
{

B̃t

}T
t=1
| X) = log

(
T∏

t=1

p(B̃t | X)

)
=

T∑

t=1

(
log p(p̃bt | X) + log p(R̃bt | X)

)
. (4.11)

The logarithm is monotonic, meaning the MLE problem (Barfoot, 2017) can be formulated as

min
X∈SE(3)

−
T∑

t=1

(
log p(p̃bt | X) + log p(R̃bt | X)

)
. (4.12)

We now proceed to demonstrate that Equation (4.12) is equivalent to Equation (4.5). Using

our assumptions that sensor a is perfect and p̃bt ∼ N
(
pbt , σ

2
t I
)
, the observation model for b’s

translation at time step t is

p̃bt = R> (Ratp + pat − p) + pεt , (4.13)

where pεt ∼ N
(
0, σ2

t I
)
. Therefore,

p̃bt − R> (Ratp + pat − p) ∼ N
(
0, σ2

t I
)
, (4.14)

and since the noise is isotropic and therefore rotation invariant,

Rp̃bt −Ratp + pat − p ∼ N
(
0, σ2

t I
)
, (4.15)

which is precisely the translation residual for time step t from the QCQP cost in Equation (4.5).

Therefore, each squared residual, once weighted by τt, is equal to log p(p̃bt | X) minus a constant

factor equal to the logarithm of the Gaussian’s normalization constant.

Similarly, the observation model for b’s rotation is

R̃bt = R>RatRRεt , (4.16)

where Rεt ∼ Lang (I, κt). The log-likelihood function is therefore

log p(R̃bt | X) = −c(κt) + κttr
(

R> R>at RR̃bt

)
, (4.17)
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to which we apply the identity tr
(
A>B

)
= d− 1

2 ‖A−B‖2
F

(Rosen et al., 2019) to obtain

log p(R̃bt | X) = −c(κt)−
κt
2

∥∥∥RatR−RR̃bt

∥∥∥
2

F

+ 3, (4.18)

demonstrating that the rotation residuals in Equation (4.5) are equivalent to the log-likelihood

values in Equation (4.12).

4.2.4 Decoupling Translation and Rotation

In this section, we massage our QCQP formulation of extrinsic sensor calibration into a form

that allows for a more efficient application of the SDP relaxation machinery of Chapter 3. We

begin by simplifying the cost function of (4.5) by reorganizing X into a column vector

x = [p> r> s]
>
,

r = vec (R) ,
(4.19)

where vec (·) : Rm×n → Rmn is a column-wise vectorization of its matrix argument (i.e., it

“vertically” stacks b columns). This allows us to use the matrix Kronecker product ⊗ via the

identity (Fackler, 2005)

vec (ACB) = (B> ⊗A)vec (C) (4.20)

for each term in the cost function of Equation (4.5) and write the cost as a quadratic form,

JR + J ′p = x>Cx, (4.21)

where

C =

[
03×3 03×10

010×3 Cr

]
+ Cp ∈ S13, (4.22)

and

Cr =

[∑T
t=1 κtM

T
r,tMr,t 09×1

01×9 0

]
, (4.23)

with each sub-matrix Mr,t taking the form

Mr,t = (I⊗Rat)− (R>bt ⊗ I) ∈ R9×9. (4.24)

Similarly for the translation components:

Cp =

T∑

t=1

τi M>
p,t Mp,t ∈ S13,

Mp,t = [I−Rat (p>bt ⊗ I) −pai ].

(4.25)
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Next, we note that the translation p is unconstrained and can therefore be solved in closed

form given the optimal rotation R∗. Following the procedure in Briales et al. (2017), we express

our cost as the block matrix

C =

[
Cp,p Cp,r

Cr,p Cr,r

]
, (4.26)

which allows us to concisely write the optimal translation as

p∗(R∗) = −C−1
p,pCp,rr

∗, (4.27)

where r = [r> s]
> ∈ R10 is the homogenized rotation vector. We can now substitute this

expression for p∗ into the cost function and use the Schur complement to compactly define

C′ , C/Cp,p = Cr,r −Cr,pC−1
p,pCp,r. (4.28)

This approach leads to a simpler QCQP with only r as a variable:

minimize
r,y

rTC′r,

subject to R ∈ SO(3),

s2 = 1.

(4.29)

Equation (4.29) is an equality-constrained instance of Problem 1, and we are now ready to solve

it with either the primal or dual SDP relaxation in Problem 2.

4.3 SDP Tightness and Stability

In this section, we use Theorem 2 to derive sufficient conditions for our convex relaxation-

based approach to hand-eye calibration to be tight, ensuring that a certifiably globally optimal

solution to the primal problem can be extracted from the solution to its convex relaxation.

Throughout this section, we will be dealing with a relaxed and homogeneous version of the

QCQP in Equation (4.5):

min
R∈O(3), p∈R3, s2=1

c(x) , JR + J ′p. (4.30)

Equation (4.30) is a relaxation of Equation (4.5) because we have expanded the feasible set of

R to O(3), which includes reflections in addition to rotations. An important consequence of

this fact is that any instance of Equation (4.30) which exhibits strong duality with a minimizer

in SO(3) will also exhibit strong duality if its constraints are “tightened” to limit its feasible set

to SO(3). Therefore, the smaller constraint set of Equation (4.30) will not only make the proof

of a ZDG region simpler, it will also serve as a ZDG existence proof of any formulation that

adds constraints (e.g., Equation (4.5) with handedness or redundant orthogonality constraints).
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Proposition 2 (Tightness of the Noise-Free Case). Any noise-free instance of Equation (4.30)

exhibits strong duality (i.e., the duality gap is zero and the optimal solution can be extracted

from its dual SDP solution).

Proof. We will use Lemma 2, which requires that we present a primal solution x∗ ∈ Rn and a

dual solution ν∗ ∈ Rm that satisfy

1. primal feasibility (h(x∗) = 0);

2. dual feasibility (Q(ν∗) � 0); and

3. stationarity (Qξ(ν
∗)x∗ = 0),

where Q is half the Hessian of the Lagrangian of Equation (4.30). Selecting the ground truth

rotation R∗ and translation p∗ clearly satisfy primal feasibility since R∗ is a rotation matrix.

If we select ν∗ = 0, we get Q(ν∗) = ∇2c which is clearly positive semidefinite because the cost

function c is a positive sum of convex norms and therefore convex. Finally, since the ground

truth values R∗ and p∗ give a cost of zero and c(x) is nonnegative, x∗ is an unconstrained

minimizer and

2Q(ν∗)x∗ = 2Cx∗ = ∇c(x∗) = 0. (4.31)

Proposition 2 trivially extends to Equation (4.5) with any number of redundant constraints:

Corollary 4 (SO(3) and Redundant Constraints). Any formulation with SO(3) and redundant

constraints also exhibit strong duality for all noise-free instances.

Proof. Redundant constraints by definition do not change the primal feasibility of the ground

truth. Likewise, if the ground truth value x∗ already corresponds to an element of SO(3), then

the primal feasibility is unaffected. Finally, assigning ν∗i = 0 for all new constraints hi does not

affect the dual feasibility or stationarity property, since their proof in Proposition 2 relies only

on the fact that x∗ is an unconstrained minimizer and the cost function is convex.

Before proceeding, we present a key lemma relating sensor rig motion to observability and

the rank of the cost function matrix.

Lemma 5 (Cost Function Matrix Rank). Consider the nonhomogeneous form of Equation (4.5)

(i.e., without the addition of homogenizing variable s and its constraint s2 = 1). Its cost function

can be written as

c(x) = x>Cx + c> x + const. (4.32)

For a cost function generated by noise-free measurement data, the Hessian C of Equation (4.32)

is full rank (and therefore positive definite) if the following conditions hold:
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1. the sensor rig rotates about two unique axes during time steps i and j (i.e., rotations

Rai 6= I and Raj 6= I are about distinct axes); and

2. the measurements at the same time steps i and j are such that

[
Rpbi
Rpbj

]
/∈ col

[
I−Rai

I−Raj

]
, (4.33)

where col is the column space or range of its matrix argument.

Proof. We first note that c(x) is a positively weighted sum of quadratic norms, therefore c(x) ≥
0 and ∇2c(x) = C � 0. The first-order optimality condition Bertsekas (1999) gives us

∇c(x)|x∗ = 0 =⇒ 2Cx∗ = −c 6= 0. (4.34)

Thus, if the solution x∗ is unique, then C � 0 and is of full rank, otherwise the nullspace of

C provides infinite solutions. Therefore, it suffices to show that the global (unconstrained)

minimizer x∗ is unique in order to prove that C is full rank. Since c(x) ≥ 0 is a sum of squared

residuals that are all equal to zero when x∗ = [p∗ > r∗ >]
>

, where p∗ and r∗ are the true

calibration parameters used to generate the noise-free measurements, we see that c(x∗) = 0 is

an unconstrained global minimum of c(x). Thus, we must show that c(x) = 0 implies that

x = x∗.

We will first demonstrate that JR(r) = 0 if and only if r = αr?, α ∈ R. To accomplish this,

we will note that each squared residual term RatR−RRbt is equal to zero if and only if

R = RatR R>bt . (4.35)

Using the Kronecker product’s vectorization identity yields

(I9 −Rbt ⊗Rat)r = 09, t ∈ {i, j}. (4.36)

Since Rbi and Rbj are rotations about distinct axes, Lemma 1 from Andreff et al. (2001) ensures

that the system in Equation (4.36) has a unique solution up to scale α.

Having established that f(x) = 0 =⇒ r = αr∗, we will now investigate the squared residual

terms of Jp:

Rpbt + p−Ratp− pat . (4.37)

Substituting in αr∗ and setting the ith residual to zero gives

(I−Rai)p + αR∗pbi = pai , (4.38)
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which we can rearrange and combine with the jth residual to get

[
I−Rai R∗pbi
I−Raj R∗pbj

][
p

α

]
,M

[
p

α

]
=

[
pai
paj

]
, (4.39)

where M ∈ R6×4 has been defined for convenience. In order to prove that p = p∗, α = 1 is a

unique solution, we must demonstrate that M is of full rank. First, we quickly show that

rank

([
I−Rai

I−Raj

])
= 3. (4.40)

Suppose ∃w 6= 0 such that (I−Rai) w = 0 and (I−Raj )w = 0. This would mean that w is

along the axis of rotation for both Rai and Raj , which contradicts our assumption. Since the

left three columns of M are rank 3, M is rank 4 when its fourth column is not in the span of of

the first 3 columns. This is precisely our assumption in Equation (4.33). Therefore, x∗ is the

unique minimizer of c(x) and C is full rank and strictly convex.

One of Lemma 5’s requirements is that the sensor platform rotates about two distinct axes

in a fixed global reference frame. This is a well-known observability criterion found in other

formulations of extrinsic calibration (Andreff et al., 2001; Brookshire and Teller, 2013; Kelly

and Sukhatme, 2011).

With Lemma 5 in hand, we are ready to prove Theorem 4, which is the main result of this

section and essentially an application of Theorem 2 to hand-eye calibration.

Theorem 4 (SDP Stability of Equation (4.30)). Let

ξ , Vec

({
R̃at , p̃at , R̃bt , p̃bt

}T
t=1

)
∈ R24T , (4.41)

where Vec(·) applies vec (·) to each element of its argument and vertically concatenates its result

into a column vector. All the egomotion measurements that parameterize the cost function of

Equation (4.30) are captured in ξ. Let ξ̄ be an idealized instance of ξ containing noise-free

measurements corresponding to the motion of a sensor platform that meets the observability

requirements of Lemma 5 (i.e., it contains measurements of rotations about two distinct axes

and it satisfies Equation (4.33)). Then, there exists some ε > 0 such that if
∥∥ξ − ξ̄

∥∥ ≤ ε, then

strong duality holds for the instance of Equation (4.30) described by ξ, and the global optimum

can be obtained via the solution of the dual problem.

Proof. We will use Theorem 2, which requires that

1. the cost cξ(x) = x>C(ξ)x varies continuously as a function of ξ;

2. ξ̄ is such that the cost matrix C(ξ̄) � 0;

3. the minimum value of Equation (4.30) for ξ̄ is 0;
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4. Qξ̄(ν̄) has corank-1; and

5. the Abadie constraint qualification (ACQ) holds for the algebraic variety described by the

constraints of Equation (4.30).

In Section 4.2.4 we demonstrated that the cost function cξ(x) depends quadratically (and

therefore continuously) on ξ, satisfying condition 1. The proof of Proposition 2 ensures that 2

and 3 hold.

In order to prove that the Hessian of the Lagrangian has corank-1, recall from Proposition 2

that ν̄ = 0 is a valid optimal dual solution for ξ̄. Therefore, Qξ̄(ν̄) = C(ξ̄). Since we are

dealing with a homogenized version of the cost function in Equation (4.5), we can express the

Hessian as

C(ξ̄) =

[
Q q

q> q

]
∈ S13, (4.42)

where Q is the Hessian of the nonhomogeneous cost in Equation (4.5). Applying Lemma 5 tells

us that rank (Q) = 12. Proposition 2 gives C(ξ̄)x̄ = 0, so we know that C(ξ̄) is not full rank

since x̄ 6= 0 because it is primal feasible and therefore contains a vectorized rotation matrix.

Since adding rows and columns to a matrix cannot reduce its rank, we obtain

12 = rank (Q) ≤ rank
(
C(ξ̄)

)
< 13 (4.43)

and conclude that rank
(
C(ξ̄)

)
= 12 (i.e., it is corank-1) as desired.

Finally, condition 5 holds because the variety described by O(3) defines a radical ideal (see

Lemma 5.1 and Example 5.4 in Cifuentes et al. (2022) for details).

Theorem 4 demonstrates the existence of a measurement error bound ε within which our

hand-eye calibration formulation exhibits strong duality, but we leave the computation3 of this

bound as future work. It is worth noting that the column-space requirement in Equation (4.33)

for Lemma 5 is primarily a convenience: the main requirement is rotation about two distinct

axes (Andreff et al., 2001; Chen, 1991). However, Equation (4.33) ensures that we can use ν̄ = 0

as our reference dual solution, and failure to satisfy Equation (4.33) is highly improbable in

practice.4 Additionally, this condition is worth including because of its importance in ensuring

a unique solution to the “unknown scale” version of Equation (4.5) in which sensor b is a

monocular camera (Wise et al., 2020).

We can use Theorem 3 to obtain the following corollary:

Corollary 5. The QCQP in Equation (4.5) can be augmented with inequality constraints on

the extrinsic translation p while retaining the SDP stability property in Theorem 4.

3Cifuentes et al. (2022) provides a fairly straightforward method for computing one such ε on a per-problem
instance basis. However, this method usually provides a loose and therefore overly conservative bound, motivating
the development of more precise methods in future work.

4The range of the first three columns of M has measure zero in the six dimensional space of values for pbi
and pbj

.
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Proof. Since LICQ holds for all elements of O(3) and orthogonality constraints do not involve

the extrinsic translation p, any inequality constraints satisfying LICQ can be added without

losing LICQ because of the block diagonal property of rank. Therefore, we can apply Theorem 3

with a proof identical to that of Theorem 4 but substituting LICQ for ACQ.

Corollary 5 allows us to incorporate useful physical constraints when formulating extrinsic

calibration problems. For example, knowledge of an upper bound on the distance between

sensors a and b can be encoded in the quadratic constraint

‖p‖2 ≤ d2
max. (4.44)

Similarly, knowledge that sensor b is “above” sensor a with respect to a’s z-axis is easily encoded

as the linear constraint pz ≥ 0. Finally, the reasoning in Corollary 5 can be applied to inequal-

ities on auxiliary variables representing the unknown scale of a monocular camera’s translation

measurements as studied in Wise et al. (2020) and Wodtko et al. (2021). A practitioner can

combine any number of these constraints, provided the Jacobians of all active constraints remain

linearly independent at a potential solution.

As a complement to the stability method of Cifuentes et al. (2022), we note that Brynte et al.

(2022) have studied SDP relaxations of QCQPs over SO(3) and other quadratic representations

of rotations. Brynte et al. (2022) use sophisticated techniques from algebraic geometry to prove

that while non-tight instances of problems like hand-eye calibration exist, they are in fact rare

in practice.

4.4 Experiments

In this section, we evaluate our algorithm’s performance on synthetic and real data. We begin

with an empirical analysis of the duality gap and the effect of adding redundant, independent

constraints. Synthetic data is then used to compare the accuracy and runtime of our algorithm

with the local optimization method in Brookshire and Teller (2013). Finally, we apply our

algorithm to real datasets that use various types of cameras and IMUs to produce egomotion

estimates.

Throughout this section, we will frequently refer to the level of noise that is added to

simulated measurements. We use σt and σr to denote the standard deviation of translation

in meters and rotation measurements in radians, respectively. To remain consistent with the

experiments in Brookshire and Teller (2013), we apply zero-mean Gaussian noise to translations

and an Euler angle representation of rotations. We use isotropic covariance matrices Σt = σ2
t I

and Σr = σ2
r I. The performance metrics we use in this section are the L2 norms for translation

vectors (the Euclidean distance) and rotation matrices (the Frobenius norm). These metrics

are used to compare the accuracy of estimates of X acquired by our algorithm and the local

optimization approach.
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4.4.1 Simulated Data

To simulate egomotion measurements, we utilize a random smooth path that contains rotations

about multiple distinct axes, guaranteeing that X is observable (Brookshire and Teller, 2013).

A sample path is displayed in Figure 4.3. The path is constructed by tracing a circular route

over a landscape consisting of random sinusoidal functions in the z-axis in terms of x- and

y-axis variables. The two sensor frames of reference are rigidly positioned according to their

extrinsic calibration on a virtual vehicle which traverses this smooth path. The global poses of

the individual sensors’ paths are used to extract exact egomotion poses which are subsequently

corrupted with noise.

Figure 4.3: Simulated path example. A landscape generated with a mixture of random sinusoids is used
to generate paths for sensors a and b, which are rigidly fixed to a virtual vehicle traversing the terrain.
A circular path with varying elevation is chosen to ensure observability (in the sense of Lemma 5) of the
calibration parameters.

Zero-Duality-Gap and Redundant Constraints

In Section 4.3, we demonstrated that our problem formulation is guaranteed to exhibit strong

duality even in the presence of some finite measurement error (i.e., a zero-duality-gap region

exists). In this section, we empirically verify this result while also demonstrating that adding

handedness and redundant orthogonality constraints increases the size of the ZDG region. While

the exact amount of measurement error the problem can tolerate is difficult to determine for our

problem’s high-dimensional measurement data, a theorem in Cifuentes et al. (2022) provides

means of computing a lower bound. We leave analysis of these lower bounds as future work,

and instead focus on experimental insights here.
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In order to study the effect of adding constraints to the dual formulation, we formulated

a simple observable problem instance: a rotation of π
2 radians and a translation of 1 meter

about the vehicle’s x-axis, followed by the same manoeuvre about the y-axis. Since our proof

in Section 4.3 guarantees a ZDG region for even the minimally constrained case (i.e., only row

orthogonality constraints), we expect adding constraints will improve the tolerance to mea-

surement error in a manner consistent with Briales et al. (2017). In order to keep the error

injection process simple, we only perturbed one of the rotation measurements for each trial.

The top bar graph in Figure 4.4 summarizes the effect of the magnitude of this rotation pertur-

bation (i.e., the magnitude of the rotation angle in an axis-angle description of the perturbing

rotation matrix). Each individual bar represents the percentage of 100 uniformly sampled axis

directions that a given set of constraints returned for a perturbation magnitude indicated by

the x-axis groupings. As the legend in Figure 4.4 indicates, all constraint sets used row or-

thogonality (labelled R) and some combination of column orthogonality (C) and handedness

(H). For all rotation noise levels tested, the handedness-augmented constraint sets (R+H and

R+C+H in Figure 4.4) are able to recover an exact minimizer of the primal problem (i.e.,

strong duality holds), whereas the smaller constraint sets do not guarantee a zero-duality-gap

problem instance. The redundant column orthogonality constraints (R+C) appear to improve

the performance of the default O(3) constraints (R), but this benefit appears to be subsumed

by the handedness constraints for all instances tested.

In the bottom bar graph of Figure 4.4, the rotation perturbation magnitude was fixed to π
2

and a similar translation perturbation scheme was introduced for one of the measurements in

our minimally observable problem. Since both rotation and translation directions needed to be

sampled at a sufficient resolution, each bar represents 256 trials. Once severe translation error

(10 m) is introduced, the benefit of including the complete, redundant constraint set (R+C+H)

becomes clear.

Robustness to Noise

Figure 4.5 compares the performance of our method with the local optimization approach in

Brookshire and Teller (2013) for varying values of σt and σr. Each pair of subplots represents

100 random trials on simulated data. When σt and σr are low, the calibration results are simi-

lar for both methods. Our approach is consistently more accurate than the local optimization

approach, especially as the noise becomes extreme. This regime of noise is relevant for appli-

cations with low cost, noisy sensors or environments that produce challenging conditions (e.g.

an urban canopy causing intermittent GPS readings or low-texture surfaces for camera-based

egomotion estimation).

We speculate that these results are due to local minima in the high-dimensional cost func-

tion of the approach in Brookshire and Teller (2013). Since that method uses relative pose

measurements from one of the sensors as initial guesses for their corresponding variable in the

optimization, noisy measurements mean that many of these initializations will be inaccurate.
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Figure 4.4: Performance of different O(3) and SO(3) constraints on a two-measurement simulated
problem instance. All results used row orthogonality constraints at a minimum (R), with redundant
column orthogonality (C) and right-handedness constraints (H) being added as well. In the top chart,
each rotation magnitude (x-axis grouping) was used to create perturbations about 100 uniformly sampled
axes of rotation. The bars indicate the percentage of certified globally optimal solutions found at a
particular perturbation magnitude. The bottom chart has a fixed rotation perturbation magnitude of π2
but also introduces a perturbation to one of the translation measurements over a total of 256 trials.

Our algorithm avoids this problem by treating all measurements as data instead of variables,

and by solving and certifying the global optimality of a convex realization of the problem.

Initialization

For certain initial estimates of the extrinsic calibration X, the local optimization can also

converge to a local minimum, even under mild noise conditions. In Figure 4.6 we have plotted

a heat map of the relative performance of the local approach and our global convex approach.

Each cell corresponds to the maximum difference in the translation (left) or rotation (right)

error of the two algorithms’ estimates of X over a uniform sampling of an initial guess for X.

Higher values indicate larger error for the local approach. The x-axis varies the magnitude of

the initial rotation guess angle in an axis angle form, while the y-axis varies the magnitude of

the initial translation guess. As the distance from the true calibration parameters increases,
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Figure 4.5: Histograms of translational and rotational L2 error for various noise levels. The problem
formulation and local solver from Brookshire and Teller (2013) is shown in red, while our convex approach
is in blue. Each subplot is a histogram showing the distribution of either translation or rotation error in
the estimate of X over 100 random trials. Rotation noise increases from left to right while translation
noise increases from top to bottom. The performance of the local solver degrades much more rapidly as
the noise levels increase. Note that rotation error is defined as the Frobenius norm of a rotation matrix
and is therefore dimensionless.
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the accuracy of the local minima degrade. In contrast, the convex formulation converges for

any initial conditions.

Figure 4.6: Heatmaps displaying the difference in translation and rotation calibration error between
the local approach and our convex algorithm for a randomly generated path. For each cell, 64 different
initial values for X were used to seed the local optimization. Each of these initial values had the same
translation and and rotation angle magnitude, as indicated by the cell’s position on the axes. The yellow
colour plotted indicates higher error in the local optimization approach.

Runtime

Since our problem formulation fixes the number of optimization variables, solver runtime is

independent of the amount of data available. In contrast, the MLE approach in Brookshire

and Teller (2013) treats every relative motion as an optimization variable. We performed a

runtime comparison of both methods on a desktop with an Intel Core I7-7820X 3.6 GHz CPU.

Since both algorithms require data setup that is slow when naively implemented in MATLAB,

we only compare the runtime of the solvers. Our approach uses the general-purpose SDPT3

algorithm (Toh et al., 1999) provided by the CVX package (Grant et al., 2008). The local

approach in Brookshire and Teller (2013) uses a custom Levenberg-Marquardt solver.

In Figure 4.7, the mean runtime along with 1st and 3rd quartile bars from 100 random runs

is plotted for both methods. The local optimization approach’s runtime quickly grows as more

measurements are added, while our approach is able to solve any problem instance in under half

a second on average. The trend appears to continue for larger datasets, as the local approach

did not converge after waiting several hours for a dataset of over 1000 poses, which our solver

was able to easily handle.
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Figure 4.7: Mean solver runtime with 1st and 3rd quartile bars over 20 random runs per data point.
The number of relative pose measurements in the problem data used is varied, exhibiting poor scaling
for the local optimization approach and virtually constant solver time for our convex approach.

4.4.2 RGB-D Data

In this section, we use experimental data from Brookshire and Teller (2013), obtained with Xtion

RGB-D sensors. For details about data collection, the extraction of relative pose measurements,

and ground truth, see Brookshire and Teller (2013). In Table 4.1 we compare the error with

respect to ground truth of our algorithm and the local optimization approach. Both algorithms

are able to acquire accurate extrinsic calibrations. We also include the mean runtime of 100

applications of each solver on a laptop computer with an Intel Core i5-5287U 2.90 GHz CPU.

For this dataset, we were able to find initial parameters that trap the local optimization method

in local minima in a pattern similar to Figure 4.6, but only for initial parameters that are tens

of meters away from the true value. Nevertheless, our method is much faster, and simulation

results indicate that local minima arise for realistic datasets with different noise levels and

types of measurements. Furthermore, an exhaustive set of experiments is impossible for the

uncountably infinite number of problem instances, meaning our formal optimality guarantees

are a valuable tool and safer choice.

4.4.3 Starry Night Dataset

The “Starry Night” dataset consists of stereo vision and pre-processed inertial measurement

unit (IMU) readings from an environment with static landmarks (Furgale et al., 2012). The

dataset also contains Vicon motion capture measurements of the sensor rig’s motion and a

groundtruth value of X. We used the dataset to produce incremental egomotion estimates for

the stereo camera, IMU, and a second IMU trajectory estimate using Vicon measurements of

reflective markers placed on the sensor rig. See Figure 4.8 for a photograph of the sensor rig.

Table 4.1 summarizes the results of a comparison between our algorithm and the local

method of Brookshire and Teller (2013). The estimate of X that uses Vicon and stereo camera

measurements is labelled “Vicon”, and both algorithms are able to obtain a fairly accurate
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Figure 4.8: The sensor rig used in the “Starry Night” dataset. The IMU data reports translational
and rotational velocities, while the stereo camera observes static point landmarks with known positions.
Image courtesy of Professor Timothy Barfoot.

estimate from this data. However, our algorithm is once again orders of magnitude faster. The

results labelled “IMU-5” compare integrated IMU measurements and camera localization on all

poses where at least 5 out of 20 possible landmarks are visible to the stereo camera, ensuring

accurate estimation. Even though the IMU measurements have been sanitized to remove biases,

the velocity measurements are still very noisy and lead to large drift in the trajectory estimate.

This is reflected in the results: both algorithms are able to recover a reasonable estimate of the

extrinsic orientation, but neither manages to accurately estimate the relative position. The local

approach is similarly far slower with this data. In order to study the accuracy of the algorithms

on a number of poses where the local optimization approach has a competitive runtime, we

downsampled the IMU and camera data to only those poses where the camera is able to see

15 landmarks. These results are labelled “IMU-15”, and neither algorithm is able to obtain

an accurate estimate, but the local approach’s result is particularly erroneous, which indicates

that it may be trapped in a local minimum. Our globally optimal approach’s rotational error is

not egregiously large, and its fast runtime means it could be suitable for bootstrapping another

algorithm that uses more data than relative poses but needs an initialization within some basin

of convergence.

4.5 Summary and Future Work

In this chapter, we leveraged state-of-the-art certifiably globally optimal solution methods for

QCQPs to create a novel, general purpose extrinsic calibration algorithm. Our method is faster
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Table 4.1: Extrinsic Calibration Results for Real Data.

Dataset Method L2 Error Runtime (s)
Trans. (cm) Rot.

RGB-D Local 1.2 0.026 4.80
Convex 1.3 0.026 0.31

Vicon Local 2.6 0.021 168.2
Convex 3.4 0.020 0.33

IMU-5 Local 16.5 0.14 133.4
Convex 21.3 0.17 0.40

IMU-15 Local 709.7 2.30 0.90
Convex 97.2 0.63 0.38

than previous approaches, but more important is its avoidance of convergence to local minima

that other methods fall prey to, even in the presence of severe noise. Our algorithm’s beneficial

properties were demonstrated through a range of experiments involving simulated and real data,

which we intend to compare with a greater variety of algorithms in future work. Conveniently,

we proved that observability of the calibration parameters is sufficient for guaranteeing a ZDG

region around noise-free observations, and demonstrated further empirical evidence in support

of the theoretical analysis in Brynte et al. (2022). We also believe that the effect of redundant

constraints can be more precisely characterized using the theory developed in Cifuentes et al.

(2022).

The techniques used here can also be extended to the calibration of other sensor configu-

rations. Monocular cameras are particularly interesting because they are only able to provide

egomotion estimates up to an unknown scale (Wise et al., 2020). In addition, the extrinsic

calibration of multiple inertial measurement units could also benefit from the globally optimal

properties of a QCQP formulation. We would also like to incorporate non-isotropic measure-

ment covariances into an MLE formulation that is still a QCQP, since this information, when

available, can be extremely valuable to an estimator. Finally, a further avenue for future work

is to perform a comparison of SO(3) representations that admit a QCQP formulation of the

problem (e.g., comparing rotation matrices with unit quaternions and other representations

explored in Heller et al. (2014)).
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Planar and Spherical Inverse

Kinematics

To find the answer, you must know the

answer.

Michael P. Collins,

CIV102: Structures and Materials

This chapter explores the use of SDP relaxations for solving planar and spherical inverse

kinematics problems with symmetric joint limits and obstacle constraints. While this may

seem orthogonal to the calibration problem studied in Chapter 4, the theoretical machinery we

developed in Chapter 3 reveals that these problems are not quite as unrelated as they appear

at first glance. Most notably, we take inspiration from noisy estimation problems like hand-eye

calibration to develop a “nearest point” formulation of inverse kinematics. This approach acts

as a bridge from the techniques in applied in Chapter 4 to the more challenging revolute inverse

kinematics problems in Chapter 6.

Many common robots (e.g., manipulator arms and snake-like robots) can be modelled as

kinematic chains: rigid bodies connected by revolute joints that constrain robot motion to a

specific workspace. The motion of these robots may also be constrained by joint limits or user

and task-specified workspace constraints on the positions or orientations of links. Planning

and controlling motion therefore requires solving the inverse kinematics (IK) problem: finding

configurations of the kinematic chain that satisfy a set of kinematic constraints. A wide variety

of techniques have been developed with the goal of solving IK for specific types of kinematic

chains, such as manipulators with up to six degrees of freedom (DOFs). However, generic

solvers primarily rely on nonlinear optimization techniques, which typically solve the problem

locally around an initial “seed” configuration. Owing to their local nature, these solvers cannot

guarantee that a feasible solution will be found, and as such may lead to the false conclusion

that a problem is infeasible.
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Figure 5.1: System diagram summarizing our approach. We parameterize manipulator kinematics
with joint locations, leading to a QCQP problem formulation. This allows us to leverage polynomial
optimization techniques to obtain certifiably globally optimal solutions or certificates of infeasibility.

Kinematic chains are often parametrized using joint angles as variables, generating an IK

problem comprised of nonlinear trigonometric equations. However, alternative parameteriza-

tions exist that result in the kinematic equations taking on forms suitable for solution with a

wider variety of mathematical tools. Porta et al. (2005b) show that IK can be formulated as

a special case of the Distance Geometry Problem (DGP) (Dattorro, 2005), which consists of

finding points that satisfy a given set of assigned distances. Semidefinite programming (SDP)

and sum-of-squares (SOS) relaxations are convex optimization techniques that have been used

to solve the DGP in the domains of sensor network localization (SNL) (So and Ye, 2007; Nie,

2009) and protein folding (Alipanahi et al., 2013). In this chapter, we demonstrate that the

DGP in Porta et al. (2005b) can be represented as a quadratically constrained quadratic pro-

gram (QCQP), which can be extended to include other constraints such as joint limits. The

main contributions of this chapter are:

1. a polynomial formulation of IK with joint limit constraints, which admits provably tight

SDP relaxations for problem instances which meet a criterion we characterize;

2. a fast solution method for our formulation that uses a sparse SOS solver; and

3. an open source implementation and experimental analysis of our algorithm in MATLAB.1

1See https://github.com/utiasSTARS/sos-ik for our code.

https://github.com/utiasSTARS/sos-ik
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5.1 Related Work

In this section, we review the two fields at whose intersection this chapter lies: IK and global

polynomial optimization.

5.1.1 Inverse Kinematics

Owing to its widespread use, IK is a subject of intense research with an abundance of relevant

literature that we only briefly summarize here; see Aristidou et al. (2018) for a recent, in-

depth survey. Classical theoretical results show that a general 6-DOF spatial kinematic chain

has up to 16 configurations corresponding to any feasible end-effector pose (Lee and Liang,

1988). In such cases, closed form solutions can be found analytically using various parametriza-

tions (Manocha and Canny, 1994; Husty et al., 2007; Qiao et al., 2010), and software libraries

such as IKFast (Diankov, 2010) can be used to rapidly generate feasible configurations. One

downside of these approaches is that they only account for other kinematic constraints (such

as joint limits) as a post-processing step. Moreover, for spatial (planar) kinematic chains with

more than six (three) DOFs, there exist an infinite number of solutions for any given end-

effector pose, which means the state space for the redundant DOFs needs to be enumerated in

a discrete and computationally expensive fashion.

When solutions cannot be obtained analytically, numerical methods are often used. So-

called closed-loop IK (CLIK)1 techniques use the Jacobian’s (pseudo)inverse to apply differen-

tial kinematics in a closed-loop fashion, viewing IK as a feedback control problem (Sciavicco

and Siciliano, 1986). Moreover, CLIK methods using variants of damped least squares (Buss

and Kim, 2005) and null-space optimization (Nakamura et al., 1987) provide numerically sta-

ble redundancy resolution for multiple hierarchical criteria. Nonconvex nonlinear optimization

techniques such as sequential quadratic programming (Schulman et al., 2014) iteratively gen-

erate convex subproblems, which can be efficiently solved. These numerical methods do not

provide any global optimality or feasibility guarantees, however, and therefore may require a

large number of initializations to retrieve a feasible solution. Dai et al. (2019) use a piecewise-

convex relaxation of the SO(3) group to formulate the constrained IK problem as a mixed

integer linear program (MILP). They show that, unlike local optimization, their method re-

quires no initialization and can provide a global certificate of infeasibility when a solution

cannot be found. Without approximating SO(2) or SO(3), our approach utilizes the theoretical

machinery developed in Chapter 3 to derive a tight SOS relaxation of IK for planar and spatial

spherical kinematic chains, while retaining the ability to certify the global infeasibility of the

problem. Moreover, our SOS relaxation leverages the innate sparsity pattern of the kinematic

model to efficiently scale to a high number of DOFs. Finally, in Blanchini et al. (2015) and

1These techniques are not to be confused with IK methods for parallel mechanisms whose physical structure
contain “closed loops”.
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Blanchini et al. (2017), the authors analyze a convex formulation of inverse kinematics that is

similar to our planar case but uses a linear cost function and relaxation.

5.1.2 Global Polynomial Optimization

Optimization problems with polynomial cost and constraints are amenable to a host of convex

relaxations that provide globally optimal solutions or bounds on the minimum cost. These

methods include SDP relaxations for QCQPs (Ma, 2010), as well as the broader class of global

polynomial optimization techniques known as SOS programming (Parrilo, 2003; Lasserre, 2001).

While SOS programming technically involves solving an SDP, we will reserve the term “SDP

relaxation” for relaxations of the form described in Chapter 3. Convex relaxations of polynomial

optimization problems have found success in applications spanning signal processing, finance,

control theory, and state estimation (Boyd and Vandenberghe, 2004; Lasserre, 2010; Olsson and

Eriksson, 2008).

The literature on convex relaxations for SNL is closely related to the techniques developed

in this chapter. Most work focuses on the performance of SDP formulations for localization

problems where noisy measurements of inter-sensor distances are provided (Biswas et al., 2006).

In this chapter, we seek to solve inverse kinematics, where “measurements” are the distances

between points of the kinematic chain. Thus, our approach is more closely related to the

analyses of the noise free SNL problem found in So and Ye (2007) and Nie (2009), which

demonstrate tightness of SDP and SOS relaxations, respectively. However, our work employs

joint angle limits unique to robotics problems such as manipulation and uses a novel nearest

point formulation that has theoretical guarantees for relaxation tightness (Cifuentes et al.,

2022).

Convex relaxations of polynomial optimization problems have been utilized in a variety of

planning and control algorithms. In Deits and Tedrake (2015a), convex obstacle-free regions

of space in cluttered environments are efficiently generated via two alternating optimizations.

This approach is used in Deits and Tedrake (2015b) and Landry et al. (2016) to create SOS

constraints enforcing collision-free trajectories in a mixed-integer planning approach to quadro-

tor flight. In Paden et al. (2017), admissible heuristics for kinodynamic path planning problems

are constructed with a SOS approximation method. In Jasour et al. (2015), chance-constrained

formulations of optimization problems are introduced and solved via SOS programming. These

methods are applied to problems in robotic motion planning and control to design trajectories

with bounded collision probabilities (Jasour and Lagoa, 2016; Jasour et al., 2018). Our algo-

rithm, while not solving the entirety of a path planning or control problem, is complementary to

these works and holds promise as a means of extending various planning methods to complex,

high-dimensional kinematic models. The closest work to ours is Trutman et al. (2022), where

SOS programming is used for globally optimal solutions to IK for 7-DOF revolute manipula-

tors. The approach in Trutman et al. (2022) has stronger formal guarantees than ours, but it
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that a general 6-DoF spatial kinematic chain has up to
16 configurations corresponding to any given feasible end-
effector pose. In such cases, closed form solutions can be
found analytically using various parametrizations [8]–[10],
and software libraries such as IKFast [11] can be used to
rapidly generate feasible configurations. One downside of
these approaches is that they only account for other kinematic
constraints (such as joint limits) as a post-processing step.
Moreover, for spatial (planar) kinematic chains with more
than six (three) DoFs there exist an infinite number of
solutions for any given end-effector pose, which means the
state space for the redundant DoFs needs to be enumerated
in a discrete and computationally expensive fashion.

When solutions cannot be obtained analytically, numerical
methods are often used. So-called closed-loop IK (CLIK)
techniques use the Jacobian’s (pseudo)inverse to apply dif-
ferential kinematics in a closed-loop fashion, viewing IK as
a feedback control problem [12]. Moreover, CLIK meth-
ods using variants of damped least squares [13] and null-
space optimization [14] provide numerically stable redun-
dancy resolution for up to several hierarchical criteria. Non-
convex nonlinear optimization techniques such as sequential
quadratic programming [15] iteratively generate convex sub-
problems, which can be efficiently solved. These numerical
methods do not provide any global optimality or feasibility
guarantees, however, and therefore may require a large
number of initializations to retrieve a feasible solution. The
authors of [16] use a piecewise-convex relaxation of the
SO(3) group to formulate the constrained IK problem as a
mixed integer linear program (MILP). They show that, unlike
local optimization, their method requires no initialization
and can provide a global certificate of infeasibility when a
solution cannot be found. Without approximating the SO(2/3)
group, our approach utilizes the theoretical result from [17]
to derive a tight SOS relaxation of IK for planar and spatial
spherical kinematic chains, while retaining the ability to
certify the global infeasibility of the problem. Moreover, our
SOS relaxation leverages the innate sparsity pattern of the
kinematic model to efficiently scale to a high number of
DoF. Finally, in [18] and [19], the authors analyze a convex
formulation of inverse kinematics that is similar to our planar
case but uses a linear cost function.

B. Global Polynomial Optimization
Optimization problems with polynomial cost and con-

straints are amenable to a host of convex relaxations that
provide globally optimal solutions or bounds on the mini-
mum cost. These methods include SDP relaxations for QC-
QPs [20], as well as the broader class of global polynomial
optimization techniques known as SOS programming [21],
[22]. While SOS programming technically involves solving
an SDP, we will reserve the term “SDP relaxation” for
relaxations of the form described in Section IV-C. Convex
relaxations of polynomial optimization problems have found
success in applications spanning signal processing, finance,
control theory, and state estimation [23]–[25].

The literature on convex relaxations for SNL is closely
related to the techniques developed in this paper. Most work
focuses on the performance of SDP formulations for local-
ization problems where noisy measurements of inter-sensor
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Fig. 2. A kinematic chain comprised of N � 1 spherical joints, and a
virtual joint at the endpoint. Note that spherical joints in two dimensions
correspond to revolute joints with a single rotation axis. The dotted lines
represent links which are not shown. All constraints imposed on the joint xi

are a function of its position and the positions of nearby joints. The vertex
xN representing the endpoint is constrained to a ball around the point ak .

distances are provided [26]. In this paper, we seek to solve
inverse kinematics, where ‘measurements’ are the distances
between points of the kinematic chain. Thus, our approach
is more closely related to the analyses of the noise free SNL
problem found in [3] and [4], which demonstrate tightness of
SDP and SOS relaxations, respectively. However, our work
employs joint angle limits unique to robotics problems such
as manipulation and uses a novel nearest-point formulation
that has theoretical guarantees for relaxation tightness [17].

Convex relaxations of polynomial optimization problems
have been utilized in a variety of planning and control
algorithms. In [27], convex obstacle-free regions of space in
cluttered environments are efficiently generated via two alter-
nating optimizations. This approach is used in [28] and [29]
to create SOS constraints enforcing collision-free trajectories
in a mixed-integer planning approach to quadrotor flight.
In [30], admissible heuristics for kinodynamic path planning
problems are constructed with a SOS approximation method.
In [31], chance-constrained formulations of optimization
problems are introduced and solved via SOS programming.
These methods are applied to problems in robotic motion
planning and control to design trajectories with bounded
collision probabilities [32], [33]. Our algorithm, while not
solving the entirety of a path planning or control problem,
is complementary to these works and holds promise as a
means of extending various planning methods to complex,
high-dimensional kinematic models.

III. KINEMATIC MODEL

In this section, we build on [1] to devise a model of the
kinematic chain for which the IK problem can be formulated
as a QCQP. The resulting QCQP admits an SDP relax-
ation [20], for which we provide sufficient conditions for
tightness in Section IV-C. We also comment on the sparsity
pattern of the constraints, which allows us to derive an
efficient sparse SOS relaxation (see Section V-B for details).
For clarity, we restrict our analysis to planar and spatial
serial kinematic chains with N spherical joints connected by
N straight rigid links. However, the model presented here
admits complex kinematic chains that include industrial and
parallel manipulators [1].

We begin by representing key points in the kinematic chain
as vertices of a graph embedded in Rd�2. In Figure 2, we
can see that each joint of the chain is represented by a vertex

Figure 5.2: A kinematic chain comprised of N − 1 spherical joints, and a virtual joint at the endpoint.
Note that spherical joints in two dimensions correspond to revolute joints with a single rotation axis.
The dotted lines represent links which are not shown. All constraints imposed on the joint xi are a
function of its position and the positions of nearby joints. The vertex xN representing the endpoint is
constrained to a ball around the point ak.

is tailored to a different class of manipulators and has a runtime on the order of seconds, which

is prohibitive for real-time applications.

5.2 Kinematic Model

In this section, we build on Porta et al. (2005b) to devise a model of the kinematic chain for

which the IK problem can be formulated as a QCQP. The resulting QCQP admits an SDP

relaxation, for which we provide sufficient conditions for tightness in Section 5.3.3. We also

comment on the sparsity pattern of the constraints, which allows us to derive an efficient sparse

SOS relaxation (see Section 5.4.2 for details). For clarity, we restrict our analysis to planar

and spatial serial kinematic chains with N spherical joints connected by N straight rigid links.

However, the model presented here admits complex kinematic chains that include industrial

and parallel manipulators (Porta et al., 2005b).

We begin by representing key points in the kinematic chain as vertices of a graph embedded

in Rd, where d ∈ {2, 3}. In Figure 5.2, we can see that each joint of the chain is represented by

a vertex xi ∈ Rd , i = 1, 2, . . . , N , with the vertices x0 and xN corresponding to the base and

the endpoint respectively. Note that the full set of joint angles can be geometrically recovered

from this representation.



5.2. Kinematic Model 61

5.2.1 Distance Constraints

We can restrict the distance between two vertices xi and xj to some range Dij = [Dijmin , Dijmax ]

by introducing the nonconvex quadratic constraint

D2
ijmax

≥ ‖xi − xj‖2 ≥ D2
ijmin

, (5.1)

which can be used to model the kinematic chain structure by constraining the distances between

joints. We can model rigid links by reducing the rangeDi,i+1 to a single value li+1, corresponding

to the length of the link between two consecutive joints at xi+1 and xi. This results in an

equality constraint, which restricts the distance between two joints to match the length of the

link connecting them:

l2i+1 ≥‖xi+1 − xi‖2 ≥ l2i+1

⇔ ‖xi+1 − xi‖2 = l2i+1.
(5.2)

Without additional constraints, the vertex xi+1 is restricted to a sphere of radius li+1 centred

at xi: this corresponds to an unconstrained spherical joint in Rd.

5.2.2 Position Constraints

The distance of any vertex from a fixed point in Rd (or anchor) ak can be restricted to the

range Dik = [Dikmin
, Dikmax ] using

D2
ikmax

≥ ‖xi − ak‖2 ≥ D2
ikmin

. (5.3)

Similarly to Equation (5.2), collapsing the range Dik in Equation (5.3) to zero restricts the

position of a vertex xi to the point ak:

0 ≥‖xi − ak‖2 ≥ 0

⇔ ‖xi − ak‖2 = 0.
(5.4)

This allows us to define the base position by constraining x0, as well as the exact pose (position

and orientation) of the final link by constraining xN−1 and xN .

5.2.3 Angle Constraints

The angle θi of any joint xi with respect to its parent joint xi−1 is often restricted by mechanism

design. In Figure 5.3, the unit vector

ẑi ,
1

li
(xi − xi−1) (5.5)



62 Chapter 5. Planar and Spherical Inverse Kinematics

✓i

↵i

↵i ẑi+1

ẑi

Fig. 3. Visualization of the convex angle constraint in Eq. (5). As both the
vectors ẑi and ẑi+1 are of unit length, the length kẑi � ẑi+1k depends
only on the angle between them.

xi 2 Rd�2 , i = 1, 2, . . . , N , with the vertices x0 and xN

corresponding to the base and the endpoint respectively. Note
that the full set of joint angles can be geometrically recovered
from this representation.

A. Distance Constraints

We can restrict the distance between two vertices xi and
xj to some range Dij = [Dijmin

, Dijmax
] by introducing the

non-convex quadratic constraint,

D2
ijmax

� kxi � xjk2 � D2
ijmin

, (1)

which can be used to model the kinematic chain structure
by constraining the distances between joints. We can model
rigid links by reducing the range Di,i+1 to a single value
li+1, corresponding to the length of the link between two
consecutive joints at xi+1 and xi. This results in an equality
constraint, which restricts the distance between two joints to
match the length of the link connecting them:

l2i+1 �kxi+1 � xik2 � l2i+1

, kxi+1 � xik2 = l2i+1.
(2)

Without additional constraints, the vertex xi+1 is restricted
to an Sd�1 sphere of radius li+1, centered at xi. This
corresponds to an unconstrained spherical joint in Rd.

B. Position Constraints

The distance of any vertex from a fixed point in Rd

(or anchor) ak can be restricted to the range Dik =
[Dikmin , Dikmax ] using

D2
ikmax

� kxi � akk2 � D2
ikmin

. (3)

Similarly to Eq. (2), collapsing the range Dik in Eq. (3) to
zero restricts the position of a vertex xi to the point ak:

0 �kxi � akk2 � 0

, kxi � akk2 = 0.
(4)

This allows us to define the base position by constraining
x0, as well as the exact pose (position and orientation) of
the final link by constraining xN�1 and xN .

C. Angle Constraints

The angle ✓i of any joint xi with respect to its parent joint
xi�1 is commonly limited by mechanism design. In Figure 3,
the unit vectors ẑi = 1

li
(xi � xi�1) and ẑi+1 are related to

joint angle ✓i and limit ↵i. Applying the cosine law leads to
the equivalence

|✓i|  ↵i

, kẑi+1 � ẑik2  2 (1 � cos↵i) ,
(5)

which can be used to enforce joint limit constraints symmet-
ric with respect to the previous link, as shown in Figures 2
and 3. In [34], it is noted that quadratic constraints can also
be used for non-symmetric angle ranges smaller than 180�

Note that the constraints described in this section form a
sparsity pattern: the position of any joint xi only appears
in constraints with nearby joints xi�k and xi+k for k 
2. In Section V-B we explain how this sparsity can be
exploited by an SOS solver to efficiently find IK solutions.
This kinematic model can also be extended to include other
quadratic constraints such as collision avoidance, which we
plan to explore in future work.

IV. INVERSE KINEMATICS FORMULATION

In this section, we cast IK as an optimization problem
seeking the feasible configuration whose joints are closest to
some target positions in the workspace. This nearest point
formulation of IK allows us to prove Theorem 2, which sheds
light on the globally optimal performance of our convex
relaxations.

A. Algebraic Variety of Feasible Configurations
The variety Y of a set of polynomial equations fi(y) = 0

is the set of real-valued solutions satisfying those equations:

Y := {y 2 Rn : f1(y) = · · · = fm(y) = 0}. (6)

In order to define the set of all kinematically feasible N -link
chains that connect the origin in Rd to a desired end position
xN as a variety, we need to express the inequalities repre-
senting angle constraints from Section III-C as equalities. To
this end, we introduce N auxiliary variables si [35] and note
that any inequality constraints satisfy the equivalence

fi(x)  0 () fi(x) + s2
i = 0. (7)

We will use x 2 Rd(N�1) to denote the concatenation of
‘interior’ joints xi, i = 1, . . . , N � 1, and s 2 RN to denote
the column vector of auxiliary si variables. We can now
define our kinematically feasible set as the algebraic variety

YIK := {y 2 Rn : gi(x) = hi(y) = 0, i = 1, . . . , N}, (8)

where n = d(N � 1) + N and y = [xT sT ]T , and

gi(x) = kxi � xi�1k2 � l2i ,

hi(y) = kẑi+1 � ẑik2
+ s2

i � 2 (1 � cos↵) .
(9)

To summarize, the variety YIK is the feasible set for a
particular instance of IK parameterized by the number of
DoFs N , the link lengths li, the angle limits ↵i, and the
target pose of the final link xN . This formulation assumes,
without loss of generality, that x0 = 0.

B. Nearest Point Problem
For redundant manipulators, YIK contains infinitely many

solutions for nearly all target positions xN . The set described
by variety YIK is high-dimensional and nonconvex. In order

Figure 5.3: Visualization of the convex angle constraint in Equation (5.6). As both the vectors ẑi and
ẑi+1 are of unit length, the length ‖ẑi − ẑi+1‖ depends only on the angle between them.

is related to joint angle θi and joint angle limit αi. Applying the cosine law leads to the

equivalence

|θi| ≤ αi
⇔ ‖ẑi+1 − ẑi‖2 ≤ 2 (1− cosαi) ,

(5.6)

which can be used to enforce joint limit constraints symmetric with respect to the previous

link, as shown in Figure 5.2 and Figure 5.3. In Blackmore and Williams (2006), it is noted that

quadratic constraints can also be used for nonsymmetric angle ranges smaller than 180◦.

Note that the constraints described in this section form a sparsity pattern: the position

of any joint xi only appears in constraints with nearby joints xi−k and xi+k for k ≤ 2. In

Section 5.4.2 we explain how this sparsity can be exploited by an SOS solver to efficiently find

IK solutions. This kinematic model can also be extended to include other quadratic constraints

such as collision avoidance, which we explore with a more general model in Chapter 6.

5.3 Inverse Kinematics Formulation

In this section, we cast IK as an optimization problem seeking the feasible configuration whose

joints are closest to some target positions in the workspace. This nearest point formulation of

IK allows us to prove Theorem 5, which sheds light on the globally optimal performance of our

convex relaxations.
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5.3.1 Real Algebraic Variety of Feasible Configurations

The real algebraic variety, or, simply, variety Y of a set of polynomial equations fi(y) = 0 is

the set of real-valued solutions satisfying those equations:

Y , {y ∈ Rn : f1(y) = · · · = fm(y) = 0}. (5.7)

In order to define the set of all kinematically feasible N -link chains that connect the origin in Rd

to a desired end position xN as a variety, we need to express the inequalities representing angle

constraints from Section 5.2.3 as equalities. To this end, we introduce N auxiliary variables

si (Park and Boyd, 2017) and note that any inequality constraints satisfy the equivalence

fi(x) ≤ 0 ⇐⇒ ∃si s.t. fi(x) + s2
i = 0. (5.8)

We write

x =




x1

...

xN−1


 ∈ Rd(N−1) (5.9)

to denote the concatenation of “interior” joint variables, and s ∈ RN to denote the column

vector of auxiliary si variables. We can now define our kinematically feasible set as the variety

YIK , {y ∈ Rn : gi(x) = hi(y) = 0, i = 1, . . . , N}, (5.10)

where n = d(N − 1) +N and y = [x> s>]
>

, and

gi(x) = ‖xi − xi−1‖2 − l2i ,
hi(y) = ‖ẑi+1 − ẑi‖2 + s2

i − 2 (1− cosαi)

=

∥∥∥∥
1

li+1
(xi+1 − xi)−

1

li
(xi − xi−1)

∥∥∥∥
2

+ s2
i − 2 (1− cosαi) .

(5.11)

To summarize, the variety YIK is the feasible set for a particular instance of IK parameterized

by the number of DOFs N , the link lengths li, the angle limits αi, and the target pose of

the final link xN . Furthermore, Equation (5.11) demonstrates that YIK is in fact a quadratic

variety. Lastly, our formulation assumes, without loss of generality, that x0 = 0.

5.3.2 Nearest Point Problem

For redundant manipulators, YIK contains infinitely many solutions for nearly all target posi-

tions xN . The set described by variety YIK is both high-dimensional and nonconvex. In order

to find solutions, we will cast IK as the problem of finding the nearest point y ∈ YIK to some

reference point ξ ∈ Rn. Since the squared Euclidean distance is used for the cost, and YIK is a
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quadratic variety, this allows us to cast IK as the QCQP

min
y
‖y − ξ‖2

s.t y ∈ YIK,
(5.12)

where ξ = [x0
> s0

>]
> ∈ Rd(N−1)+N . Note that the cost also includes the squared distance

between the auxiliary variables si and their reference points s0,i in ξ. Since we have massaged

our problem into the familiar form of Equation (3.1), we can now once again apply the powerful

machinery of Chapter 3.

5.3.3 Strong Duality of Nearest Point IK

In this section, we prove that for many instances of the problem in Equation (5.12), the con-

vex SDP relaxation is tight, and therefore we can find a global optimum of Equation (5.12)

in polynomial time with interior point solvers. Since our formulation transformed inequality

constraints into equivalent equality constraints, we can use a specialized form of Theorem 2:

Corollary 6 (Nearest Point to a Quadratic Variety (Cifuentes et al., 2022)). Consider the

problem

min
y∈Y
‖y − ξ‖2 , (5.13)

where Y , {y ∈ Rn : f1(y) = · · · = fm(y) = 0}, and fi are all quadratic polynomials. Let

ξ̄ ∈ Y be such that ACQY

(
ξ̄
)
. Then there is zero-duality-gap for any ξ ∈ Rn that is sufficiently

close to ξ̄.

Corollary 6 uses the properties of a nearest point cost function to simplify the requirements

for SDP stability. We can now state and prove the following theorem:

Theorem 5 (Strong Duality for IK). If ξ̄ ∈ YIK does not represent a fully extended configura-

tion (i.e., the joint positions are not all collinear), and does not have any joints at their angular

limits for specified base and goal positions, then Equation (5.12) exhibits strong duality for all

ξ sufficiently close to ξ̄.

Proof. Recalling the definition of ACQY

(
ξ̄
)

from Section 3.5.2, it is sufficient to show that

rank
(
∇f(ξ̄ξξ)

)
= n− dimξ̄(YIK). (5.14)

The number of variables n = d(N − 1) + N scales with dimension d ∈ {2, 3} and the number

of links N . Theorem 1.7 in Milgram et al. (2004) gives us dimξ̄(YIK) = (d − 1)(N − 1) − 1.

Therefore, we need to show that

rank(∇f(ξ̄ξξ)) = d(N − 1) +N − (d− 1)(N − 1) + 1

= 2N.
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The structure of the Jacobian matrix∇f(ξ̄ξξ) ∈ R2N×(d(N−1)+N) can be understood in terms of N

link length constraints representing the first N rows, and N joint limit constraints representing

the final N rows:

∇f(ξ̄ξξ) =

[
J1,1 0N×N
J2,1 J2,2

]
. (5.15)

The block lower triangular structure is due to the independence of link length constraints

on s. Since rank
(
∇f(ξ̄ξξ)

)
≥ rank (J1,1) + rank (J2,2) for block lower triangular matrices, it

is sufficient to demonstrate that rank (J1,1) = rank (J2,2) = N . Since J2,2 = diag (2s), and

si > 0 ∀ i ∈ {1, . . . , N} by our assumption that no joint is at its angular limit, rank (J2,2) = N .

It remains to demonstrate that

J>1,1 = 2




x1−x0 x1−x2 0 · · · 0

0 x2−x1 x2−x3 0
...

... 0
. . .

. . . 0

0 · · · 0 xN−1−xN−2 xN−1−xN



∈ Rd(N−1)×N (5.16)

has (full) rank N . Suppose rank (J1,1) 6= N . Then there exists v ∈ RN such that v 6= 0 and

J>1,1 v = 0. This implies that

vi(xi − xi−1) = vi+1(xi+1 − xi), ∀i = 1, . . . , N − 1. (5.17)

Since there exists some i such that vi 6= 0, and the link lengths li = ‖xi − xi−1‖ are all greater

than zero, Equation (5.17) tells us that vi 6= 0 for all i. Therefore, xi − xi−1 = cij(xj − xj−1)

for all valid pairs of i, j, where

cij =
vj
vi
6= 0. (5.18)

In other words, the link orientations are all collinear, which contradicts the assumption that

the arm is not fully extended. Therefore, rank (J1,1) = N and rank
(
∇f(ξ̄ξξ)

)
= 2N , completing

the proof.

In Chapter 4, our proof for SDP tightness was linked to the observability criteria for hand-eye

calibration. The analogous requirement for IK in Theorem 5 is that the stable configuration ξ̄ is

not “fully extended”, i.e., it is not a kinematic singularity (Siciliano et al., 2009). Since having

access to an admissible ξ̄ ∈ YIK amounts to having solved the IK problem already, we would

like to be able to use an SDP relaxation of Equation (5.12) to obtain a valid solution by using

a reference point ξ /∈ YIK. In general, most nonconvex problems do not exhibit strong duality.

Equation (5.12) contains non-convex link length constraints, making the existence of tight SDP

relaxations a non-trivial and useful property. In Section 5.5, we empirically demonstrate that
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the volume of the tight-relaxation region for instances of Equation (5.12) is substantial and

randomly sampling ξ is a practical strategy.

5.3.4 Incorporating Explicit Inequality Constraints

Thus far, we have relied on the equality-constrained machinery in Cifuentes et al. (2022) to

analyze our IK formulation. However, Theorem 3 lets us work with inequality constraints

directly, removing the need to introduce unwieldy auxiliary variables si.

Corollary 7 (Strong Duality for IK With Inequalities). Let Y ′IK be a semialgebraic set con-

structed from the variety YIK by replacing constraints involving auxiliary variables si with in-

equalities. Then, if LICQ
(
ξ̄
)

holds for some ξ̄ ∈ Y ′IK, the nearest point problem

min
y∈Y ′IK

‖y − ξ‖2 (5.19)

exhibits strong duality in the neighbourhood of ξ̄ (i.e., it exhibits SDP stability).

Problem 6 (SDP Stability for a Planar Manipulator). Consider the toy inverse kinematics

problem depicted in Figure 5.4. It can be formulated as the following quadratically constrained

feasibility program:

find x = [x>1 x>2 ]
> ∈ R4

s.t. ‖x1‖2 = 1

‖x1 − x2‖2 = 1

‖x2 −w‖2 = 1

‖x2‖2 ≤ 2,

(5.20)

where w = [1 2]> and, implicitly, x0 = 0. Defining the feasible set described by Equation (5.20)

as the semialgebraic set Y ′IK, we can formulate the nearest point IK problem in Equation (5.19).

Given some ξ̄ ∈ Y ′IK such that Equation (5.19) exhibits strong duality, can we show that ξ in a

neighbourhood (with respect to Rd(N−1)) of ξ̄ also exhibit strong duality?

Theorem 5 tells us that we should expect SDP stability at any ξ̄ ∈ YIK such that the

inequality constraint is not active and the arm is not fully extended. Indeed, dropping the

inequality constraint altogether and perturbing the first two elements of ξ̄ yields the rank-1

SDP relaxation map in Figure 5.5.2 As predicted, the rank-1 region, drawn in black, contains a

neighbourhood about the origin, which represents ξ̄. In fact, the rather extensive rank-1 region

suggests that a randomly selected ξ may perform well: this suggestion is borne out by our

experimental results in Section 5.5.

2Recall that a rank-1 solution Z∗ to an SDP relaxation of a QCQP indicates a tight SDP relaxation.



5.3. Inverse Kinematics Formulation 67

<latexit sha1_base64="hIit7I5mBoVWrdbFEHiNvnZMjPs=">AAACGnicbVDLSgMxFM3UV62vqks3wSK4KjOlqBuh6MZlBfuATimZzJ02NJMZkoxahn6HG3/FjQtF3Ikb/8ZMW0RbDwQO59zLzTlezJnStv1l5ZaWV1bX8uuFjc2t7Z3i7l5TRYmk0KARj2TbIwo4E9DQTHNoxxJI6HFoecPLzG/dglQsEjd6FEM3JH3BAkaJNlKv6Lgh0QMvSO/G+By7HvSZSD2jSXY/xg52XVzBLgj/R+wVS3bZngAvEmdGSmiGeq/44foRTUIQmnKiVMexY91NidSMchgX3ERBTOiQ9KFjqCAhqG46iTbGR0bxcRBJ84TGE/X3RkpCpUahZyazIGrey8T/vE6ig7NuykScaBB0eihIONYRznrCPpNANR8ZQqhk5q+YDogkVJs2C6YEZz7yImlWys5JuXpdLdUuZnXk0QE6RMfIQaeohq5QHTUQRQ/oCb2gV+vRerberPfpaM6a7eyjP7A+vwHa56DF</latexit>

w =


1
2

�

<latexit sha1_base64="LZxRIriWgvxo6BTXO0WQ9JItziI=">AAACHHicbVDLSgMxFM3UV62vUZdugkVwVWa0qBuh6MZlBfuATimZ9E4bmskMSUZahn6IG3/FjQtF3LgQ/BszbRFtPZBwOOdeknP8mDOlHefLyi0tr6yu5dcLG5tb2zv27l5dRYmkUKMRj2TTJwo4E1DTTHNoxhJI6HNo+IPrzG/cg1QsEnd6FEM7JD3BAkaJNlLHPvVCovt+kA7HHQdfYs+HHhOpb1TJhmPsYM/LLhDdH7FjF52SMwFeJO6MFNEM1Y794XUjmoQgNOVEqZbrxLqdEqkZ5TAueImCmNAB6UHLUEFCUO10Em6Mj4zSxUEkzREaT9TfGykJlRqFvpnMoqh5LxP/81qJDi7aKRNxokHQ6UNBwrGOcNYU7jIJVPORIYRKZv6KaZ9IQrXps2BKcOcjL5L6Sck9K5Vvy8XK1ayOPDpAh+gYuegcVdANqqIaougBPaEX9Go9Ws/Wm/U+Hc1Zs5199AfW5zcaHqFm</latexit>

x0 =


0
0

�

<latexit sha1_base64="l9Gliijy/n/Ol03TU6EYv2AkVeo=">AAACInicbVDLSgMxFM34rPU16tJNsAiuyoyIj4UgunFZwT6gU0qS3qnBTGZIMmIZ5lvc+CtuXCjqSvBjzLRFtPVA4HDOvdycQxPBtfG8T2dmdm5+YbG0VF5eWV1bdzc2GzpOFYM6i0WsWpRoEFxC3XAjoJUoIBEV0KS3F4XfvAOleSyvzSCBTkT6koecEWOlrnsSUKKyICLmhobZfZ53fXyKAwp9LjNqZcXvc+zhIMA+DkD2fsSuW/Gq3hB4mvhjUkFj1Lrue9CLWRqBNEwQrdu+l5hORpThTEBeDlINCWG3pA9tSyWJQHeyYcQc71qlh8NY2ScNHqq/NzISaT2IqJ0ssuhJrxD/89qpCY87GZdJakCy0aEwFdjEuOgL97gCZsTAEsIUt3/F7IYowoxttWxL8CcjT5PGftU/rB5cHVTOzsd1lNA22kF7yEdH6AxdohqqI4Ye0BN6Qa/Oo/PsvDkfo9EZZ7yzhf7A+foGXE+kLQ==</latexit>

x̄1 =


0
1

�

<latexit sha1_base64="4j8OFmACpExGrqH8CvrhaQTM61s=">AAACInicbVDLSgMxFM34tr6qLt0Ei+CqzJTiYyEU3bhUsCp0ypBk7rShmcyQZKRlmG9x46+4caGoK8GPMVOL+DqQcDjnXpJzaCq4Nq775kxNz8zOzS8sVpaWV1bXqusblzrJFIM2S0SirinRILiEtuFGwHWqgMRUwBUdnJT+1Q0ozRN5YUYpdGPSkzzijBgrBdVDnxKV+zExfRrlw6IIGvgI+xR6XObUyooPC+xh3y8vkOGXGFRrbt0dA/8l3oTU0ARnQfXFDxOWxSANE0TrjuemppsTZTgTUFT8TENK2ID0oGOpJDHobj6OWOAdq4Q4SpQ90uCx+n0jJ7HWo5jayTKL/u2V4n9eJzPRQTfnMs0MSPb5UJQJbBJc9oVDroAZMbKEMMXtXzHrE0WYsa1WbAne78h/yWWj7u3Vm+fNWut4UscC2kLbaBd5aB+10Ck6Q23E0C26R4/oyblzHpxn5/VzdMqZ7GyiH3DePwBfkaQv</latexit>

x̄2 =


1
1

�

<latexit sha1_base64="qHqmaetADGTvONkOvzxkQtsls+w="></latexit>

⇠̄ =


x̄1

x̄2

�

<latexit sha1_base64="H+6X6r3McK8c9a29h5RKshDRCis=">AAACJXicbVDLSgNBEJz1bXxFPXoZDIIXw24I6sGD6MVjBBMD2XWZnfQmg7MPZ3rFsORnvPgrXjwYRPDkrziJe4iPgoGaqm66u4JUCo22/WHNzM7NLywuLZdWVtfWN8qbWy2dZIpDkycyUe2AaZAihiYKlNBOFbAokHAd3J6P/et7UFok8RUOUvAi1otFKDhDI/nlE1dCiG4LFFI3YtgPwvxh6NfowfTXpq4SvX5Rd1Ojbg/uaM0vV+yqPQH9S5yCVEiBhl8eud2EZxHEyCXTuuPYKXo5Uyi4hGHJzTSkjN+yHnQMjVkE2ssnVw7pnlG6NEyUeTHSiTrdkbNI60EUmMrx5vq3Nxb/8zoZhsdeLuI0Q4j596AwkxQTOo6MdoUCjnJgCONKmF0p7zPFOJpgSyYE5/fJf0mrVnUOq/XLeuX0rIhjieyQXbJPHHJETskFaZAm4eSRPJNXMrKerBfrzXr/Lp2xip5t8gPW5xdntKSL</latexit>

kx2 � x0k2 � 2

Figure 5.4: The planar 3-DOF manipulator from Problem 6 in a feasible configuration with the
inequality constraint active.
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Rank(Z⇤) > 1

Figure 5.5: The rank of solution matrices for SDP relaxations of instances of Equation (5.12) generated
by perturbing the first two elements of ξ̄ defined in Equation (5.21). A rank-1 solution indicates a tight
SDP relaxation (i.e., zero-duality-gap). Note that Theorem 2 correctly predicts that there is a ZDG
region in black surrounding the origin, which is a point in YIK at which LICQ holds.
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We can now use Corollary 7 to prove that our nearest point formulation of IK is tight for ξ

in the neighbourhood of

ξ̄ =




0

1

1

1



∈ Y ′IK, (5.21)

which is the configuration depicted in Figure 5.4 for which the inequality constraint is active. As

in Section 3.6.1, we need to demonstrate that LICQ
(
ξ̄
)

holds in order to satisfy the requirements

of Theorem 3. The equality and active inequality constraints at ξ̄ are

fξ̄(x) =




‖x1‖2 − 1

‖x1 − x2‖2 − 1

‖x2 −w‖2 − 1

‖x2‖2 − 2




= 0, (5.22)

and the Jacobian is

∇fξ̄(x) = 2




x1
> 0

x1
> − x2

> x2
> − x1

>

0 x2
> − w>

0 x2
>



∈ R4×4, (5.23)

which we evaluate at ξ̄ to obtain

∇fξ̄(ξ̄) =




0 1 0 0

−1 0 1 0

0 0 0 −1

0 0 1 1



. (5.24)

Since Equation (5.24) has full rank, LICQ
(
ξ̄
)

holds and Theorem 3 tells us that SDP relaxations

of the QCQP defined in Problem 6 are tight for ξ in the neighbourhood of ξ̄. This prediction is

experimentally confirmed in Figure 5.6, which displays the rank-1 SDP relaxation region when

perturbing the first two elements of ξ̄. As was the case for the twisted cubic in Section 3.6.1, the

ZDG region in Figure 5.6 is a subset of the ZDG region in Figure 5.5, which ignores inequality

constraints.

5.4 SOS Programming

Sum-of-squares programming is an approach for solving polynomial optimization problems with

convex optimization. The standard SOS relaxation hierarchy (Parrilo, 2003; Lasserre, 2001) is

equivalent to the Lagrangian dual relaxation with particular redundant constraints added (Ci-
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Rank(Z⇤) > 1

Figure 5.6: The rank of solution matrices for SDP relaxations of instances of inequality-constrained
Equation (5.19) generated by perturbing the first two elements of ξ̄ defined in Equation (5.21). A rank-1
solution indicates a tight SDP relaxation (i.e., zero-duality-gap). Note that Theorem 3 correctly predicts
that there is a ZDG region in black surrounding the origin, which is a point in Y ′IK for which LICQ holds.
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fuentes et al., 2022). These redundant constraints can only make the relaxation tighter. Com-

bined with the fact that the Lagrangian dual relaxation is a lower bound of the SDP relaxation

of Equation (5.12), this tells us that the standard SOS hierarchy shares the stability property

proved in Theorem 5. This work uses the Sparse Bounded Degree SOS (Sparse-BSOS) method

of Weisser et al. (2018), a recent sparse extension of Lasserre et al. (2017), which introduced

a SOS hierarchy that is less computationally costly than the standard SOS hierarchy in many

cases, while remaining just as tight for QCQPs.

5.4.1 Sparse-BSOS

For a complete treatment of the Sparse-BSOS hierarchy, please refer to Weisser et al. (2018).

Briefly, we are interested in solving Equation (5.12) in the equivalent form

t? = sup
t∈R
{t | f(y)− t ≥ 0, ∀y ∈ K}, (5.25)

where K = {y ∈ Rn|0 ≤ gj(y) ≤ 1, j = 1, . . . ,m} is a semialgebraic set equivalent to YIK in

Section 5.3.1, and f(y) = ‖y − ξ‖2. The key insight of SOS optimization is that this problem

(and other polynomial optimization problems) can be solved as a semidefinite program (SDP)

with Positivstellensatz 3 results from real algebraic geometry (Lasserre, 2010; Parrilo, 2003).

Many SOS relaxation hierarchies have been developed, but we use the Sparse-BSOS hierarchy

of Weisser et al. (2018) because it leverages the natural sparsity of kinematic chains. The

method enforces f(y)− t ≥ 0 by introducing the function

hr(y,λλλ) =

|α|1+|β|1≤r∑

α,β∈Nm

λαβhr,αβ(y),

hr,αβ(y) :=
m∏

j=1

gj(y)αj (1− gj(y))βj , y ∈ Rn,

(5.26)

where λλλ contains the coefficients λαβ ≥ 0 indexed by α, β ∈ Nm, and the maximum degree

parameter r allows us to restrict the number of monomials used to construct hr. Next, we seek

to optimize

t? = sup
t,λλλ
{t | f(y)− t− hr(y,λλλ) ≥ 0, ∀y,λλλ ≥ 0}, (5.27)

where hr(y,λλλ) > 0 when y ∈ K (see Lasserre et al. (2017) for details). The problem is converted

to an SDP by restricting the search to Σ[y]k, the set of SOS polynomials of degree at most 2k,

which constitute a subset of nonnegative polynomials:

qkr = sup
t,λλλ
{t | f(y)− t− hr(y,λλλ) ∈ Σ[y]k, ∀y,λλλ ≥ 0}. (5.28)

3This is a German term that translates to “positive-locus-theorem”, which is an apt descriptor for statements
concerning the positivity of polynomials.
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Each qkr describes a level of the BSOS hierarchy indexed by r and k (Lasserre et al., 2017). Since

Equation (5.12) is a QCQP, k = 1 in our use of the solver. Finally, to produce the Sparse-BSOS

hierarchy we partition Equation (5.28) into smaller blocks of variables and relevant constraints.

5.4.2 The Running Intersection Property

In order for the Sparse-BSOS hierarchy to converge to the global optimum as r → ∞, the

variables and functions involved must satisfy a sparsity property called the running intersection

property or RIP (Weisser et al., 2018). The RIP holds if there exists p ∈ N and subsets Il ⊆ [n]

and Jl ⊆ [m] for all l ∈ [p] such that:

• f =
∑p

l=1 f
l, for some f1, . . . , fp such that

f l ∈ R[x; Il], l ∈ [p];

• gj ∈ R[x; Il] for all j ∈ Jl and l ∈ {1, . . . , p};

•
⋃p
l=1 Il = [n];

•
⋃p
l=1 Jl = [m];

• for all l ∈ [p− 1] there exists s ≤ l such that

(Il+1 ∩
⋃l
k=1 Ik) ⊆ Is.

For the case of a 2D manipulator with only link length constraints, the partition consisting

of overlapping pairwise joints satisfies the RIP. When joint limit constraints are introduced,

overlapping triplets of joints are required. For redundant manipulators with many links, this

partition amounts to an SDP with far fewer variables and constraints than a standard SDP

or SOS relaxation would generate. The SDP produced by Sparse-BSOS has semidefinite con-

straints on variables of size O(n?) for k = 1, where n? = maxl nl and nl is the number of

variables in Il (Weisser et al., 2018). For a d-dimensional manipulator using our nearest point

formulation of IK with a partition that satisfying the RIP, n? = 3d+1. Using the Sparse-BSOS

hierarchy therefore requires less memory and runtime as compared with its dense equivalent,

whose semidefinite constraint variables would be of size O(dN) (where N is the number of

degrees of freedom as in prior sections). Our entire algorithm is summarized in Figure 5.1.

5.5 Experiments

In this section, we present IK solutions for simulated planar (2D) and spatial (3D) manipula-

tors. All experiments were conducted with a MATLAB implementation of our approach on a

computer with a 2.2GHz Intel Core i7-8750H CPU. Please refer to Table 5.1 for the kinematic

chain link lengths and angle limits used in our experiments. The primary purpose of our ex-

periments is to explore our global method and its tightness property presented in Theorem 5.

We recognize that there may be local solvers that are competitive in some instances, but the

focus of our work is on the global optimality properties of convex optimization methods.
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Table 5.1: Parameters used to define the 10-DOF manipulator in the SOS-IK experiments.

Joint 1 2 3 4 5 6 7 8 9 10

|θi|max (rad) π
4

π
4

π
8

π
4

π
4

π
2

π
4

π
4

π
2

π
8

li (m) 2 2 1 2 3 2 4 4 1 2

R1(⇠⇠⇠)
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Figure 5.7: Heatmaps demonstrating rank-1 regions R1(ξ) in target end-effector space for 5 different
randomly sampled feasible reference configurations ξi. In heatmaps (a)-(e), the joint positions for ξi for
i = 1, . . . , 5 are plotted in black. Each pixel’s coordinates are a goal position for the end-effector, and the
colour of each pixel represents the result of running SOS-IK with that goal position using ξi as the nearest
point. Blue regions are end-effector goals for which SOS-IK gave a globally optimal rank-1 solution. Red
regions indicate rank greater than 1, and grey indicates infeasible goal positions. Heatmap (f) displays
the union of the rank-1 regions for all 5 reference configurations. See Table 5.1 for the manipulator’s
kinematic parameters.

5.5.1 Global Optimality

In Figure 5.7, we display the results of using SOS-IK to solve IK problems with five randomly

sampled reference points ξi for a 10-DOF manipulator described by the parameters in Table 5.1.

These points were chosen to be the joint positions of valid manipulator configurations which

are plotted as black chains in subfigures (a)-(e). For each heatmap, the x− and y−coordinates

represent the position of uniformly sampled end-effector goal positions. The result of applying

SOS-IK to each of these end-effector goals is indicated by colour. The blue cells are rank-1
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Table 5.2: Performance of our method over 10,000 randomly generated feasible 2D (top) and 3D
(bottom) pose goals.

DOF 5 7 10 12

Method SOS-IK fmincon SOS-IK fmincon SOS-IK fmincon SOS-IK fmincon

Position Error [m] 3.51× 10−4 6.78× 10−5 3.17× 10−4 4.93× 10−5 1.64× 10−4 2.69× 10−4 2.00× 10−4 2.67× 10−4

Solved [%] 97.46 97.15 99.52 93.33 99.47 87.65 98.11 53.19
Total Time [min] 9.08 1.67 13.73 1.93 20.05 3.52 21.52 3.6

Position Error [m] 6.68× 10−7 2.18× 10−5 1.33× 10−6 3.79× 10−5 2.64× 10−5 6.93× 10−4 1.41× 10−5 3.1× 10−3

Solved [%] 99.29 99.67 99.68 99.84 98.51 95.79 99.72 94.55
Total Time [min] 18.88 9.44 25.36 23.23 38.22 46.10 33.92 51.69

(i.e., ZDG) solutions, which we denote R1(ξi) The red regions corresponds to goals that led

to Sparse-BSOS solutions with rank greater than 1, whereas grey areas contain goals found to

be infeasible. Since Sparse-BSOS solves a relaxation of the primal problem in Equation (5.12),

infeasibility in the relaxed problem’s solution provides a certificate of infeasibility for the primal.

Moreover, the existence of a rank-1 solution is a certificate of optimality for the extracted

solution, meaning it is the global optimum in terms of distance to ξi. Figure 5.7 displays the

union of the rank-1 regions for all 5 randomly sampled ξi and almost covers the entirety of the

feasible goal space.

5.5.2 Inverse Kinematics for 2D and 3D Serial Chains

Theorem 5 proves that by formulating IK as Equation (5.12), globally optimal solutions can

be recovered in certain workspace regions using convex relaxations such as Sparse-BSOS. The

experiment in Section 5.5.1 demonstrates that such workspace regions are quite large even for

complex kinematic chains like redundant spherical manipulators in two and three dimensions,

which don’t admit analytical solutions in the presence of joint limits. By solving 10,000 feasible

IK problems, we demonstrate that our method (dubbed SOS-IK) usually outperforms a local

numerical fmincon-based implementation of a joint angle-based IK solver in MATLAB in terms

of percentage of recovered solutions, while also providing post-hoc numerical certificates of

problem (in)feasibility. The results in Table 5.2 show the final end-effector position error,

percentage of feasible IK solutions found, and total computation time over all problems for

manipulators with an increasing number of DOF.

The upper half of Table 5.2 shows results for planar manipulators of increasing DOF, where

SOS-IK outperforms the local optimization in the percentage of solved problems for every prob-

lem instance. While the solve times for fmincon are significantly lower in the planar case, we

note that our method has well understood polynomial scaling properties which present them-

selves favourably for higher DOF and dimensionality. This can be seen in the case of a 12-DOF

planar manipulator, where SOS-IK finds almost twice as many feasible solutions than fmincon,

which falls into local minima. We show how this trend continues for spherical (3D) manipula-

tors in the bottom of Table 5.2. As DOF increases, solve times become comparable and SOS-IK
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outperforms fmincon in terms of the number of problems successfully solved. We expect this

difference to be even more pronounced when further kinematic constraints are introduced, as

the IK problem will admit more local minima.

5.6 Summary and Future Work

In this chapter, we developed a novel and elegant formulation and solution of the IK problem for

redundant manipulators. Our formulation of IK as a nearest point problem to a quadratic vari-

ety enabled us to prove the existence of problem instances admitting tight convex relaxations.

Our use of convex relaxations provides certificates of global optimality alongside solutions. Our

experiments demonstrated that the tight cases predicted by Theorem 5 encompass many practi-

cal situations which can be efficiently solved via standard interior point methods. Furthermore,

we empirically demonstrated that convex relaxations are efficient tools for reliably determining

the (in)feasibility of IK problems; this is in stark contrast to local solver-based methods that

need frequent re-starts and sampling-based methods that scale inefficiently with the number of

joints.

The tools presented in this chapter hold promise for a variety of robotic manipulation

and planning tasks. Careful selection of the nearest point could be incorporated with task-

specific goals like obstacle avoidance or low-energy motion planning. Methods for potentially

extracting solutions from Sparse-BSOS solutions with rank greater than 1 warrant investigation.

Additionally, theoretical tools developed in Cifuentes et al. (2022) and Cifuentes et al. (2018)

could be used to precisely quantify the values of ξ and goal poses for which SDP relaxations

of our problem are tight. Using our method as a sub-solver in a branch-and-bound or mixed-

integer nonlinear programming approach to inverse kinematics similar to Dai et al. (2019) also

deserves attention as a means of incorporating complex obstacle avoidance constraints into a

fast and efficient IK solver with performance guarantees.

Finally, the Sparse-BSOS solver used here is a generic MATLAB library that does not ex-

ploit structure specific to our problem or use performance optimizations available in lower-level

languages. Faster performance could be achieved by considering a custom sparse SDP relax-

ation (e.g., similar to the one in Nie (2009)) for sparsity patterns specific to IK. For kinematic

chains with tens or hundreds of degrees of freedom, it may also be fruitful to investigate the

use of Burer-Monteiro methods (Boumal et al., 2020), which can require less time and memory,

instead of standard interior point solvers.



Chapter 6

Inverse Kinematics for Generic

Revolute Manipulators

Indeed, convexity has an immensely rich

structure and numerous applications. On

the other hand, almost every “convex”

idea can be explained by a

two-dimensional picture. There must be

some reason for that apart from the

tautological one that all our pictures are

two-dimensional.

Alexander Barvinok,

A Course in Convexity

Solving inverse kinematics (IK) is an essential step for motion planning with articulated

robots. However, an efficient algorithm with a high success rate for robots with redundant

degrees of freedom in obstacle-laden workspaces remains elusive. Solving this problem would

help enable fast and reliable autonomous mobility for manipulators, humanoid robots, and

other articulated mechanisms. In this chapter, we move beyond the relatively simple planar

and spherical manipulators of Chapter 5 and develop a QCQP model capable of describing a

broad class of revolute manipulators.

Optimization-based approaches typically use the joint angles of the robot as decision vari-

ables. While low-dimensional, this parameterization leads to nonconvex cost and constraint

functions involving the product of multiple trigonometric functions of the joint angles. This

nonconvexity makes finding global minima challenging for numerical solvers.

Recently, a number of IK techniques have utilized alternative parameterizations based on

the distances between control points fixed to a robot (Porta et al., 2005b; Le Naour et al., 2019;

Blanchini et al., 2017). This distance-geometric view of IK increases the number of param-

eters needed, but elegantly describes the workspace of a robot with simple pairwise distance

76
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n and its minimum Euclidean distance c from the origin:

xTn 5 c. (7)

One useful application of planar constraints is in restricting
a legged robot’s feet to lie on (or above) the floor. Finally,
self-collisions and workspace constraints on points lying be-
tween joints (i.e., on long links) can be easily introduced by
adding simple auxiliary variables to X and their corresponding
constraints as described in [26].

D. QCQP Formulation

We can use the quadratic expressions of Equations (4) and
(6) along with the linear constraints of Equation (7) to describe
the solutions to our IK problem as the following quadratic
feasibility program:

Problem 2 (Feasibility QCQP).

find X 2 Rd⇥2n

s.t. P = [X W],

diag(B(Eeq)
TPTPB(Eeq))) = `, (8)

kxi � cjk2 � l2j 8i 2 Vj, 8j 2 O,

xT
i ni = ci 8i 2 Vp ⇢ Vj,

where Eeq, `, and W are problem parameters defined by
Equations (4) and (5), O is the set of spherical obstacle
constraints of the form in Equation (6), and Vp indexes the
nodes confined to lie in some plane described by ni and ci in
Equation (7).

Remark: When solutions exist, the feasible set of Problem 2 is
nonconvex and therefore challenging to characterize. In fact,
the analogous formulation of Problem 2 for SNL with exact
distance measurements, no obstacles, and known dimension d
is strongly NP-hard [29], [30].

While quite general, our formulation does have a few
limitations: it is only capable of describing the kinematics
of an articulated robot with neighbouring joint axes that
are coplanar (i.e., parallel or intersecting),3 it cannot enforce
arbitrary joint angle limits, and it only supports spherical and
planar workspace constraints [20].

IV. SEMIDEFINITE RELAXATIONS

We turn to semidefinite programming (SDP) relaxations
as a means of efficiently computing solutions to Problem 2.
Introducing the lifted matrix variable

Z(X) , [X Id]
T[X Id] =


XTX XT

X Id

�
2 S2n+d

+ (9)

permits us to rewrite the quadratic constraints of Problem 2 as
linear functions of Z(X). Since Z(X) is an outer product of
matrices with rank of at most d (the dimension of the space
in which the robot operates), we know that rank(Z)  d.
Replacing Z(X) with a generic PSD matrix Z ⌫ 0 produces
the following semidefinite relaxation:

3Many commercial manipulators (e.g., those in Figure 4), satisfy this
requirement, and we discuss potential workarounds in [26].

Problem 3 (SDP Relaxation of Problem 2).

find Z 2 S2n+d
+

s.t. A(Z) = a, (10)
B(Z)  b,

where A : S2n+d ! Rm+d2+|Vp| and a 2 Rm+d2+|Vp|

encode the linear equations that enforce the constraints in
Equation (4) and Equation (7) after applying the substitution
in Equation (9), and the linear map B : S2n+d ! R|O| and
vector b 2 R|O| enforce the inequalities in Equation (6) [26].

Problem 3 is now a convex feasibility problem, which can
be efficiently solved by numerous interior-point methods [31].
Unfortunately, solutions to Problem 3 are not limited to the
rank-d solutions originally sought in Problem 2. In fact, Nie
[22] and So and Ye [15] point out that when there are
multiple possible solutions, interior-point SDP solvers return
a max-rank solution. For the case of SNL problems with
exact measurements and no inequalities, So and Ye [15] use
rigidity theory to prove that the existence of a unique solution
in dimension d to an instance of Problem 2 is a sufficient
condition for its corresponding SDP relaxation (Problem 3) to
yield a rank-d or lower solution. Unfortunately, even though
the lengths in our kinematic model are in fact exact “measure-
ments”, we are particularly interested in redundant kinematic
models, which, by definition, admit multiple solutions. Thus,
we turn our attention to methods for finding low-rank solutions
to Problem 3.

A. Rank Minimization

Ideally, we could augment Problem 3 with rank(Z) as
its cost function to find the lowest-rank solution possible.
However, the rank of a matrix is nonconvex and therefore
difficult to globally minimize, even over the convex feasible
set of Problem 3. Thus, we minimize convex (linear) heuristic
cost functions that encourage low rank solutions:

Problem 4 (Problem 3 with a Linear Cost). Find the symmet-
ric PSD matrix Z that solves

min
Z2S2n+d

+

tr (CZ)

s.t. A(Z) = a, (11)
B(Z)  b,

where C 2 S2n+d.

When C = I, the cost function is the nuclear norm of Z,
which is the convex envelope of rank(Z) [4]. The nuclear norm
heuristic has been successfully applied to a variety of linear
inverse problems with matrix variables, and is even guaranteed
to produce the minimum rank solution when certain conditions
are met [32], [33]. However, our experiments demonstrate that
the nuclear norm heuristic is unable to yield rank-d solutions
to Problem 3 for a simple 6-DOF manipulator [26].

Consider the following surrogate for the “excess rank” (i.e.,
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rank(Z) � d) of Z 2 S2n+d
+ :

h(Z) =
2n+dX

i=d+1

�i(Z), (12)

where �i(Z) is the ith largest eigenvalue of Z. Since Z has
nonnegative eigenvalues, h(Z) = 0 implies that rank(Z)  d.
Computing h(Z) is equivalent to solving a particular SDP [4]:

Problem 5 (Sum of 2n Smallest Eigenvalues [4]). Find the
symmetric PSD matrix C that solves

2n+dX

i=d+1

�i(Z) = min
C2S2n+d

tr (CZ)

s.t. tr (C) = 2n, (13)
0 4 C 4 I.

A closed-form solution to Problem 5 is given by [4]:

C? = UUT, (14)
U = Q(:, d + 1 : 2n + d),

where Q 2 O(2n + d) is from the eigendecomposition Z =
Q⇤QT.

B. Convex Iteration

In [4], the method of convex iteration between Problem 4
and Problem 5 is proposed. We summarize the approach in
Algorithm 1. Each iteration of Problem 5 computes C{k}

Algorithm 1: Convex Iteration for Distance
Geometric IK (CIDGIK)
Input: Problem 4 specification (i.e., A(·), B(·),a,b)
Result: PSD matrix Z? that solves Problem 4
Initialize C{k} = I2n+d

while not converged do
Solve Z{k} = argminZ Problem 4 with C = C{k}

Solve C{k} = argminC Problem 5 with Z = Z{k}

using Equation (14)
end
Return Z? = Z{k}

corresponding to h(Z) at the current iteration’s value of
Z = Z{k}. Since this C{k} is only exact at Z{k}, each iteration
of Problem 4 can therefore be treated as minimizing an ap-
proximation of h(Z) in the neighbourhood of Z{k}. Since the
closed-form solution in Equation (14) is used to quickly solve
Problem 5 in this procedure, most of CIDGIK’s computational
cost comes from solving Problem 4. This approach has been
successfully applied to noisy SNL [4] and optimal power flow
problems [34].

C. Geometric Interpretation

Here, we motivate the convex iteration algorithm described
in Section IV-A and explain why we expect some C 2 S2n+d

+

to yield a low-rank solution. Aside from the interpretation of
tr (CZ) as a local approximation of the excess rank heuristic
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Fig. 3: Spectrahedron (in the shape of a pierogi) describing the
feasible set of Problem 3 for the simple 2-DOF planar manipulator
IK problem in Section IV-C. The spectrahedron’s interior (green
gradient) represents the set of full-rank 3 ⇥ 3 PSD matrices Z
that satisfy the constraints (linear in Z) imposed by manipulator
geometry and end-effector pose. The spectrahedron boundary (green
dots) contains all degenerate Z, and the extreme points (black dots)
represent the desired rank-1 solutions. The constraint imposed by the
circular obstacle is enforced in the lifted PSD representation by a
half-space constraint induced by the translucent blue plane.

h(Z), it is fruitful to view C as a direction in the space
S2n+d � S2n+d

+ . More precisely: since @tr (CZ) /@Z = C,
we are in effect designing the objective in Problem 4 so that
its steepest descent direction at Z points towards low-rank
minimizers on the boundary of the feasible set. In practice,
this heuristic chooses rank-d matrices with high probability
for typical IK problems.

Consider the toy problem of a 2-DOF planar manipulator
rooted at the origin of the plane and with links of unit length.
Using the formulation in Section III, we can write the IK
problem of reaching a point w 2 R2 with the manipulator’s
end-effector as the following quadratic feasibility problem:

find x 2 R2

s.t. kxk2
= 1, (15)

kx � wk2
= 1,

kx � ok2 � 0.25,

where x is the position of the “elbow” joint, and o = [1, 0]T

is the position of a unit-diameter circular obstacle. Consider
the case of w = [1, 1]T: the insets of Figure 3 show that of
the two candidate solutions to this problem, the “elbow down”
configuration in the bottom right collides with the obstacle at
o (partially depicted as a blue semicircle). Homogenizing (15)
with s2 = 1 and lifting to the rank-1 matrix variable

Z(x) =


x
s

� ⇥
xT s

⇤
(16)

lets us apply the SDP relaxation Z ⌫ 0 to yield:

find Z 2 S3
+

s.t. A(Z) = a, (17)
tr (BZ)  b,

Figure 6.1: We apply a distance-geometric formulation of IK to develop a fast and accurate IK solver
based on low-rank convex optimization. Our formulation connects IK to the rich literature on convex
relaxations for other distance geometry problems such as: a) sensor network localization, b) molecular
conformation, c) sparse phase retrieval, d) microphone calibration, and e) indoor acoustic localization.

constraints. In this chapter, we connect IK to the classical distance geometry problem (DGP),

which has found application in many domains, including those in Figure 6.1 and Table 6.1. Not-

ing similarities between the IK problem and DGPs such as sensor network localization (SNL),

our main contribution is to leverage the mature literature on semidefinite programming (SDP)

relaxations for DGPs to develop CIDGIK (Convex Iteration for Distance-Geometric Inverse Kine-

matics), a novel IK solver. CIDGIK applies a fast, minimal-rank-promoting algorithm (Dattorro,

2005) to an SDP relaxation of our formulation of IK, encompasses a wide variety of redundant

robot models, and naturally incorporates spherical obstacles and planar workspace constraints.

We provide a free and open source Python implementation1 of CIDGIK along with experiments

demonstrating its superior success rate and speed when compared with a standard nonlinear

approach to solving the conventional angular formulation of IK.

1Code: https://github.com/utiasSTARS/graphIK.

https://github.com/utiasSTARS/graphIK
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6.1 Related Work

In this section we briefly review the state of the art in IK, distance geometry, and semidefinite

optimization. We emphasize the intersection of these three fields, and contrast the properties

of a variety of recent IK solvers.

6.1.1 Inverse Kinematics

Simple closed-form solutions can be derived for common manipulator robots that do not possess

redundant degrees of freedom (Spong et al., 2005). For example, kinematic chains with six

revolute degrees of freedom (DOF) possess at most 16 solutions for IK problems with pose

goals (Manocha and Canny, 1994). This chapter deals with the more challenging case of IK

with collision avoidance for redundant manipulators with one or more end-effectors. First-order

methods for IK (Buss, 2004) are a mature and popular choice for a broad class of problems in

robotics and graphics (Aristidou et al., 2018). TRAC-IK (Beeson and Ames, 2015) is a fast

and freely-available software implementation of IK without collision avoidance for redundant

manipulators that concurrently runs an inverse Jacobian algorithm and a sequential quadratic

programming algorithm. A recent mixed-integer programming approach (Dai et al., 2019)

provides approximate solutions with global guarantees for a general formulation of IK with

joint limits, multiple end-effectors, and expressive workspace constraints (e.g., specifying free

space with polyhedra). In spite of its high success rate on challenging problems, the approximate

nature and long runtime (on the order of 15 seconds for an 18-DOF quadruped) prohibit the

use of Dai et al. (2019) in realtime applications.

6.1.2 Distance Geometry

Euclidean distance geometry is concerned with estimating the positions of points given a subset

of their pairwise distances (Liberti et al., 2014; Dattorro, 2005). Applications, some of which

are listed in Table 6.1 and depicted in Figure 6.1, include problems in computational chem-

istry, machine learning, and signal processing (Dokmanic et al., 2015). A distance-geometric

formulation of IK is presented in Porta et al. (2005b) for a family of common revolute robot

manipulators. This formulation is solved with the complete but computationally expensive

(and therefore inappropriate for real-time robotics applications) branch-and-prune solver intro-

duced in Porta et al. (2005a). Other approaches to IK that incorporate distance constraints

on point variables include the unconstrained quartic optimization approach to IK for graphics

found in Le Naour et al. (2019) and the convex relaxation for simple robotic chains in Blanchini

et al. (2015, 2017). In this work, we apply methods and analysis based on SDP relaxations

for SNL (So and Ye, 2007; Dattorro, 2005) to a formulation inspired by Porta et al. (2005b).

We characterize the similarities and differences between IK and other DGPs in Table 6.1 and

Section 6.3.



6.2. Problem Formulation 79

Distance Measurements Under
Application missing noisy free† Dtmnd.

Wireless sensor networks 3 3 7 7

Molecular conformation 3 3 7 3/7

Sparse phase retrieval 7 3 3 7

Microphone calibration 3 3 7 7

Indoor acoustic localization 7 3 3 7

Inverse kinematics 3 7 7 3

Table 6.1: Properties of different types of DGPs (extended from Dokmanic et al. (2015)). IK is unique
in that it deals with “noiseless” (i.e., exact) geometric constraints and is underdetermined because of the
existence of multiple valid solutions. †Free (or unlabeled) measurements are those which lack a known
association with two points.

6.1.3 Semidefinite Programming

Many parameter estimation problems in statistics and engineering can be expressed as QCQPs

(Cifuentes et al., 2022; So and Ye, 2007). While difficult to solve in the worst case, primal SDP

relaxations of QCQPs (Boyd and Vandenberghe, 1997), which we employ in Section 6.3, can

often be efficiently solved by interior-point methods (So and Ye, 2007). Remarkably, in many

cases, this relaxation is provably tight under the assumption of low noise and one can recover

the global optimum by solving the relaxed problem (Cifuentes et al., 2022). Furthermore, many

of these problems exhibit structure (e.g., chordal sparsity) that can be exploited for improved

performance over generic SDP solvers on large-scale problem instances (Majumdar et al., 2019).

In Trutman et al. (2020), Lasserre’s hierarchy of SDP relaxations is applied to IK for 7-DOF

revolute manipulators, but solutions are prohibitively slow for real-time applications.

Our approach extends the distance-geometric description of the kinematics of a revolute

robot in Marić et al. (2021) to a form very similar to the SNL problem. Building on our work

with planar and spherical chains in Chapter 5, we analyze and solve this formulation using the

rich literature on SDP relaxations for SNL (So and Ye, 2007; Nie, 2009; Ding et al., 2010), while

noting the properties in Table 6.1 that make IK distinct from SNL. Our approach is similar to

the work presented in Yenamandra et al. (2019), where the authors apply a different convex

relaxation to a formulation of IK for arbitrary joint angle-limited tree-like revolute models.

However, they do not incorporate obstacle avoidance, report runtimes in excess of 10 seconds,

and their relaxation only provides coarse initializations for a local solver.

6.2 Problem Formulation

We begin with a summary of our notation, followed by a detailed description of our “distance-

geometric” formulation of robot kinematics. Since we are dealing with a more general class of

revolute manipulators, this formulation is significantly more complex than the one in Chapter 5.
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Figure 6.2: Visualization of a 3-DOF revolute manipulator: a) Actuated joints and links, overlaid
with the graph of known distances. b) Depiction of our distance-geometric formulation with a spherical
obstacle (cf. Section 6.2.2).

6.2.1 Notation

Boldface lower and upper case letters (e.g., x and P) represent vectors and matrices respectively.

The bracketed superscript in A(i) indicates the ith column of the matrix A. We write In (or

I when clear from context) for the n × n identity matrix. The space of n × n symmetric and

symmetric positive semidefinite matrices are denoted Sn and Sn+, respectively, and we also write

A � B (A � B) to indicate that A−B is PSD (PD). We denote the set of indices {1, . . . , n}
as [n] for any n ∈ N. Finally, ‖·‖ always represents the Euclidean norm.

6.2.2 Kinematic Model

Once again, our proposed kinematic model eschews joint angle variables in favour of points

embedded in Rd (Porta et al., 2005b), where d ∈ {2, 3} for physically realizable revolute robots.

These points are strategically fixed relative to an N -DOF robot’s articulated joints such that

their positions fully describe the underlying angular configuration θ ∈ C ⊆ T N , where T N is

the N -dimensional torus. IK is typically expressed as finding, for a given goal wg, joint angles

θ ∈ C that satisfy the system of equations

F (θ) = wg ∈ W, (6.1)

where F : C → W is the trigonometric forward kinematics function that maps joint angles in

the configuration space C to end-effector positions or poses in the workspace W.

When a closed form solution θ = F−1(wg) is unavailable, numerical methods are typically

used to solve optimization-based formulations of IK (Erleben and Andrews, 2019):
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Problem 7 (Inverse Kinematics). Given a robot’s forward kinematics F : C → W and desired

end-effector position(s) or pose(s) w ∈ W, find joint angles θ that solve

min
θ∈C

‖F (θ)−wg‖2 . (6.2)

Our formulation, which is illustrated for a simple 3-DOF manipulator in Figure 6.2, specifies

the goal poses or positions of a robot’s end-effector(s) and base using m ≥ 2 points or anchors

wk ∈ Rd for k ∈ [m]. In contrast with the traditional angular formulation of Problem 7

displayed in Figure 6.2a, the state space of our formulation is comprised of points rigidly fixed

to n “unanchored” joints.2 For the example in Figure 6.2, n = 2 and the unanchored joints are

those actuated by θ2 and θ3, while the joint actuated by θ1 is anchored. To enforce rigid link

lengths that are invariant to the robot’s angular configuration θ, each unanchored joint i ∈ [n]

is assigned a pair of points pi,qi positioned along its axis of rotation as in Figure 6.2b such

that ‖pi − qi‖ = 1 ∀ θ. Since the relative pose between consecutive joints i and j is fixed by

a rigid link, each pair of joints is described by the six pairwise distance constraints between pi,

qi, pj , and qj shown as lines in Figure 6.2b. Conveniently, our formulation treats a robot’s

fixed base in a manner identical to end-effectors (e.g., w1 and w2 in Figure 6.2b).

End-effector position and pose targets are enforced via the fixed distance constraints between

unanchored joints and neighbouring anchors (e.g., ‖p2 −w3‖ and ‖q1 −w1‖ in Figure 6.2b).

A problem instance is defined by an assignment of all anchors

W = [w1 · · · wm] ∈ Rd×m, (6.3)

and the unknown decision variables can be collected to form the matrix

X = [p1 q1 · · · pn qn] ∈ Rd×2n. (6.4)

For example, an end-effector’s position can be constrained by specifying a single anchor position

on the tip of the end-effector (e.g., w4 in Figure 6.2b). The “direction” (i.e., orientation without

yaw), of this end-effector can be constrained by specifying the position of an additional distinct

anchor (e.g., w3 in Figure 6.2b) along the desired direction (Marić et al., 2021).

In order to form a graph describing our kinematic model, let Vj = [2n] and Vw = [2n+m]\[2n]

be index sets for vertices representing variable points (pi and qi) and anchors (wj) respectively,

and let V = Vj ∪ Vw = [2n + m]. Similarly, the edge sets describing fixed distance constraints

between variable joints and between variable joints and anchors are El ⊆ Vj×Vj and Ew ⊆ Vj×Vw,

respectively. We represent the equality constraints with a weighted directed acyclic graph

G = (V, Eeq, `), where ` : Eeq → R+ encodes the fixed distances:

` : (i, j) 7→ ‖xi − xj‖ , (6.5)

2A joint is anchored if its axis of rotation is invariant to changes in θ.



82 Chapter 6. Inverse Kinematics for Generic Revolute Manipulators

where xi and xj can refer to either variable joints or fixed anchors, and Eeq = El ∪ Ew. To

simplify our notation, we introduce the incidence matrix

B(Eeq)i,e =





1 if e ∈ δ(i)+,

−1 if e ∈ δ(i)−,
0 otherwise,

∈ R|V|×|Eeq| (6.6)

where δ(i)− and δ(i)+ are the set of edges leaving and entering i ∈ V, respectively.3 We also

introduce the matrix

P = [X W] ∈ Rd×(2n+m). (6.7)

Thus, the eth column

PB(Eeq)(e) = P(j) −P(i) (6.8)

is the relative position of vertices i and j. The diagonal elements of the product

B(Eeq)TPTPB(Eeq) ∈ S|Eeq| (6.9)

are therefore equal to

`(e) =
∥∥∥P(j) −P(i)

∥∥∥
2
, e = (i, j) ∈ Eeq. (6.10)

Recalling that de = `(e)2, we can now use B(Eeq) to compactly summarize the squared distance

constraints as

diag
(
B(Eeq)TPTPB(Eeq)

)
= `, (6.11)

where

`e = `(e)2 ∀e ∈ Eeq. (6.12)

This formulation is equivalent to the one used in So and Ye (2007) for SNL.

6.2.3 Workspace Constraints

Consider a workspace W with obstacles or other regions that our robot is forbidden from

occupying. We model these constraints with a finite set of spheres O whose union is chosen to

cover the restricted regions:

‖xi − cj‖2 ≥ l2j ∀i ∈ Vj, ∀j ∈ O, (6.13)

where cj ∈ Rd is the centre and lj > 0 is the radius of sphere j ∈ O. This “union of balls”

environment representation has been used in previous work on robot motion planning (Varava

et al., 2020). Furthermore, Corollary 1 tells us that we can approximate compact (i.e., closed

3Throughout this section we slightly abuse our notation by using e to refer both to a directed edge e = (i, j) ∈
Eeq as well as an integer (e ∈ [|Eeq|]) corresponding to a fixed index of this same edge.
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and bounded) obstacles of arbitrary complexity up to any desired precision with a large number

of spheres. For specifying a spherical region of free space within which some subset of the joints

must lie (e.g., the obstacle-free regions computed in Deits and Tedrake (2015a)), the inequality

in Equation (6.13) is simply reversed.

Constraining a point x ∈ Rd on our robot to lie in (on one side of) a plane can be simply

encoded as an affine equality (inequality) constraint with the plane’s normal n and its minimum

Euclidean distance c from the origin:

xTn 5 c. (6.14)

One useful application of planar constraints is in restricting a legged robot’s feet to lie on (or

above) the floor.

In addition, self-collisions and workspace constraints on points lying between joints (i.e., on

long links) can be introduced by adding auxiliary variables y ∈ Rd that are fixed between two

points xi and xj for some (i, j) ∈ Eeq. We can parameterize the interior of the line segment

connecting xi and xj with α ∈ (0, 1) and constrain y to lie at some point of our choosing on

this line segment:

y = (1− α)xi + αxj . (6.15)

This auxiliary point can be used in collision avoidance constraints between y and obstacles:

‖y − ck‖2 ≥ l2k ∀k ∈ O. (6.16)

Finally, CIDGIK can easily incorporate self-collision constraints with distance inequalities

between variables:

‖xi − xj‖2 ≥ εi,j ∀(i, j) ∈ Eeq, (6.17)

where εi,j is any user-defined threshold, ideally based on robot geometry. Equations of this

form can also replace xi or xj with auxiliary variables defined in Equation (6.15). Since the

constraints defined in this section are either linear or distance-geometric, they are supported

by the “rank-d” semidefinite relaxation of Equation (6.19) that we introduce in Section 6.3.

6.2.4 QCQP Formulation

We can use the quadratic expressions of Equations (6.11) and (6.13) along with the linear

constraints of Equation (6.14) to describe the solutions to our IK problem as the following

quadratic feasibility program:
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Problem 8 (Feasibility QCQP).

find X ∈ Rd×2n

s.t. P = [X W],

diag(B(Eeq)TPTPB(Eeq))) = `, (6.18)

‖xi − cj‖2 ≥ l2j ∀i ∈ Vj, ∀j ∈ O,
xT
i ni = ci ∀i ∈ Vp ⊂ Vj,

where Eeq, `, and W are problem parameters defined in Section 6.2.2, O is the set of spherical

obstacle constraints of the form in Equation (6.13), and Vp indexes the nodes confined to lie in

some plane described by ni and ci in Equation (6.14).

Remark 2 (Hardness of Problem 8): When solutions exist, the feasible set of Problem 8 is

nonconvex and therefore challenging to characterize. In fact, the analogous formulation of

Problem 8 for SNL with exact distance measurements, no obstacles, and known dimension d is

strongly NP-hard (Krislock and Wolkowicz, 2010; Aspnes et al., 2004).

While quite general, our formulation does have a few limitations: it is only capable of

describing the kinematics of an articulated robot with neighbouring joint axes that are coplanar

(i.e., parallel or intersecting),4 it cannot enforce arbitrary joint angle limits, and it only supports

spherical and planar workspace constraints (Marić et al., 2021).

6.3 Semidefinite Relaxations

With a QCQP formulation in hand, we once again turn to the SDP relaxation machinery in

Chapter 3 as a means of efficiently computing solutions to Problem 8. Introducing the lifted

matrix variable

Z(X) , [X Id]
T[X Id] =

[
XTX XT

X Id

]
∈ S2n+d

+ (6.19)

permits us to rewrite the quadratic constraints of Problem 8 as linear functions of Z(X). Since

Z(X) is an outer product of matrices with rank of at most d (the dimension of the space in

which the robot operates), we know that rank (Z) ≤ d. This differs from the primal SDP

relaxation in Problem 2, which was implicitly “rank-1” due to Z’s construction as a lifting of a

vector, which can be thought of as a matrix of rank at most 1.

Equation (6.19) allows us to write a number of degree-2 or lower polynomial expressions

in X as linear expressions of Z. Since Zi,j = xT
i xj ∀i, j ≤ 2n, each equation in 6.11 that is

4Fortunately, many commercial manipulators, including those in Figure 6.5, satisfy this requirement. Addi-
tionally, we discuss potential extensions to arbitrary revolute manipulators in Section 6.5.4.
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between two variables xk,xl, k 6= l can be written tr (AZ) = `((k, l)), where

Aj,i = Ai,j =





1 if i = j ∈ {k, l},
−1 if i = k, j = l,

0 otherwise.

(6.20)

Similarly, the expression for the squared distance between a variable xk and some anchor w (or

obstacle centre c) can be encoded with matrix M ∈ S2n+d where

Mk,k = 1,

M2n:2n+d,k = −w, (6.21)

Mk,2n:2n+d = −w> ,

M2n+d,2n+d = ‖w‖2 .

Likewise, linear constraints can be enforced with matrices manipulating the elements in Z2n:2n+d,1:2n

and its symmetric counterpart. These constraints can be collected in the linear maps

A(Z) = a, A : S2n+d → Rm+d2+|Vp|, (6.22)

B(Z) ≤ b, B : S2n+d → R|O|, (6.23)

which appear in our SDP problem formulation. The final constraint worth noting, which

contributes d2 to the dimension of the codomain of A, simply arises from the requirement that

the bottom-right d × d diagonal of Z is equal to Id. As in Section 3.4.4, we can now replace

Z(X) with a generic PSD matrix Z � 0 to produce the following semidefinite relaxation:

Problem 9 (SDP Relaxation of Problem 8).

find Z ∈ S2n+d
+

s.t. A(Z) = a, (6.24)

B(Z) ≤ b,

where A : S2n+d → Rm+d2+|Vp| and a ∈ Rm+d2+|Vp| encode the linear equations that enforce

the constraints in Equation (6.11) and Equation (6.14) after applying the substitution in Equa-

tion (6.19), and the linear map B : S2n+d → R|O| and vector b ∈ R|O| enforce the inequalities

in Equation (6.13).

Problem 9 is a convex feasibility problem, which can be efficiently solved by numerous

interior-point methods (Boyd and Vandenberghe, 2004). Unfortunately, solutions to Problem 9

are not limited to the rank-d solutions originally sought in Problem 8. In fact, Nie (2009) and

So and Ye (2007) point out that when there are multiple possible solutions, interior-point SDP

solvers return a max-rank solution. For the case of SNL problems with exact measurements
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and no inequalities, So and Ye (2007) use rigidity theory to prove that the existence of a unique

solution in dimension d to an instance of Problem 8 is a sufficient condition for its corresponding

SDP relaxation (Problem 9) to yield a rank-d or lower solution. Unfortunately, even though the

lengths in our kinematic model are in fact exact “measurements”, we are particularly interested

in redundant kinematic models, which, by definition, admit multiple solutions. Thus, we turn

our attention to methods for finding low-rank solutions to Problem 9.

6.3.1 Nearest Point Cost Functions

With Problem 8, we find ourselves in a situation similar to the one in Chapter 5, where the

quadratic variety Equation (5.10) was used to describe feasible solutions to planar and spherical

inverse kinematics problems. Therefore, we may be tempted to mimic the “nearest-point”

strategy used in Equation (5.12) to define a cost function which gives us a unique solution and

a tight SDP relaxation. However, this strategy does not work for the model in Problem 8. To

understand why, recall that Theorem 3 requires LICQ to hold at some ZDG parameter ξ̄. For

each pair (i, j) of neighbouring joints, Problem 8 includes the following six pairwise distance

constraints:
‖pi − qi‖2 = d2

1∥∥pi − pj
∥∥2

= d2
2∥∥pi − qj

∥∥2
= d2

3∥∥qi − pj
∥∥2

= d2
4∥∥qi − qj

∥∥2
= d2

5∥∥pj − qj
∥∥2

= d2
6.

(6.25)

By collecting Equation (6.25) into the vector-valued function fij(xij), where

xij =




pi

qi

pj

qj



, (6.26)

we see that the Jacobian is

∇fij =




(pi − qi)
> (qi − pi)

> 0 0

(pi − pj)
> 0 (pj − pi)

> 0

(pi − qj)
> 0 0 (qj − pi)

>

0 (qi − pj)
> (pj − qi)

> 0

0 (qi − qj)
> 0 (qj − qi)

>

0 0 (pj − qj)
> (qj − pj)

>




∈ R6×12. (6.27)
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Recall that for LICQ to hold, Equation (6.27) must have full rank.5 The matrix in Equa-

tion (6.27) is also known as the rigidity matrix, and it plays a central role in the mathematical

field of rigidity theory (Singer and Cucuringu, 2010). In general, for a graph G = (V, E) with

incidence matrix B(E) and a “realization” or assignment of points X ∈ Rd×|V|, the rigidity

matrix is (Sun et al., 2015):

R(z) , diag
(
z1, . . . , z|E|

)>
(B(E)⊗ Id), (6.28)

where

zk = xi − xj (6.29)

is the relative distance for the kth edge (i, j) = ek ∈ E for all k ∈ [|E|]. Unfortunately, the

requirement from Section 6.2.4 that successive joints possess coplanar axes presents an obstacle

for the nearest-point approach.

Proposition 3. For xij such that pi, qi, pj, and qj are coplanar, the Jacobian in Equa-

tion (6.27) (equivalently, the rigidity matrix) is rank deficient.

Proof. By the rank-nullity theorem (Strang, 1993), it is sufficient to demonstrate that the matrix

in Equation (6.27) has a nullspace of dimension ≥ 6. Every 3D configuration’s rigidity matrix

has at least six nullspace basis vectors corresponding to the degrees of freedom of a Euclidean

transformation applied to all points in the configuration (Singer and Cucuringu, 2010). Since

our configuration is coplanar by assumption, there exists some nonzero vector z⊥ ∈ R3 such

that

zk
> z⊥ = 0 ∀k ∈ [6]. (6.30)

Consider perturbations of the form

δxij =

[
αz⊥

09

]
∈ R12, (6.31)

where α 6= 0. Since, by its fundamental property in Equation (6.30), R(z)δxij = 0, our

perturbation δxij is in the nullspace of the rigidity matrix R(z). Finally, since only one point is

perturbed, δxij does not correspond to a linearized Euclidean movement (i.e., a uniform rotation

or translation of the entire configuration). Therefore, we have found a seventh nullspace basis

vector and completed our proof.

In rigidity-theoretic language, Proposition 3 says that Equation (6.27) is infinitesimally

flexible for a coplanar configuration. This is a well understood and fundamental phenomenon

5Since the constraints in Equation (6.25) only depend on the variables in xij , this is true no matter how many
DOF the robot of interest possesses (i.e., the inclusion of the entire robot model cannot change the fact that the
rows of this partial Jacobian need to be linearly independent). Therefore, without loss of generality, we will only
examine the constraints corresponding to a single pair of joints in isolation.
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in the study of rigidity, and it prevents our application of Theorem 3 and its associated SDP

solution to revolute 3D manipulators.

6.3.2 Rank Minimization

With the nearest-point formulation that worked for planar and spherical chains in Chapter 5 off

the table, we need an alternative approach. Ideally, we could augment Problem 9 with rank (Z)

as its cost function to find the lowest-rank solution possible. However, the matrix rank function

is nonconvex and therefore difficult to globally minimize, even over the convex feasible set of

Problem 9. Thus, we minimize convex (linear) heuristic cost functions that encourage low rank

solutions:

Problem 10 (Problem 9 with a Linear Cost). Find the symmetric PSD matrix Z that solves

min
Z∈S2n+d

+

tr (CZ)

s.t. A(Z) = a, (6.32)

B(Z) ≤ b,

where C ∈ S2n+d.

When C = I, the cost function is the nuclear norm of Z, which is the convex envelope of rank (Z)

over the set of matrices whose largest singular value is less than or equal to one (Dattorro,

2005). The nuclear norm heuristic has been successfully applied to a variety of linear inverse

problems with matrix variables, and is even guaranteed to produce the minimum rank solution

when certain conditions are met (Recht et al., 2010; Chandrasekaran et al., 2012). However,

we conducted a simple experiment demonstrating that the nuclear norm heuristic is unable

to yield rank-d solutions to Problem 9 for the 6-DOF UR10 manipulator. Figure 6.3 shows

the distribution of log10(h(Z)) over 7,000 experiments with feasible UR10 goal poses in an

obstacle-free environment, where

h(Z) =
2n+d∑

i=d+1

λi(Z) (6.33)

is our “excess rank” heuristic. The convergence threshold for h(Z) we use in Section 6.4 is

10−6, with some high quality solutions recovered for h(Z) ≈ 10−3. As you can see in Figure 6.3,

the nuclear norm heuristic led to very few instances with h(Z) < 10−2 and is therefore only

appropriate as an initialization for CIDGIK, which we describe in Section 6.3.3 and typically

requires fewer than 10 iterations to converge below our threshold of 10−6.

Consider the following surrogate for the “excess rank” (i.e., rank (Z)− d) of Z ∈ S2n+d
+ :

h(Z) =
2n+d∑

i=d+1

λi(Z), (6.34)
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Figure 6.3: Distribution of log10(h(Z) over 7,000 runs of our SDP formulation with the nuclear norm
heuristic (C = I).
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where λi(Z) is the ith largest eigenvalue of Z. Since Z has nonnegative eigenvalues, h(Z) = 0

implies that rank (Z) ≤ d. Computing h(Z) is equivalent to solving a particular SDP (Dattorro,

2005):

Problem 11 (Sum of 2n Smallest Eigenvalues (Dattorro, 2005)). Find the symmetric PSD

matrix C that solves

2n+d∑

i=d+1

λi(Z) = min
C∈S2n+d

tr (CZ)

s.t. tr (C) = 2n, (6.35)

0 4 C 4 I.

A closed-form solution to Problem 11 is given by Dattorro (2005):

C? = UUT, (6.36)

U = Q(:, d+ 1 : 2n+ d),

where Q ∈ O(2n+ d) is from the eigendecomposition Z = QΛQT.

6.3.3 Convex Iteration

In Dattorro (2005), the method of convex iteration between Problem 10 and Problem 11 is

proposed. We summarize the approach in Algorithm 1. Each iteration of Problem 11 com-

Algorithm 1: Convex Iteration for Distance Geometric IK (CIDGIK)

Input: Problem 10 specification (i.e., A(·),B(·),a,b)
Result: PSD matrix Z? that solves Problem 10
Initialize C{k} = I2n+d

while not converged do

Solve Z{k} = argminZ Problem 10 with C = C{k}

Solve C{k} = argminC Problem 11 with Z = Z{k} using Equation (6.36)
end

Return Z? = Z{k}

putes C{k} corresponding to h(Z) at the current iteration’s value of Z = Z{k}. Since this C{k}

is only exact at Z{k}, each iteration of Problem 10 can therefore be treated as minimizing

an approximation of h(Z) in the neighbourhood of Z{k}. Since the closed-form solution in

Equation (6.36) is used to quickly solve Problem 11 in this procedure, most of CIDGIK’s com-

putational cost comes from solving Problem 10. This approach has been successfully applied

to noisy SNL (Dattorro, 2005) and optimal power flow problems (Wang and Yu, 2018).
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Figure 6.4: Spectrahedron (in the shape of a pierogi) describing the feasible set of Problem 9 for the
simple 2-DOF planar manipulator IK problem in Section 6.3.4. The spectrahedron’s interior (green
gradient) represents the set of full-rank 3 × 3 PSD matrices Z that satisfy the constraints (linear in
Z) imposed by manipulator geometry and end-effector pose. The spectrahedron boundary (green dots)
contains all degenerate Z, and the extreme points (black dots) represent the desired rank-1 solutions. The
constraint imposed by the circular obstacle is enforced in the lifted PSD representation by a half-space
constraint induced by the translucent blue plane.

6.3.4 Geometric Interpretation

Here, we motivate the convex iteration algorithm described in Section 6.3.2 and explain why

we expect some C ∈ S2n+d
+ to yield a low-rank solution. Aside from the interpretation of

tr (CZ) as a local approximation of the excess rank heuristic h(Z), it is fruitful to view C as

a direction in the space S2n+d ⊃ S2n+d
+ . More precisely: since ∂tr (CZ) /∂Z = C, we are in

effect designing the objective in Problem 10 so that its steepest descent direction at Z points

towards low-rank minimizers on the boundary of the feasible set. In practice, this heuristic

chooses rank-d matrices with high probability for typical IK problems.

Consider the toy problem of a 2-DOF planar manipulator rooted at the origin of the plane

and with links of unit length. Using the formulation in Section 6.2, we can write the IK problem

of reaching a point w ∈ R2 with the manipulator’s end-effector as the following quadratic
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feasibility problem:

find x ∈ R2

s.t. ‖x‖2 = 1, (6.37)

‖x−w‖2 = 1,

‖x− o‖2 ≥ 0.25,

where x is the position of the “elbow” joint, and o = [1, 0]T is the position of a unit-diameter

circular obstacle. Consider the case of w = [1, 1]T: the insets of Figure 6.4 show that of the

two candidate solutions to this problem, the “elbow down” configuration in the bottom right

collides with the obstacle at o (partially depicted as a blue semicircle). Homogenizing (6.37)

with s2 = 1 and lifting to the rank-1 matrix variable

Z(x) =

[
x

s

] [
x> s

]
(6.38)

lets us apply the SDP relaxation Z � 0 to yield:

find Z ∈ S3
+

s.t. A(Z) = a, (6.39)

tr (BZ) ≤ b.

In Equation (6.37), the homogenization equation and the constraints of (6.37) have been re-

placed by their lifted SDP equivalents in A. Specifically, the matrices

A0 =




1 0 0

0 1 0

0 0 0


 , A1 =




1 0 −1

0 1 −1

−1 −1 2


 (6.40)

describe the unit link length constraints and matrices

A2 =




0 0 0

0 0 0

0 0 1


 , A3 =




1 0 −1

0 1 0

−1 0 1


 (6.41)

describe the homogenization equation (s2 = 1) and the obstacle avoidance constraint, respec-

tively.

The intersection of the three affine equality constraints with Z � 0 produce the spectra-

hedron in Figure 6.4. Valid solutions to the unrelaxed QCQP problem are rank-1 elements

of this spectrahedron. Since the interior of this set (Z � 0) contains full rank solutions, we

know that rank-1 solutions will lie on the boundary. Indeed, the two extreme points, denoted
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in black in Figure 6.4, represent the two valid solutions to our toy IK problem in the absence

of obstacles. The half-space constraint induced by the blue plane illustrates the effect of the

obstacle constraint in our lifted problem domain, eliminating the infeasible “elbow down” con-

figuration from the feasible set of (6.39). The method employed in this chapter seeks to find,

via convex iteration, a “direction” C such that the linear cost function tr (CZ) is minimized

at a rank-d solution. While the solution to this toy example can be obtained analytically, its

low-dimensional structure allows us to illustrate the geometric ideas motivating our approach.

6.4 Experiments

We evaluate our proposed approach on IK problems for the three commercial robots shown

in Figure 6.5 in a variety of environments. In all cases, we generate feasible IK problems by

taking uniform random sample configurations θ ∈ C, rejecting configurations that violate col-

lision avoidance constraints,6 and using the resulting end-effector pose Tg = F (θ) as a goal.

Each problem instance is solved with Algorithm 1 (CIDGIK), with the MOSEK interior point

solver (Andersen and Andersen, 2000) used for each iteration of Problem 10. To determine

whether Algorithm 1’s solution to a particular IK problem is successful, we first use the pro-

cedure in Marić et al. (2021) to reconstruct the joint configuration θ from points X extracted

from the rank-d matrix Z? returned after a maximum of 10 iterations of the algorithm in Sec-

tion 6.3.3. This joint configuration is treated as CIDGIK’s solution and fed into the forward

kinematics in Equation (6.1) to obtain the end-effector pose and any workspace constraint vio-

lations. A solution is considered correct when it satisfies obstacle constraints to within a 0.01 m

tolerance, has an end-effector position error lower than 0.01 m, and has an orientation error

lower than 0.01 rad (0.6◦).

In order to evaluate the advantages of our approach over formulations based on joint angles,

we also implement an IK solver that uses nonlinear optimization. Namely, we use the square of

the end-effector pose error, e, as the objective function of a nonlinear program, with collision

avoidance constraints equivalent to those used by CIDGIK represented as nonlinear inequality

constraints:

min
θ∈C

‖e (θ,Tg)‖2 (6.42)

s.t. ‖xi(θ)− cj‖2 ≥ l2j ∀i ∈ Vj, ∀j ∈ O.

Our choice of error function e between the current (F (θ)) and goal (Tg) poses is the matrix

logarithm

e (θ,Tg) = ln(F (θ)−1Tg) ∈ R6, (6.43)

6Note that for redundant manipulators this procedure can reject some feasible goals, since (infinitely) many
other configurations may exist that reach the desired end-effector pose without any collisions.
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which is a proper function over SE(3) when defined with a convention that selects for a rotation

component with a magnitude smaller than π (Barfoot, 2017, Section 7.1.3). The spherical

obstacles in O are parameterized as in Equation (6.13). This formulation can be solved using

(a) UR10, (octahedron). (b) Schunk LWA4D, (cube).

(c) KUKA IIWA, (icosahedron).
(d) 9-DOF, (table).

Figure 6.5: Four robot manipulators (and obstacle configurations) used in our experiments. For (a)-
(c), we also visualize the edges (dark grey lines) and nodes (red) of the associated acyclic graph used
to form our distance-geometric model (cf. Figure 6.2b). These three environments, labeled octahedron,
cube, and icosahedron, correspond to obstacle configurations defined by the vertices of the respective
Platonic solid centred at the base of the robot.

Sequential Quadratic Programming (SQP) and has previously been used within the TRAC-IK

algorithm (Beeson and Ames, 2015). Since TRAC-IK does not support obstacles, we implement

our solver using the SLSQP routine in the scipy Python package (Virtanen et al., 2020). As an

additional comparison, we solve Equation (6.42) using IPOPT, a highly efficient implementation

of an interior-point filter line-search algorithm (Wächter and Biegler, 2006). All experiments

are performed on a laptop with an Intel i7-8750H CPU running at 2.20 GHz and with 16 GB

of RAM.
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To provide a quantitative evaluation of our approach, we generate and solve 3,000 problem

instances for each of the three robots depicted in Figures 6.5a-6.5c in each of the distinct

environments depicted in those same figures, as well as a fourth obstacle-free environment. For

consistency, all three algorithms only consider collisions between joint locations and obstacles

(i.e., auxiliary points are not added along the links in CIDGIK). Tables 6.2 and 6.3 summarize

respectively the success rate and runtime of each algorithm for each robot-environment pair.

Comparing success rates in Table 6.2 reveals that our method solves a larger percentage of

problems overall than both SLSQP and IPOPT in all environments featuring obstacles, achieving a

success rate of > 99% in many instances. Likewise, CIDGIK’s runtime in Table 6.3 is consistently

lower than its competitors’ across all three obstacle-filled environments. In the obstacle-free

case, SLSQP runs faster than CIDGIK with similar accuracy, and IPOPT achieves a perfect success

rate and extremely low mean runtime on the UR10, which the other two algorithms struggle

with. Curiously, while its competitors slow down significantly with the addition of obstacles, the

solution times for CIDGIK barely increase (or even slightly decrease) as the number of obstacles

grows. In future work, we plan to investigate whether this trend holds for other more complex

robots, and for environments with many hundreds or thousands of obstacles.

Figure 6.6 displays the distribution of position and rotation errors for CIDGIK and SLSQP

on each robot, aggregated across experiments from all four environments. Figure 6.7 depicts

the distribution of the distance to the nearest obstacle across experiments. Together, these two

figures reveal that with the exception of CIDGIK on the UR10 robot, most failures were in fact

due to end-effector error as opposed to obstacle constraint violations.

Finally, Table 6.4 summarizes 1,000 experiments comparing CIDGIK and SLSQP on the hyper-

redundant 9-DOF manipulator from Xu et al. (2014) in the 100-obstacle table environment

displayed in Figure 6.5d. These results demonstrate CIDGIK’s statistically significant superiority

over SLSQP, both in terms of accuracy and runtime, as both the number of obstacles and robot

DOF increase.

Method Pos. Err. [cm] Rot. Err. [mrad] Sol. Time [s] Succ. [%]

SLSQP 1.6 (12) 1 (14) 1.5 (0.7) 97 ± 1.1
CIDGIK 0.02 (0.21) 0.13 (2) 0.16 (0.1) 99 ± 0.4

Table 6.4: Results for 1,000 9-DOF manipulator experiments in the table environment (Figure 6.5d).
Errors and and solve times are reported as mean with standard deviation in brackets, while the success
rates are given as 95% Jeffreys confidence intervals (Tony Cai, 2005).

6.4.1 SDP Solver Performance

This section provides a comparison of two SDP solvers: SCS, a conic operator splitting method

(O’Donoghue et al., 2016), and MOSEK, an interior point optimizer (Andersen and Andersen,

2000). These solvers were selected because they use different approaches, and because of their

interfaces with the cvxpy modelling language (Diamond and Boyd, 2016) used to implement
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generated IK problems. Each algorithm was allowed up to 1,000 iterations.
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CIDGIK. Figure 6.8 demonstrates that MOSEK is the far superior option on a dataset of 100

randomly generated IK problems using the 9-DOF manipulator in the table environment. In

spite of its use of warm starting, the performance of SCS is dominated by MOSEK. SCS is

only able to run faster than MOSEK when it tolerates end-effector position errors an order

of magnitude greater than MOSEK’s. These results motivate our decision to use MOSEK as

CIDGIK’s backend for all experiments.

Finally, in order to highlight the importance of choosing a fast SDP solver, we measured the

total runtime of the closed-form eigendecomposition solution when solving the 100 IK problem

instances with MOSEK. The mean runtime of this procedure is 0.56 ms, with a standard

deviation of 0.26 ms. This is dwarfed by the nearly half-second runtime of MOSEK on the

main SDP.

6.4.2 Infeasibility Certification

Convex relaxations can often be used certify the infeasibility of a problem. To determine

whether CIDGIK is capable of infeasibility certification, we conducted a simple experiment.

Using the Cube environment and a closed-form analytic solver for the UR10, we gave CIDGIK

10,000 goal poses with the following properties:

1. the analytic UR10 solver deemed the goal pose infeasible by checking for collisions over

all 8 possible solutions,

2. the end-effector was not in collision with an obstacle, and

3. the point attached to the end-effector’s parent joint was not in collision with an obstacle.

Goal poses that are infeasible because of conditions 2) and 3) are easy for CIDGIK to certify

as infeasible because the Euclidean distance constraints they violate are unavoidable, even in

higher-rank solutions representing configurations embedded in Rd′ where d′ > d. Unfortunately,

the infeasible cases that remain are much more challenging, with CIDGIK certifying a mere 152

out 10,000 (1.52%) as infeasible.

6.5 Summary and Future Work

We have presented a novel distance-geometric approach to solving inverse kinematics problems

involving redundant manipulators with arbitrary spherical and planar workspace constraints.

Preliminary experiments demonstrate that our algorithm significantly outperforms benchmark

algorithms in obstacle-laden environments. Crucially, our problem formulation connects IK to

the rich literature on SDP relaxations for distance geometry problems, providing us with the

novel and elegant geometric interpretation of IK discussed in Section 6.3.4.
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6.5.1 Rank-1 Relaxation and Ellipsoids

Like SNL, our IK problem leads to a rank-d SDP relaxation because of the d-dimensional nature

of our spatial problem. More concretely, we saw in the previous section that since we are only

constraining the squared distances between points in Rd, quadratic terms in these constraints

appear as inner products between variables (e.g., xT
i xj). In general, QCQPs do not contain

this structure, and the lifted Z variable would be a “rank-1” lifting. For our problem, a rank-1

SDP relaxation, like the one used for the pierogi example would take the form

Z = [vec (X)T 1]T[vec (X)T 1] ∈ S2dn+1
+ , (6.44)

. As you can see, this Z variable is much larger, leading to greater computation and mem-

ory requirements in SDP solvers, and our rank-d relaxation, by contrast, exploits the spatial

structure of our problem. However, since the generic rank-1 relaxation allows us to work with

any quadratic constraint, in future work we are interested in exploring its ability to model

constraints like arbitrary ellipsoidal obstacles:

(xi − c)TA(xi − c) ≥ l2. (6.45)

6.5.2 Chordal Sparsity

A graph is chordal if every cycle of length four or greater has a chord (an edge that is not

part of the cycle but connects two vertices in the cycle). In our problem, the edges of G
describe points whose distances are constrained. Since the SDP variable Z contains the dot

product of point variables (i.e., Zij = xi
> xj), G also describes the elements of Z that appear

together in constraints. In this section, we demonstrate that G is chordal due to a sparsity

pattern induced by the fact that distance constraints only affect points fixed to neighbouring

joints. This “chordal sparsity” can be exploited to speed up the solution of large SDPs with the

methods reviewed in Majumdar et al. (2019). In future work, we intend to use these methods

within CIDGIK to quickly solve IK problems for tree-like robots with many redundant degrees

of freedom.

Assume that G = (V, Eeq, `) is the distance constraint graph for a tree-like robot (i.e., no

loops in its joints). Since the robot’s joints and links describe a tree, the only cycles in G occur

in the cliques described by pi, qi, pj , and qj for neighbouring joints i and j. Since the cycles

occur within cliques, they are chordal (because cliques are complete by definition). In order to

apply the methods in Majumdar et al. (2019), we would additionally need to ensure that the

workspace constraints and cost function matrix C also exhibit this sparsity pattern. Spherical

and planar obstacle constraints clearly do not ruin the chordal sparsity, since each constraint

only involves a single point pi. Finally, the work on optimal power flow in Wang and Yu (2018)

describes a heuristic method for constructing C in a manner that preserves problem sparsity.
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The COSMO algorithm (Garstka et al., 2019) has a freely available implementation that is able

to automatically exploit chordal sparsity in conic optimization problems.

6.5.3 Joint Angle Limits

Quadratic joint angle limits for revolute manipulators can be defined in a manner similar to the

method used in Chapter 5 on planar and spherical chains. Unfortunately, without the addition

of auxiliary variables, joint angle ranges which are not symmetric about the “straightened”

configuration are impossible to enforce. Crucially, this precludes the use of joints that behave

like fingers or knees (i.e., only able to bend in one direction away from the straightened config-

uration) in IK problems we wish to solve with CIDGIK. This need for “directionality” in angular

constraints can be addressed with the addition of constraints involving the cross product of

differences between adjacent points, which we leave for future work.

6.5.4 “Tetrahedral” Robot Link Geometry

The work in this chapter assumes that consecutive joints have axes of rotation that are coplanar

(i.e., either parallel or intersecting). This requirement ensures that for consecutive joints i

and j, the points pi,qi,pj , and qj form a quadrilateral or triangle. When the axes are not

coplanar, these points form a tetrahedron that we are specifying from distances alone. Generic

tetrahedra are chiral in that their reflections cannot be reproduced by rigid transformations.

Therefore, our method of enforcing a tetrahedral joint pair’s structure with distances alone

allows CIDGIK to search a feasible set that contains physically unrealizable configurations. Much

like asymmetrical joint limits, this problem can be addressed with the addition of auxiliary

variables and constraints involving cross-products, but the effect of these additions on the

accuracy and performance of CIDGIK remains to be seen.

These modifications can be incorporated into our framework, but their effect on accuracy

and runtime remains to be seen. Finally, while our method uses global optimization to solve the

subproblem in each iteration, it remains to be shown whether global convergence guarantees exist

for CIDGIK. These guarantees may depend on robot structure or hyperparameter settings (e.g.,

a particular choice of C{0} 6= I), and modifications might affect which of the possibly infinite

feasible solutions CIDGIK returns. Understanding this behaviour is key to making CIDGIK a fast

and reliable subroutine for a variety of challenging motion planning applications.



Chapter 7

Conclusion

But then, as she knew too well, the more

fondly we imagine something will last

forever, the more ephemeral it often

proves to be.

Iain M. Banks, Excession

This dissertation has applied convex semidefinite programming relaxations to variants of

two classic problems in robotics, extrinsic sensor calibration and inverse kinematics. To do so,

we exploited quadratic polynomial representations of two fundamental structures in Euclidean

space: orientations and sets of points with fixed distances. In fact, it is useful to think of

rotation matrices described by Equation (2.2) as sets of points with fixed distances imbued

with additional orthogonality (p> q = 0) and handedness (Equation (2.3)) constraints. In

addition to presenting concrete experimental results, we hope that this work has strengthened

the elegant theory of global polynomial optimization for geometric problems in robotics by

identifying a thread connecting extrinsic calibration and inverse kinematics. To conclude, this

section contains a list of novel contributions and a brief discussion of two potential high-level

directions for future work.

7.1 Summary of Contributions

In summary, this dissertation’s main novel contributions are:

1. an extension of the theory in Cifuentes et al. (2022) to semialgebraic sets (Section 3.6);

2. a maximum likelihood QCQP formulation of hand-eye calibration (Section 4.2);

3. a proof of the local stability of SDP relaxations of our QCQP formulation of hand-eye

calibration (Section 4.3);
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4. an open source extrinsic calibration package in Python and MATLAB with experimental

results (Section 4.4);

5. a QCQP formulation of inverse kinematics for serial chains (Section 5.3);

6. a proof of the local stability of SDP relaxations of our QCQP formulation of inverse

kinematics (Section 5.3.3);

7. an open source MATLAB package implementing SOS-IK, a sparse sum-of-squares solution

to IK for serial chains and its associated experiments (Section 5.5);

8. an extension of our QCQP formulation of IK to revolute manipulators with pairwise-

coplanar axes of rotation in environments with workspace collision constraints (Sec-

tion 6.2);

9. an application and analysis of low-rank semidefinite programming relaxations to our

QCQP formulation of IK resulting in CIDGIK, a fast and accurate solution method (Sec-

tion 6.3); and

10. an open source Python package implementing CIDGIK and its associated experiments

(Section 6.4).

7.2 Future Research Directions

Our focus on SDP relaxations enabled the use of optimization techniques with global optimality

guarantees. While this spurred the development of fast and accurate methods that do not

require an initialization, our theoretical analysis of both calibration and IK had a decidedly

local flavour stemming from use of the machinery in Cifuentes et al. (2022). This limitation

is perhaps unsurprising, as we should not expect the use of SDP relaxations to be a “silver

bullet” for problems which are closely related to NP-hard problems (Antonante et al., 2021;

Aspnes et al., 2004; Canny, 1988). In other words, there is “no free lunch” (Wolpert and

Macready, 1997) in robotic state estimation and planning! However, better characterizing the

performance and applicability of this approach, through, for example, the computation of ZDG-

region bounds (Cifuentes et al., 2022) or detailed geometric descriptions (Cifuentes et al., 2018)

remains an exciting future research direction.

One promising use for SDP relaxations in robotics is as a complementary technology to

data-driven approaches. This direction is enabled by fast and differentiable solvers for convex

programs which can be treated as layers in deep neural networks (Agrawal et al., 2019). Indeed,

this inspired our recent work in Peretroukhin et al. (2020), which indirectly predicts rotations

by learning quadratic cost functions over unit quaternions from perceptual data. A similar

strategy is used in Yang et al. (2021) for learning visual feature descriptors for robust geometric

perception.
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