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The ability to perceive object slip through tactile feedback allows humans to

accomplish complex manipulation tasks. For robots, however, detecting key events

such as slip from tactile information is a challenge. This work explores a learning-

based method to detect slip using barometric tactile sensors that have many desirable

properties; they are durable, highly reliable, and built from inexpensive components.

We collect a novel dataset specifically targeted for robustness, and train a TCN to

detect slip. The trained detector achieves an accuracy of greater than 91% on test

data while displaying robustness to the speed and direction of the slip motion. When

tested on two robot manipulation tasks involving a variety of common objects, our

detector demonstrates generalization to previously unseen objects. This is the first

time that barometric tactile-sensing technology, combined with data-driven learning,

has been used for a manipulation task like slip detection.
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Chapter 1

Introduction

For humans, the sense of touch plays a crucial role in perceiving the outside world.

We are able to perform complex dexterous manipulation tasks with our hands in a

large part because of their rich tactile sensing capabilities. The skin, which is our

primary cutaneous tactile modality, is equipped with numerous mechanoreceptors

that transduce mechanical stimuli, like pressure and vibration, into electrical signals.

For decades, the prosthetics and robotics community has sought to match the human

tactile-sensing capabilities artificially. Despite significant recent progress, artificial

tactile sensors are yet to achieve the fidelity and accuracy of human tactile perception.

The sense of touch is essential for controlling the gripping force required to hold

an object without slipping, that is, without allowing relative motion at the contact

interface between the hand and an object [5]. As part of humans’ sensory nervous sys-

tem, a fast somatosensory feedback loop enables grasp adjustments to be performed

within about 100 milliseconds, allowing for seamless and automatic grasp adaptation

when handling a wide variety of objects in our daily lives [6]. Tactile signals provide

vital information about slip faster than any exteroceptive perception method such as

vision. Slip can be both disastrous (e.g., when transporting a fragile object) and ad-

vantageous (e.g., when moving an object without lifting it) depending on the context

and the task [7]. In robotics, the well-studied “handover” task—in which a robot

hand passes an object to a human hand—requires control of the gripping force with

accuracy and speed to avoid significant slip [8]. The requisite feedback can only be

provided through tactile sensing [9] and, consequently, the detection and control of

slip events is fundamental to the completion of handovers and many other relevant

robot and human-robot tasks.

1



Chapter 1. Introduction 2

Figure 1.1: The TakkTile sensing units are mounted on the fingertips of a Robotiq
3-finger adaptive gripper. Inset: exploded view of each RightHand Labs TakkTile
sensor (plastic support frame, barometer circuit board, and rubber matrix, from left
to right).

In the last decade, a wide range of new tactile sensors have become available.

These sensors measure various physical properties at the sensing interface including

capacitance [10], impedance [11], or optical changes [12–15]. The BioTac fingertip,

for example, is equipped with impedance-based tactile receptors, hydrophones, and

thermistors to provide rich multimodal tactile information [11]. Each new tactile

sensor has inherent characteristics such as fragility, bulk, resolution, nonlinearity,

hysteresis, and production cost. The best tactile sensor for a specific job is one that

balances these factors with how they relate to varying task constraints.

Inspired by human biology, many early researchers designed custom pressure sen-

sors to analyze the vibrations induced by slip (see Section 3.1), in which the presence

of slip was determined based on heuristics applied to properties like spectral power or

vibration energy. These approaches and their heuristics fell short in their ability to

generalize to previously unseen tasks as a consequence of the sensitive heuristics. Cur-

rently, a popular approach is to infer slip by visually detecting ‘skin’ deformation (see
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Section 3.3). The top layer of a vision-based tactile sensor produces visible features

when deformed, which can be used to infer tactile events like slip. The vision-based

tactile sensors, however, are bulky and using them to detect slip is computationally

intensive [1].

This thesis investigates the potential of combining low-cost tactile sensors, assem-

bled from off-the-shelf components, with a state-of-the-art neural network to detect

object slip. The sensors—the TakkTile model from RightHand Labs—are built as

an array of commercial MEMS barometers fixed to a PCB backplane, with a thin

rubber matrix forming the contact surface. Although inexpensive, these sensors have

a low profile, are mechanically robust, exhibit a consistent linear pressure response,

and integrate easily with existing end-effectors.1 The complex spatiotemporal sig-

nature of pressure changes during slip is difficult to model analytically—instead, a

data-driven approach is taken by training a temporal convolution neural network

(TCN) to classify the time-series data produced by the tactile sensor as either static

or slipping.

To the best of the author’s knowledge, this work is the first to use either barometric

tactile sensors or a TCN-based network for slip detection. It provides the following

research contributions:

• an algorithm for slip detection using very low-cost barometric sensors that

achieves an average accuracy of over 91%;

• a comparison of the TCN approach with two prior slip-detection methods that

rely on vibration information;

• a preliminary analysis of the sensitivity and robustness of the TCN detector to

factors related to surface properties and slipping motion;

• extensive experimental results for in-hand slip detection of objects with various

curvatures, hardnesses, and surface properties.

1The MEMS barometer used in this work (NXP MPL115A2) costs US$2, approximately, per unit
in quantities of 1,000 or more.
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Chapter 2

Background

The chapter provides an overview of methods for artificial tactile sensing, with a focus

on their relationship to the human sense of touch (in terms of fidelity); a definition

and characterization of the phenomenon of slip, the primary topic of the thesis; and a

review of deep learning and sequence modeling, which highlights appropriate models

for slip detection. The following chapter, Chapter 3, examines recent developments

in artificial tactile sensing and slip detection for various use cases.

2.1 Human and Artificial Tactile Sensing

The human hand is a symbolic representation of the evolution of primates. With

twenty-one degrees of freedom (DOFs), our hand is an incredibly dexterous machine

with a wide range of capabilities—to have an idea, one may consider the variety of

tasks, such as writing, hammering, playing music, and so on, that humans do on

a daily basis. Considering any of the mentioned tasks, it is obvious that the sense

of touch is a crucial component of this machinery. Though usually unconsciously,

humans use this sense to recognize many properties of a touched object: shape,

motion, temperature, roughness, hardness. Such capabilities have historically played

a key role in the evolutionary trajectory of humans as a species.

The human sense of touch comprises of two main sub-modalities: cutaneous (in

which inputs come from the receptors in the skin), and kinesthetic (in which inputs

come from the receptors in muscles and tendons) [16]. Mechanical forces and changes

of muscle lengths are transduced into electrical signals by receptors in our skeletal

muscles and tendons; muscle spindles, for example, are sensory fibers that spiral

5
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Table 2.1: Properties of human mechanoreceptors [1]

Name Receptor
Type

Field Size
(mm2)

Encoded Quantity

Meissner Corpuscles I (fast) 12.6 High frequency vibrations
(<50Hz) and accelerations

Pacinian Corpuscles II (fast) 101 High frequency vibrations
(>50Hz)

Merkel Disks I (slow) 11 Static load, skin indentation
Ruffini Endings II (slow) 59 Skin stretch, stretch direction

around muscle fibers and sense flexion or contraction of muscles [17]. Similarly, to

transduce cutaneous stimuli into electrical signals, our skin is embedded with multiple

types of mechanoreceptors (see Table 2.1), for example, information about static

loads on human skin is encoded by mechanoreceptors called Merkel Disks [1]. In the

context of this thesis, the definition of tactile sensing is restricted to the contact-level

transduction of cutaneous stimuli, which are mainly comprised of contact forces.

Robotic Sense of Touch

Based on Working
Principle Based on Task

Transduction Method
Resistive, Piezoresistive,
Capacitive, Optical,
Magnetic, Piezoelectric, 
Ultrasonic, etc.

Perception for Action
Grasp Control,
Dexterous Manipulation,
Contact Point
Estimation,
Slip Detection

Action for Perception
Exploration,
Object Recognition,
Surface Properties,
Hardness, Softness,
Stiffness, Temperature

Figure 2.1: Classification of the artificial sense of touch bifurcated based on task and
working principle [18].

Over the last four decades, the prosthetics and the robotics research communities

have tried to mimic the human sense of touch through artificial tactile sensing. One
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line of this research focuses on the development of appropriate transduction tech-

nologies (see Figure 2.1), several types of which have been developed over the years:

including, but not limited to, resistive, capacitive, piezoelectric, optical, and mag-

netic [18]. In the early years, researchers designed and fabricated custom electronic

components capable of transducing tactile inputs but, more recently, they have fa-

vored the use of off-the-shelf electronic components, as they are more reliable and

cost-effective. The solid-state barometer, manufactured as a micro-electromechanical

system (MEMS), is one such off-the-shelf electronic device capable of transducing

atmospheric pressure into electrical signals using a piezoresistive membrane. Tenzer

et al. [19] designed, fabricated, and tested a tactile sensing unit that uses off-the-shelf

MEMS barometers to transduce contact forces. The barometers are embedded in a

layer of urethane rubber, which helps to transmit surface level forces and causes the

barometer membrane to flex. The tactile sensing technology created by Tenzer et al.

forms the basis for this thesis.

Another line of the research in artificial tactile sensing focuses on inferring useful

information from the transduced electrical signals. Based on the task to be accom-

plished, there are two broad categories of artificial tactile sensing (see Figure 2.1):

action for perception—inferring properties of objects through active movement— and

perception for action—grasp control, dexterous manipulation, slip detection, and so

on. Of these well-studied tasks, slip detection, a subsection of the perception for

action category, has remained a challenge (see the survey paper on slip detection by

Romeo et al. [1]). In this work, we propose a novel method for solving the task of ob-

ject slip detection using the recently developed barometric tactile sensing technology.

2.2 Phenomenon of Slip

Object manipulation is a complex task that requires perception of contact details

such as surface properties, object motion, and contact forces. Detecting object slip

in manipulation scenarios requires understanding the physical phenomenon of slip.

For a given tactile surface F and an object surface S, the portion of S in contact

with F is called the contact surface C. Slip occurs when there is relative motion

between a point p ∈ F and a point q ∈ S, where p, q ∈ C, such that the motion is

tangential to the contact surface C [20]. There are two types of slip that can occur:

incipient slip, in which the displacement is localized to a narrow region on C, and total
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slip, in which displacement occurs throughout C. For this work, we focus our efforts

on the task of detecting total slip of an in-hand object during robotic manipulation.

Figure 2.2: Changes in the co-efficient of friction for a general sliding object under
constant force [2].

From a dynamics perspective, object slip is a consequence of an imbalance between

the contact force and other body forces acting tangentially in the object’s frame of

reference. Since friction is the only contact force that acts tangentially, the occurrence

of slip is caused by insufficient friction leading to relative motion. According to

classical mechanics, friction is a product of the coefficient of friction (which depends

on the surfaces in contact) and the normal contact force. The coefficient of friction

µ changes throughout the slip motion—at the inception of slip, the coefficient rises

to its the static value (µs) but soon settles to its the kinetic value (µk), as shown

in Figure 2.2. Slip can also occur due to an abrupt reduction of the normal contact

force. For slip to occur, at least one of the following conditions needs to be met:

1. Insufficient normal gripping force (due to incorrect estimation of object prop-

erties);

2. Sudden increase in tangential force (due to an unexpected perturbation or col-

lision);

3. Reduction of frictional coefficient (such as wet or slippery surfaces) [20].
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2.3 Deep-Learning for Sequence Modeling

Perceiving the world through the sense of touch is a non-trivial task learned in early

childhood. To accomplish this, human skin is embedded with two types of fast-

adapting mechanoreceptors (see Table 2.1) that respond to accelerations and high

frequency vibrations, that is, dynamic stimuli. During a slip event, each mechanore-

ceptor encodes the spatiotemporal tactile information as neural stimuli, which elicits

a response from the central nervous system in an estimated ∼ 100 ms [21]. Though

the physiology of the transduction mechanisms embedded in human skin is well un-

derstood, the mechanism of tactile perception is still an active topic of research. In

particular, deep learning methods, which were developed to mimic the learning pro-

cess of the human nervous system, have a strong potential to reliably detect slip using

artificial tactile sensing.

Recently, as computation costs have diminished while highly-supported open-

source libraries have been developed, the field of deep-learning has seen a resurgence.

There are many hard tasks where deep learning-based approaches boast the state-

of-the-art performance, the ImageNet large-scale visual-recognition challenge being

one of the earliest. The applications of deep learning are far-reaching, especially in

the field of autonomous robotics in which there is an abundance of sensor data. An

extensive overview of the field is available in [22].

As described above in Section 2.2, object slip is a non-trivial spatiotemporal event.

During slip, artificial tactile sensors provide information about the contact locations

and forces, making the data rich in spatial and temporal features. If an appropriate

representation of this time-series data is learned, it may be possible to distinguish

between slipping and stable scenarios. Therefore, slip detection can be considered as a

sequence modeling problem, and there are many deep learning models specialized for

this task, including recurrent networks, transformers, and TCNs. This section covers

the fundamentals of supervised deep learning and concludes with an explanation of

sequence modeling using TCNs.

2.3.1 Supervised Deep-Learning

Deep neural networks (DNNs) are a class of machine-learning models that represent

a non-linear mapping ŷ = f(x;θ), where x ∈ X is the input and the mapping f is

parameterized by θ. The basic building block of a DNN is a neuron, which is simply
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a parameterized function that maps an input of a given size onto an output of size

one. Multiple neuron units are stacked together to form a network layer, which can

be represented by a single vector function (see Equation (2.1)) Each layer takes in

an input zn, applies an affine transformation, followed by a non-linear function σ

(commonly referred to as the activation function) to produce the output zn+1 (here,

z0 = x). Adding connections between many such layers forms a DNN. DNNs are

classified into various model types based on how these neuron layers are connected.

zn+1 = σ (Wn · zn + bn) (2.1)

The activation functions σ define the non-linear mapping fromRm → Rn that add

the required non-linearity to DNNs. Currently, there are many popular activations

functions, namely: rectified linear unit (ReLU), sigmoid function, hyperbolic tangent

function (tanh), and many more.

ReLU(x) = max(0, x). (2.2)

While the ReLU is the most popular activation function, it suffers from the dying

ReLU problem [23].1 Many variations of ReLU have been developed specifically to

solve this problem, such as the exponential linear unit (ELU), the leaky ReLU, and

the scaled exponential linear unit (SELU) [24]. One way to learn from data is to

use the supervised learning paradigm; the goal is to learn a functional mapping from

inputs to known pre-collected outputs. In the case of supervised learning with DNNs,

the goal is to learn the desired mapping y = f ∗(x;θ∗) that maps any input x ∈ X
to its corresponding expected output y. A loss function L is the measure of the

difference between the network output and the true output. The learning process is

a minimization of the loss function L over the network parameters θ,

θ∗ = argmin
θ
L(f(x;θ),y). (2.3)

The function f(x;θ), which represents a DNN, is differentiable with respect to the

parameters θ. As a consequence, a first-order optimization algorithms like stochastic

gradient descent (SGD) can be used to minimize the loss function L. SGD is an

1The dying ReLU problem occurs during network training when a large gradient causes the
neuron weights to change in such a way that the the input become less than 0 and the neuron never
activates again, causing it to “die”.
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iterative optimization approach; in each iteration, the gradient of the loss function

is calculated with respect to the network parameters θ, and each parameter is up-

dated in a direction opposite to the corresponding gradient. The user is required

to pick the learning rate as a hyperparameter and certain variations of SGD need

additional hyperparameters to be set. The Adam optimization algorithm [25], which

is an extension of SGD, is used for training the DNNs for this thesis.

2.3.2 Temporal Convolution Networks

Convolution is a widely used mathematical operation in the field of signal and im-

age processing. Analog signals can be convolved with various kernel functions to

identify specific signal features. Similarly, digital images can undergo discrete convo-

lution with two-dimensional kernels to identify features in image space; this operation

forms the basis for Convolutional Neural Networks (CNNs). Both these operations—

continuous and discrete—are differentiable.

As demonstrated by Oord et al. [3], digital audio signals can be generated with

a DNN that uses causal convolution (when convolution is performed along the time

dimension) in its discrete form. More recently, in 2018, Bai et al. [4] brought dilated

causal convolution to prominence in the world of deep-learning when they empirically

showed that neural networks with causal convolution outperformed Recurrent Neural

Networks (RNNs) on sequence modeling tasks.2

Figure 2.3: Visualization of a stack of dilated causal convolution layers [3].

Causal convolution, represented visually in Figure 2.3, leads to a non-linear op-

2Dilated causal convolution was first introduced by Oord et al. [3]
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eration along the temporal dimension, whereas the dilation at each layers leads to

a widening of the receptive field as the layers go deeper. To improve the training

and inference speed, Bai et al. pushed the dilated causal convolution idea further and

introduced the temporal convolution network (TCNs), which is comprised of multiple

residual blocks, stacked like network layers, and where the causal dilation of each

block increases with network depth. The residual block includes dropout and weight

normalization along with residual connections in order to facilitate regularization.

Figure 2.4 shows the diagram of a residual block with dilated causal convolutions.

In this research, a TCN is utilized to extract temporal features from the barometric

tactile data for the purpose of detecting slip events.

Figure 2.4: Residual block used in [4] and the building block of TCNs in our work.
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Related Work

The study of tactile sensing for robotic systems has an extensive history, stretching

back more than five decades (see, e.g., [26] and [27] for pioneering work). This research

effort has been driven, in large part, by an evolving understanding of the essential role

played by the sense of touch in human dexterous manipulation [16], and slip detection

is a rudimentary part of the perception-for-action paradigm. This chapter discusses

prior research in the field and contrasts prior approaches with the one adopted in this

thesis. A comprehensive review of slip detection is provided by [1] and [20]. For a

comprehensive review of existing sensors types, see [28].

A basic slip detector simply outputs a binary value indicating whether there is slip-

page or not. Some methods detect the inception of slip (characterized by movement in

small regions), while others detect total slip (movement across the whole contact sur-

face). Methods of greater complexity can also provide information about the direction

and speed of slip. The large set of slip detection methods can be classified in terms

of: (1) the contact parameter to be monitored (displacement, micro-vibration, vision

etc.) or (2) the transduction mechanism used(capacitive, piezoelectric, magnetic, op-

tical, thermal, etc.) [20]. In this chapter the taxonomy is based on the monitored

parameter, while close attention is paid to the transduction mechanism.

When a contact parameter is selected to be monitored for slip detection, an un-

intended restriction is imposed on the information available to the detector. Recent

research has sought to resolve this limitation by applying learning-based methods

directly to the sensor data. The last section in this chapter provides an overview of

learning-based approaches that employ popular machine-learning tools for slip detec-

tion.

13
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3.1 Vibration-based Methods

Early methods for slip detection often relied on an analysis of the vibration pattern

induced by object slip, where the frequency of the vibration (caused by material

resonance) depends on the composition of the surfaces in contact. A common trans-

duction element used for this purpose is a piezoelectric film, which translates material

deformation directly into electric signals. As one of the first attempts to detect slip,

Salisbury et al. [29] and Baits et al. [30] implemented slip compensation on a prosthetic

hand using thumb-mounted piezoelectric crystals and a vibration analysis circuit. In

a later paper by Mingrino et al. [31], the authors used a piezoelectric film in conjunc-

tion with a three-axial force sensor to detect slip and showed that the amplitude of

the piezoelectric signal grows with slip speed. In a more recent paper by Cotton et

al. [32], a thick-film piezoelectric sensor observed useful signal in the frequency band

of 200–1000 Hz during slip.

Vibrations due to slip usually occur at high frequencies (>100 Hz) [1]. Many slip

detection approaches, therefore, analyzed the relevant signals in terms of spectral

features. Signal transforms such as Fast Fourier transform (FFT), short-term Fourier

transform (STFT), and power spectral density (PSD) transform, are commonly used

for spectral analysis. Holweg et al. [33] developed two approaches for slip detection

using piezoresistive pressure sensors. For one of the two approaches, a 16×16 piezore-

sistive matrix was used to collect pressure data during slip events; a threshold for the

PSD of the signal was characterized to distinguish slip events. Similarly, Fernandez

et al. [34] used FFT and PSD transforms to detect micro-vibrations in the tangential

force signal during slip; the contact forces were measured using a tactile sensor based

on strain gauges.

Instead of manually searching for features in the frequency spectrum, some have

attempted to learn such spectral features. For instance, Holweg et al. [33] compared

their PSD-threshold method to a learning-based approach that used an artificial neu-

ral network and found the network-based approach to be significantly better. Another

technique, by Meier et al. [35], utilized the STFT of the pressure signal from a piezore-

sistive tactile matrix to create frequency images, and used a CNN to learn to detect

slip events; they achieved an accuracy of over 97% on a real-world slip detection

task and showed that translational slip could be distinguished from rotational slip.

The work of Goeger et al. [36] combined two tactile sensing modalities (piezoelectric
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and conductive polymer resistance changes) to generate ‘tactile features’, which were

extracted from the Fast Fourier transform (FFT) of the resulting signals; a trained

k-nearest neighbour classifier served as a slip-state discriminator. Methods based on

the analysis of the frequency spectrum of tactile signals can be sensitive to vibra-

tions coming from the environment, such as those produced by nearby machinery;

these vibrations have the potential to lead to the confounding of object-environment

and object-gripper slip events. In [37], a dictionary of spectral tactile features was

built to encode tactile readings and an SVM was trained to differentiate between

object-environment and object-gripper slip.

Slip between contact surfaces induces vibrations which can be measured using a

variety of transductions mechanism (e.g., piezoelectric or strain gauges). In certain

situations, these vibrations generate obvious spectral features for which manually

designed approaches tend to work. In other situations, the spectral features are less

obvious and require the use of machine learning tools for extraction. The surveyed

methods all point to the superiority of learning-based approaches for slip detection.

Methods that use vibration analysis often fall short in their ability to generalize to

different slip scenarios, since they are highly sensitive to roughness of the surface. A

majority of sensors used for vibration analysis are custom-made and cannot guarantee

signal/mechanical robustness without significant testing. This research addresses

these concerns by training a DNN with a vast and diverse dataset that spans many

aspects of slip.

3.2 Motion-Based Methods

Since slip is defined as the relative motion between the gripper and an object at the

surface of contact (see Section 2.2 for a complete definition), the detection of motion

at the surface can be associated with the detection of slip. One way to detect motion

is to utilize a rubber-embedded accelerometer to capture small perturbations in the

contact skin [38]. A recent method used a laser doppler velocimeter mounted on the

fingertips to detect object motion [39].

Another popular approach to detect motion is to create a distributed tactile sensor

with multiple force transducers stacked to form a matrix; by knowing the location

of each transducer as well as the association between the transducer and the signal,

the location of the center of (normal) force distribution (COF) can be computed.



Chapter 3. Related Work 16

Holweg et al. [33] used the pressure outputs of a 16× 16 piezoelectric sensor matrix

to calculate the COF. They found it difficult to detect events faster than 60 ms due

to computational hardware limitations. Similarly, Zhang et al. [40] inserted an array

of capacitive pressure sensors into the skin of a robot hand and estimated the center

of (normal) pressure (COP); the power spectrum at the COP was used to distinguish

object/world and object/hand slip.

The tactile sensors used for this thesis are based on barometers embedded in

rubber to form a distributed matrix. The sensors are capable of transducing normal

force into barometric pressure, which can be utilized to infer the COP during a contact

event. The flexibility of the rubber membrane also permits deformation due to the

tangential contact force, which is captured by the distributed pressure array.

3.3 Visualizing Deformation

In recent years, vision-based tactile sensors have advanced significantly, due in part

to the boom in the fields of deep learning and computer vision. A basic vision-based

tactile sensor requires a light source illuminating a photo-elastic material and a cam-

era that can capture the material deformation, as shown in Figure 3.1. Vision is

used to infer tactile information from the sensed deformation of the sensor contact

surface. Some sensors like GelSight [14], FingerVision [41], and DIGIT [12], use an

opaque contact layer, while others, like GelSlim [13] and TacTip [42], have visible

patterns embedded in a transparent contact layer (translating deformation into pat-

tern distortion). The methods that rely on visual patterns generally require fewer

computational resources to infer tactile information.

Vision-based tactile sensors are commonly used for slip detection. For the GelSight

[43] and GelSlim [44] tactile sensors, slip can be detected by monitoring changes to

shear force at the contact surface. However, as noted in [45], vision-based sensors can

struggle to detect slip in certain situations due to a limited camera frame rate.

In [46], the TacTip sensor is modified to use a camera that operates at up to 120

frames per second to better identify rapid slip movements. The authors of [47] ex-

tract deformation speed using optical flow and train a support-vector-machine (SVM)

classifier for slip detection; the classifier performs with a high accuracy (>95%) for

a wide range of slipping speeds. However, like most other vision-based sensors, the

TacTip is bulky, preventing it from being used as anything other than fingertips. In
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Figure 3.1: Components of a basic vision-based tactile sensor. The image shows
deformation of the photoelastic layer due to contact with the object.

contrast, barometric sensors are compact and can be easily distributed on the palm

of a hand [48].

There has been a significant improvement in slip detector performance with the

introduction of learning-based methods. For example, James et al. [47] achieve a much

higher detector performance when using an SVM classifier as compared to a heuristics-

based method. Given the nature of the data collected by vision-based tactile sensors,

CNNs are also commonly used with the visual data for slip detection [44,45].

3.4 Learning-Based Methods

Due to the complex nature of tactile signals, data-driven approaches are increasingly

being used to asses grasp stability and to detect slip. While machine-learning tools are

used in many cases in conjunction with other methods, such as vibration analysis [33,

35,36] and visuo-tactile inference [43–45,47], some methods are capable of extracting

slip information directly from the raw sensor inputs [49–52].

Classifiers including hidden Markov models, random forest models, and SVMs

are often used to detect slip. Veiga et al. [52] use a random forest and an SVM

classifier to infer slip, where the input comprises data from the commercially available

Biotac tactile sensors [11]. Jamali et al. [49] use hidden Markov models to transform

piezoelectric-sensor data into a sequence of symbols for slip prediction.
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Deep learning is another powerful machine learning tool that has seen abundant

development in the last decade. CNNs are the most commonly-used deep learning

networks for slip detection. Methods that utilize a matrix of transducers as tactile

sensors often encode the sensor data as tactile images, which are also compatible with

CNNs. Methods like [35,51] are illustrative examples of this data transformation; the

information from an array of pressure sensors is converted to pressure images.

Tactile signals also constitute time-series data that can be fed as inputs to RNNs

(see Section 2.3.2). Zapata-Impata et al. [51] use the commercially available Biotac

[11] to infer the direction of slip using a convolutional LSTM network. Van Wyk et

al. [50] examine the use of three different commercially available tactile sensors and

infer slip for each sensor using an LSTM network. The authors also analyze how

variables such as temporal window size, sampling rate, object material, slip speed,

and sensor calibration affect the performance of the slip detection LSTM network.

Recently-published experimental results in [4] suggest that networks based on

generic convolution, such as TCNs, can outperform conventional RNNs in a diverse

set of sequence modeling tasks. Generic convolution has also been successfully used for

audio synthesis [3] and for inertial measurement processing [53]. This thesis explores

the utility of TCNs for the complex task of slip detection.
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Learned Slip Detector

Slip between two surfaces is a complex spatiotemporal event that involves highly

non-linear contact forces (see Section 2.2). Many of the heuristic-based techniques

mentioned in Chapter 3 are limited by their ability to generalize. Given the complex-

ity of slip, data-driven approaches offer greater potential to generalize.

For contact-level perception, we use recently-developed barometric tactile sensors

that employ MEMS barometers as the transduction units. These sensors are mechan-

ically robust, have high signal reliability, and are cost-effective. This work creates a

learning-based slip detection method that operates reliably with barometric tactile

sensors and generalizes well.

The spatial and temporal distribution of contact forces during in-hand object slip

depends on the motion of the slipping object, the applied grasping force, and the

properties of the object, such as roughness, deformability, material type, curvature,

and elasticity, among others. To have any hope of generalization, the data used to

teach the task of slip detection must span these aspects of slip.

As mentioned in section Section 2.3.2, TCNs show better performance on sequence

modeling tasks than RNNs. They also enable parallel computation in the temporal

domain, making them comparatively faster for inference. Consequently, slip detection

in this thesis is achieved by extracting learned temporal features from raw barometer

data using a TCN; these features are then used to classify a slip event.

This chapter explains how these aspects are identified and how a large dataset

containing synthesized slip scenarios is collected. The hardware used and the tools

created to collect and process the sensor data are also described. Finally, the chap-

19
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ter reviews details of the TCN architecture, the training procedure, and parameter

tuning, followed by the training results.

4.1 Tactile Sensors and Gripper

Figure 4.1: Robotiq three-finger adaptive gripper, retrofitted with the TakkTile sensor
kit (image from [54]). The single finger on the right is referred to as the ‘thumb’ of
the gripper.

We use an off-the-shelf barometric tactile sensor package (called the TakkTile

kit and manufactured by Right Hand Labs1). Each tactile sensor is a matrix of

commercial MEMS barometers (NXP MPL115A2) assembled on a PCB and coated

with urethane rubber, which creates a flexible medium to transduce contact forces

into barometric pressure signals. This transduction setup was first created and tested

by Tenzer et al. [19] who are also the co-founders of Right Hand Labs. The kit includes

three fingertip mounts and a palm mount designed to be retrofit to the Robotiq three-

finger gripper (Figure 4.1), such that the original fingertips and palm are replaced

by the TakkTile sensors. Each sensing unit provides pressure and temperature data

at a sampling rate of 100 Hz, which is higher than that of most vision-based tactile

sensors. The sensors are compact, robust, and inexpensive relative to, for example, the

1Purchased from https://www.labs.righthandrobotics.com/robotiq-kit
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Figure 4.2: Power grasps of the Robotiq gripper (sourced from [54]). An object is
held firmly between the fingers and the palm for the sphere grasp (left), whereas for
the pinch grasp (right) the object is held solely by the fingertips while making no
contact with the palm region.

competing BioTac sensors [11]. They exhibit greater linearity (< 1%), no noticeable

hysteresis, and a low signal-to-noise ratio (< 0.01 N).2 Barometric tactile sensors are

well-suited for industrial applications due to their high mechanical robustness and

low cost.

The Robotiq three-finger gripper used for this study is capable of adapting to the

size and shape of an in-hand object.3 The gripper is attached to a six degrees-of-

freedom (DOF) UR10 robotic arm as an end-effector; it is possible to pick up and

place objects with this setup. The gripper can execute two power grasps, shown in

Figure 4.2, and for both grasping scenarios, the fingertips (especially the thumb) are

always in contact with the in-hand object due to the adaptive nature of the gripper.

We hypothesize that the barometric data solely from the fingertip units would be

sufficient to infer in-hand object slip for the above two grasps, although the palm

sensor might also be useful.

The design of the fingertip unit is straightforward; the layer of rubber is 10 mm

2Performance characterization of barometric tactile sensors is available in [19]
3An adaptive gripper is capable of passively adjusting the flexion of the fingers to envelope an

in-hand object.
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MEMS Barometers

Y

X

Figure 4.3: Perspective view (left) and front view (right) of the TakkTile fingertip.
In the front view, black arrows represent the primary sensor axes and red arrows
represent the oblique axes.

thick; six MEMS barometers form a 2×3 sensing array that spans the contact region

of each fingertip, as shown in Figure 4.3. We define a planar coordinate system on

the contact surface of the sensor, which is entirely flat: the origin lies at the center

of the PCB, while the X and Y axes align with the length and width of the PCB,

respectively (see Figure 4.3).

The TakkTile sensors and the gripper, along with the robotic arm, constitute the

manipulation setup used in this study to collect a diverse slip dataset and to conduct

the real-world experiments described in Chapter 5.

4.2 Data Acquisition

This work is motivated, in part, by a desire to learn a general model of slip, which

requires collecting a large dataset spanning all facets of slip. To facilitate the data

collection, the available manipulation setup is used to slide the tactile sensors across

static surfaces, in order to emulate in-hand object slip. A slip data recorder is im-

plemented using the Robot Operating System (ROS) framework. Furthermore, data

collection is automated using the manipulation setup to facilitate diversity.

4.2.1 Slip Data Recorder

The tactile-sensing units (in Figure 4.3) used for this work were commercially man-

ufactured by Right Hand Labs. Each kit comes with a signal processing integrated

circuit board that is responsible for receiving and time-synchronizing the barometer
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data for all sensing units. The manufacturers have also provided supporting software

for their barometric tactile-sensing kit: a USB driver for the processing board and

a ROS node to transmit synchronized barometer data at 100 Hz.4 Additional ROS

nodes are also available for the UR10 arm and the Robotiq gripper, which provide

control over the entire manipulation setup. It is possible to calculate the 3D veloc-

ity of the end-effector of the robot arm using proprioceptive encoder feedback and

forward kinematics. This information can be readily accessed and transformed to

calculate fingertip velocity along a plane during motion. The velocity feedback of

the manipulation setup provides the necessary information to label our dataset (ex-

plained in Section 4.2). Ultimately, a custom data recorder is created as a ROS node

to record the TakkTile sensor data along with the fingertip velocity.

The scope of this study is limited to the detection of slip using the barometric

signal from a single fingertip tactile unit. To this end, the same TakkTile fingertip

unit is used during data collection and for the robot experiments in Chapter 5. The

reason for this choice is to eliminate the manufacturing variability of each unit as

an influencing factor for the learned slip detector. The raw pressure values received

from the sensing unit may have an offset from their originally-determined zero levels,

possibly because of rubber deformation or temperature fluctuations. For this reason,

the manufacturer of the sensing kit recommends using a calibration script, which

is included in the supporting software as a ROS service. The calibration procedure

includes both temperature compensation for each barometer as well as sensor zeroing.

Once calibrated, the TakkTile node publishes raw and calibrated pressure values as

well as the temperature measurements for each of the connected MEMS barometers;

only the calibrated pressure data was recorded to remove the complexity introduced

by temperature dependence and zero bias.

A learned slip detector is only as good as the quality of the recorded data, hence

an intricate data recording system is created to collect high-quality measurements.

Figure 4.4 shows a block diagram of the various components of the data recording

system. The pressure data and the slip velocity data, transmitted by the hardware

components, are published on their respective ROS topics at different frequencies. It

is important that the two data streams be recorded in a time-synchronized manner in

order to minimize the delay between the occurrence and the detection of slip. Each

4The USB driver is available at https://github.com/TakkTile/TakkTile-usb and the ROS node
is available at https://github.com/harvardbiorobotics/takktile ros
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datapoint is recorded at the frequency of the TakkTile sensor (i.e., 100Hz), which

is triggered every time new TakkTile data is available—at the same time, the last

available end-effector velocity is recorded. This synchronization is handled by the

‘data handler’ classes (shown in Figure 4.4) that store the data of each sensor in local

buffers. A main recording loop runs at a frequency higher than either sensor and

polls the data handlers. While the data is being recorded, a ‘rosbag handler’ class

records the data communication during the entire collection trial as a ‘rosbag’ (defined

in [55]). The recorded rosbags can be ‘played’ to simulate a collection trial without the

need for actual hardware; rosbags are also utilized to evaluate the performance of the

detector on previously recorded data in real time. Another important component of

the data recording setup is the ‘Slip Maneuver Node’ (Figure 4.4), which is responsible

for generating a path for the tactile fingertip during the slip maneuvers mentioned in

Section 4.2. The node also provides a user interface window to manually control all

aspects of a slip maneuver.

By using the manipulation setup with the custom-made slip data recording system,

it is possible to record a high-quality dataset with barometric pressure information

as input and a velocity-derived slip label as output.

4.2.2 Data Collection and Distribution

A general slip detector must be trained on data that account for the many variables

related to slip. Six such variables are identified: namely, object material properties

(e.g., roughness and rigidity), object surface curvature, slip speed, slip direction, slip

type (translational and rotational), and normal contact force. Differences in these

variables stimulate the barometric units in different ways.

The huge variety of materials and surfaces in our world make it nearly impossible

to cover all such object materials as part of the data collection effort. Instead, this

research focuses on the latter five factors and a commonly-used material with a low

coefficient of static friction: smooth rigid plastic. Even though the detector is trained

with data collected on one material, the experiments in Chapter 5 have been con-

ducted with objects that have many different material properties, and the promising

results indicate material independence in many cases.

Instead of generating in-hand object slip events for training, it is easier to emulate

slip scenarios by sliding the fingertip unit on a fixed, static surface. This sliding mo-
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tion stimulates the tactile units in a way that is very similar to that when an in-hand

object undergoes slip. The surface in contact with the fingertip is kept stationary,

which makes it possible to calculate the relative velocity between contact surfaces

simply based on the proprioceptive feedback of the motor encoders. In order to in-

clude both translational and rotational slip scenarios in the collected dataset, the

UR10 arm is programmed to execute two types of maneuvers: an ‘asterisk’ maneu-

ver, in which the fingertip moves along a straight line sequentially in eight different

translation directions at a chosen speed; and a ‘pendulum’ maneuver, in which the

gripper oscillates like a pendulum with the fingertip acting as the pivot point. These

maneuvers are programmed to have periods with no motion in order to include ex-

amples without slip in the dataset. The translation slip data is collected at three

speeds: 0.05 m/s, 0.075 m/s, and 0.1 m/s; whereas the rotational slip is collected

at 1 rad/s only. The fingertip slides on ABS plastic surfaces with three different

curvatures: spherical (radius of 1.5 in), cylindrical (radius of 2 in), and planar. The

curved surfaces were 3D printed and the irregular edges were sanded off to obtain the

smooth curves shown in Figure 4.5. For the planar surface, the lid of a smooth plastic

box is used; the plastic box is also one of the objects used for the robot experiments

in Chapter 5. Figure 4.6 shows a part of the asterisk sliding maneuver executed on

the spherical ABS surface.

The available manipulation setup includes a wrist-mounted three axis force-torque

(F/T) sensor (Robotiq FT300), visible in Figure 1.1. In the situation where the

fingertip is the only part of the gripper in contact with the surface, the normal force

measured by the F/T sensor is equal to the normal contact force at the fingertip, with

the assumption that the weight of the gripper has already been accounted for. In

order to consistently maintain a chosen normal contact force during a slip maneuver,

a PID controller regulates the height of the fingertip based on the feedback signal

of the F/T sensor. We attempted to collect data at specific levels of normal contact

force (2.5 N, 5 N, 7.5 N), but due to the limited precision of the PID controller,

the contact force varies by a small amount throughout the slip maneuvers, leading

to a dataset with varying, yet bounded (≤ 10 N) normal contact force. This setup

allows for automation of the data collection process and ensures that the ground-truth

slip labels are accurate. A slip label is derived using the recorded planar velocity of

the fingertip, such that translational and/or rotational velocities greater than 3 mm/s

and 0.2 rad/s, respectively, are labelled as ‘slipping.’ These thresholds are determined
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Table 4.1: The distribution of training data by slip type, slip speed, slip direction,
and surface curvature.

Max.
Speed

Planar Sph. Cyl.
(y-axis
aligned)

Cyl.
(x-axis
aligned)

Translation 5 cm/s 5.3% 3.7% 3.5% 3.6% 16.1%
(primary axes) 7.5 cm/s 4.5% 4.7% 3.7% 3.7% 16.7%

10 cm/s 4.8% 4.7% 3.3% 3.2% 15.9%

Translation 5 cm/s 4.9% 3.3% 3.3% 3.3% 14.8%
(oblique axes) 7.5 cm/s 3.5% 4.2% 3.5% 3.4% 14.5%

10 cm/s 3.9% 4.2% 3.0% 3.1% 14.3%

Rotation 1 rad/s 3.8% 1.2% 1.5% 1.2% 7.8%

Total 30.7% 26.1% 21.7% 21.5% 100%

empirically based on recordings of the TakkTile sensor under static conditions (i.e.,

resting on a surface without moving). The total data collected consists of over 45

minutes of TakkTile pressure samples at a rate of 100 Hz, with 143, 584 data points

belonging to the static class and 122, 918 data points belonging to the slip class.

The data in the slip class is evenly distributed across slip speed, slip direction, and

surface curvature, and includes both translational and rotational motions, as shown

in Table 4.1. To prevent abrasive damage to the rubber surface due to repetitive

sliding, a layer of cellophane tape is applied over the fingertip during all collection

trials and experiments.

Figure 4.5: Surfaces used for slip data acquisition; from left to right the images show
a planar box lid, a spherical plastic surface (radius 1.5 in), and a cylindrical plastic
surface (radius 2 in).
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Figure 4.6: TakkTile sensor mounted on the fingertip of our Robotiq gripper [19] and
actuated automatically to slide over the 3D printed spherical surface during training
data collection.

4.3 Slip Detection Network

Prior research has successfully employed deep-learning models to extract spatiotem-

poral features from tactile sensor data for slip detection [35, 51]. Given the superior

performance of TCNs over recurrent architectures for sequence modeling tasks [4],

in this work a TCN-based architecture is used for slip detection. This section de-

scribes the architecture of the network and provides details regarding the training

procedure. The section concludes with a discussion of the selection of the best TCN

and showcases the detection performance of the chosen network.

4.3.1 Network Design

Since this is the first time a TCN has been used to learn a tactile perception task, there

is no prior work to provide guidance as to the design of the network. We experimented

with TCNs of various depths and with different numbers of trainable parameters in

order to arrive at a network that achieves high accuracy with the smallest number

of parameters. The goal is to have the shortest inference time (which is crudely

indicated by its depth and number of parameters) without compromising the detection

performance. As shown in Figure 4.7, the final network consists of four residual blocks

(see Section 2.3.2), where each block contains two dilated causal convolution (DCC)

layers and a residual connection. For each DCC layer, d represents the dilation and k

represents the kernel size. The subsequent two layers are fully connected, followed by

a softmax output for classification between slip and static. The constituent residual

blocks are similar to the ones described in [4], except that layer normalization [56] is
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used instead of weight normalization [57] and SELU activations [24] are used instead of

the ReLU activations. These architectural alterations are motivated by experimental

tests, which indicated better performance on the tactile dataset. The input to the

TCN is a temporal stack of six barometer values that constitute the last Tk readings

(choice of window size is explained in Section 4.3.4) of tactile data, and the output is

a probability of slip. A binary classification probability threshold of 0.5 (the choice of

threshold is explained in Section 4.3.4) is used to generate the binary slip and static

labels. An open-source implementation of the TCN [58] is used to build this detection

network.

4.3.2 Data Augmentation

The MEMS barometers form a 2 × 3 array on the fingertip module. To reduce

overfitting, the axial symmetry of the array (visible in Figure 4.3) is exploited to

augment the data. Before each training epoch, one of three transformations— an

x-axis flip, a y-axis flip, or a 180° rotation—is randomly applied to every data point

with a probability of 25% each. At the same time, small amount of random gaussian

noise is added to the network inputs to ensure the network’s robustness to sensor

noise. The result of data augmentation is an accuracy improvement of more than

10% that is primarily due to synthetic variations in the input.

4.3.3 Training Details

The network is trained using the Adam optimizer [25] with a learning rate of 0.002

and a binary cross-entropy loss function. Several techniques are used for network

regularization: layer normalization; a 20% dropout (for each layer including the fully

connected layers); a mini-batch of size 256 and He normal [59] kernel initialization.

Moreover, before training, the class distribution of the entire training dataset is equal-

ized through random under-sampling, in order to remove class bias. The dataset is

split into training (80%), validation (10%), and test (10%) subsets, and the network is

trained until the performance improvement plateaus, which happens after 800 epochs.
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4.3.4 Parameter Tuning

Before the final slip detection network is chosen, two parameter related to the model

require tuning: the input window size, which is the temporal length of the input

data samples; and the binary classification threshold, which is the probability thresh-

old that differentiates the slip and static predictions. Choosing these parameters is

not always intuitive and since their values are problem-specific they are therefore

determined experimentally.

In [50], a DNN is trained to detect slip, and experiments are performed to un-

derstand the effects of changing sensor parameters such as window size and sampling

rate on the network’s performance. It is found that the performance of the network

improves as the sampling rate and the temporal window size increases. A similar

experiment focused on the window size is conducted for the proposed TCN where 10

different slip detection TCNs, with window sizes evenly distributed between 10 and

100, are trained on the entire dataset. These networks are trained for 400 epochs

while following the training procedure mentioned in Section 4.3. Figure 4.8 shows

a graph of the test performance of the 10 TCNs. The performance of the TCN im-

proves with an increasing window size, similar to the results in [50]. Moreover since

the convolution operation across a temporal dimension of a TCN layer is parallelized

on the GPU, the inference time for each of the networks is identical on average. The

results indicate that a large window size should be applied and hence a window size

of 100 is used in all the subsequent experiments.

The choice of input window size affects the network structure, which means that

a change in window size requires network retraining. On the other hand, it is possible

to alter the classification probability threshold without such requirement. In order to

optimize this threshold, a common approach is to use the precision-recall curve (PR

curve), such that the two parameters are maximized together. Figure 4.9 shows the

PR curve of the proposed TCN with an input window size of 100. The PR curve

intersects with the red line at a value close to 0.5, which indicates that the precision

and recall are balanced and that the classifier is unbiased towards the class type.

Therefore, a probability threshold of 0.5 is used for binary classification with the

proposed TCN.
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Figure 4.8: F1-score of slip detection TCN on the test data versus the temporal
window size.

Figure 4.9: Precision versus Recall curve for changing binary classification threshold,
calculated on the test data. The red line represents the function f(x) = x.



Chapter 4. Learned Slip Detector 33

0 100 200 300 400 500 600 700 800

Epochs

0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

V
al

id
at

io
nn

 A
cc

ur
ac

y

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

V
al

id
at

io
n 

Lo
ss

Figure 4.10: Validation accuracy and loss curve during training of the TCN for 800
epochs over the entire training set.

4.3.5 Training Result

Once the best parameters are determined, the network is trained and the best inter-

mediate network is chosen based on the validation accuracy metric. Figure 4.10 shows

the validation accuracy and loss curves throughout the training process. Classifica-

tion accuracy of more than 90% is achieved within 50 epochs of training. Moreover,

the accuracy curve increases consistently, implying that the network does not overfit

to the training data.

The performance of the TCN on the complete test dataset is listed in Table 4.2.

The performance metrics of precision and recall are almost identical for both classes,

which is a consequence of data balancing before training. The detector performs

better for static-label data; this is likely due to the larger number of training examples

available for this class. Overall, the TCN-based slip detector demonstrates high

accuracy (> 90%) and good generalization (no over-fitting) with minimal-to-no class

bias.
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Table 4.2: Slip detection performance of the TCN on the test dataset.

Contribution Precision Recall F1-Score Accuracy

Static Class 57.7% 92.3% 92.5% 92.4% —
Slip Class 42.3% 90.1% 90.0% 90.0% —
Overall 100% 91.4% 91.4% 91.4% 91.4%
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Experiments and Analysis

The proposed TCN has a classification performance of more than 90% on the test

dataset for each metric (as described in Chapter 4). While there are many prior

methods that use pressure-sensitive tactile matrices for slip detection (see Chapter 3),

to showcase the advantage of our TCN-based approach, we compared the classification

performance of our method with prior comparable approaches trained on an identical

dataset. In addition to classification performance, there are other characteristics that

determine the utility of a slip detector in the real world, such as sensitivity and latency.

We analyzed the sensitivity of the slip detector to the variables of slip mentioned

in Section 4.2. Additionally, we determined the influence of these variables on the

real-time detection latency of the TCN. Finally, we carried out additional real-world

experiments to evaluate the generalizability of the detector to different slip detection

tasks.

5.1 Classification Performance Comparison

To demonstrate the effectiveness of the novel slip-detection method, the approach

must be compared against prior techniques in the literature. We compared the per-

formance of our proposed TCN with methods that utilize pressure information to

detect slip. While slip detection using barometric tactile sensors has not previously

been attempted, there is prior work that employs other pressure transduction tech-

nologies. Two methods that are comparable to our approach are: (1) [33] by Holweg

et al., which uses a heuristic for classification; and (2) [35] by Meier et al., which

utilizes deep learning for classification. For comparison purposes, we implemented

35
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Table 5.1: Performance comparison between TCN and frequency-based methods on
test data. The weighted average of the classes is used to compute each metric.

Method Precision Recall F1-Score Accuracy

PSD Thresh. [33] 57.9% 57.4% 57.5% 57.4%
Freq. CNN [35] 86.0% 86.0% 86.0% 86.0%
TCN (ours) 91.4% 91.4% 91.4% 91.4%
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Figure 5.1: Slip probability response of two detectors on test data. The fingertip was
executing a translational slip maneuver on a spherical surface.

our own versions of these methods and tested them on our dataset. For the approach

in Holweg et al., we found the optimal PSD threshold by sweeping across various

threshold values and evaluating the detector performance on the training dataset.

For the latter, we built a CNN with three times as many parameters as the TCN,

using the last one second of sensor data as input (identical to the method proposed in

this work) to calculate the frequency components, and generated input images of size

2×3. We used the Adam optimizer, batch normalization, 20% dropout, class balanc-

ing, and data augmentation while training on the entire training set. Table 5.1 shows

a performance comparison of the above two methods with our TCN-based approach.

While both of the learning approaches demonstrated promising results (> 85% accu-

racy), slip detection using the PSD threshold exhibited poor performance (as noted

in [33] as well). The TCN outperformed the frequency CNN, with more than 5% im-

provement on each metric as shown in Table 5.1. Moreover, the TCN predicted the

class label with significantly lower variance, according to the time-series plot shown

in Figure 5.1. We believe the difference in the network performance can be attributed
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to the fact that Meier et al. [35] enforce a specific transformation for the temporal

features in the sensor data, making it harder to learn relevant features, whereas the

TCN learns to extract temporal features from the raw sensor outputs.

5.2 Detection Performance Analysis

The slip detector proposed in this work is a small TCN with ∼10,000 trainable pa-

rameters. The network was chosen with the intention to train a fast and accurate

detector that can be used for slip compensation in manipulation scenarios. To gauge

its utility for real-world tasks, we analyzed the sensitivity and detection latency of

the proposed slip detector.

5.2.1 Sensitivity Analysis

The primary objective of this work is to create a highly accurate slip detector for

barometric tactile sensors that can generalize to many forms of slip. This detection

accuracy may change based on many variables, that is, the detector may be sensitive

to some while being independent of others. To characterize this sensitivity, the clas-

sification performance of the detector was evaluated for various combinations of slip

type, slip speed, slip direction, and surface curvature. The proposed TCN was trained

on the entire dataset and tested on portions of the test data divided based on the slip

variables. Table 5.2 summarizes the results of this experiment, where the F1-score is

used as a metric for comparison, according to which the classification performance of

the detector was sensitive to all of the variables of slip. 1

The detector performed significantly better on planar surfaces than for other sur-

face curvatures; it also performed better on cylindrical curvatures when the longitu-

dinal axis of the cylinder was aligned with the x-axis of the fingertip, rather than

the y-axis. This difference may occur because the TakkTile fingertip only has two

rows of MEMS barometers in the y direction but three rows in the x direction. With

the cylindrical axis aligned with the x-axis of the sensor, the number of barometers

stimulated during a slip event were more than the other cylindrical case. When the

sensor slipped on a planar surface, all of the barometers were activated, which was

not the case for other surface curvatures. Thus, there was a correlation between the

1F1-score is the harmonic mean of precision and recall of a classifier for a given class.
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Table 5.2: TCN performance, measured by F1-score, with variation in slip type, slip
speed, slip direction, and surface curvature. The table also includes classification
results for cases independent of slip and motion type.

Max. Speed Planar Sph. Cyl.
(y-axis
aligned)

Cyl.
(x-axis
aligned)

Surface
Ind.

Translation 5 cm/s 92.5% 88.8% 78.7% 94.0% 89.7%
(primary axes) 7.5 cm/s 94.9% 88.0% 90.0% 90.3% 91.6%

10 cm/s 95.7% 84.5% 87.8% 92.1% 93.1%

Translation 5 cm/s 94.0% 88.9% 87.1% 93.2% 91.5%
(oblique axes) 7.5 cm/s 96.6% 89.3% 93.7% 92.2% 93.1%

10 cm/s 96.4% 88.6% 93.5% 93.4% 93.8%

Rotation 1 rad/s 84.6% 74.5% 84.0% 86.1% 81.5%

Motion Ind. — 94.0% 88.9% 88.0% 91.9% 91.4%

number of activated barometers and slip-detection accuracy of the TCN.

In Table 5.2, for almost all curvatures and slip directions, the classification per-

formance improves with increasing slip speed; higher speeds induce larger surface

deformations, leading to more prominent temporal features within the input window.

Performance was also affected by slip direction: slip along the oblique axes of the

sensor was better-detected than along the primary axes, although the difference was

not significant for most slip speeds and curvatures. The detector yielded poor results

(<80% F1-score) for rotational slip, with exceptionally bad performance on spherical

surfaces. A scarcity of training data containing rotational slip examples could be the

reason for this discrepancy, while a lower number of stimulated barometers during

rotational slip may explain the poor performance on spherical surfaces.

5.2.2 Latency Analysis

The time difference between the occurrence and the detection of an event is referred

to as the detection latency. Despite a lower detection latency being essential for the

functionality of a slip detector, much of the previous slip-detection research has failed

to mention latency, typically characterizing the inference time of their detectors only

(i.e., the time a detector takes to produce an output). For example, in [47], the

authors only mention the sub-millisecond inference time of their slip detector, but
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do not comment on its real-time detection latency. Detection latency is, however,

a better indicator than inference time of the expected slip response time during a

robotic manipulation task. This section provides an overview of our methodology

for characterizing the detection latency of the proposed slip detector along with the

results.

The slip data recorder, discussed in Section 4.2, includes the functionality to record

rosbags [55] during data collection. With a rosbag, it is possible to play the recorded

barometric data and simulate a TakkTile unit running in real-time. To characterize

the latency, the slip detector was run on the rosbags of test dataset recordings. The

latency was calculated by measuring the time difference between the static-to-slip

transition in a recording and in the detector outputs. For example, in Figure 5.1,

the time difference between the peaks of the true label curve and the TCN curve is

the detection latency for that recording. Latency was measured over all test data

recordings and calculated for various combinations of slip variables. Table 5.3 shows

the results of this experiment. For the case of translational slip, the results agree with

the intuition that slip was detected earlier if the relative motion was faster—most

likely because the temporal features related to slip appear earlier in the data stream.

The detection latency appears to follow an identical trend to that of classification

performance, seen in Section 5.2.1, when comparing for different combinations of slip

variable. On average, the proposed method had a network inference time of 21 ms

and a detection latency of 134 ms, which is comparable to the 100 ms latency of

human response to slip events [21].

Table 5.3: TCN detection latency (in seconds) with variation in slip type, slip speed,
and surface curvature. The latency is shown for spherical, cylindrical, and planar
surface curvatures. The table also includes surface- and motion-independent latency.

Max. Speed Planar Sph. Cyl.
(y-axis
aligned)

Cyl.
(x-axis
aligned)

Surface
Ind.

5 cm/s 0.126 0.161 0.187 0.149 0.154
Translation 7.5 cm/s 0.123 0.134 0.150 0.126 0.134

10 cm/s 0.054 0.118 0.145 0.111 0.106

Rotation 1 rad/s 0.049 0.169 0.260 0.099 0.158

Motion Ind. — 0.093 0.140 0.169 0.125 0.134
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Table 5.4: Surface properties of test objects

Smooth Rough

Deformable Foam sleeve (cylindrical) Football sleeve (spherical)

Plastic ball (spherical),
Rigid Cardboard can (cylindrical), Metal can (cylindrical)

Plastic box (planar)

5.3 Robot Experiments

The previous sections established a performance baseline for the slip-detection TCN

on pre-recorded emulated slip data. To gauge the utility of the method, it must

be tested on real-world scenarios involving robot manipulation. In this section, we

studied the performance of our proposed slip-detection method on two robotic ma-

nipulation tasks and evaluate its ability to generalize.

The slippage of an object out of a robot hand is either triggered by an external

force or by an error in the control. To be able to reliably repeat a slip-detection

experiment on a robot, slip was artificially induced. We designed two manipulation

tasks to test the ability of our detector: (1) slip detection for an in-hand object under

an externally-applied impulsive force; and (2) slip detection while lifting an object

with insufficient grasping force. The latter task was inspired by the work of James et

al. [46], where slip was detected and compensated for while lifting. The test objects

for the experiments, shown in Figure 5.2, were selected with the intention to vary the

properties of the contact surfaces, such as curvature, roughness, and deformability.

Table 5.4 shows the distribution of surface properties for each selected object. Only

the fingertip unit that was used for data collection was applied for these tests to

avoid the effects of manufacturing variabilities. The robot experiments demonstrate

an ability to generalize from single-material training to real-world, multi-material slip

detection involving different objects.

5.3.1 Mallet Tap Test

The goal of this experiment was to evaluate the performance of the slip detector for

in-hand objects held with a constant grasping force. For the test, we programmed the
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Figure 5.2: Test objects used for robot experiments. From left to right, the objects
are: plastic box , plastic ball, football sleeve, foam sleeve, metal can, and cardboard
can.
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Figure 5.3: Mallet-tap test setup with plastic ball.

robot arm and hand (fitted with the TakkTile fingertip unit at the thumb location)

to grab an object with sufficient force to lift the object above the test table. The

object was then manually tapped using a 16-ounce rubber mallet with enough force

to induce slip without causing grasp failure. The setup for this test is shown in

Figure 5.3; the LCD monitor in the background displayed slip events in real time.

A slip state was registered only if the detection network produced a slip label for

two consecutive outputs. A trial was deemed successful if slip was registered when

the object was tapped and if the detector output returned to the nominal value

(static) when the object stopped moving. Figure 5.4 contains two series of images

showcasing the mallet-tap test for the plastic ball. In sequence, the figure shows

images and timestamps of the object being tapped; slip being detected by the system;

and the detector output returning to stable. The detection latency in Figure 5.4 was

approximately 200 milliseconds, which is higher than the average detection latency of

134 milliseconds in Section 5.2.2. This was because the experimental latency included

the time it took to capture the second consecutive output from the detector, which

increased the detection latency for this experiment.

We conducted 20 trials per object, with an equal number of taps on the top and

on the side of the object; the results are shown in Table 5.5. In this experiment,

the slip detector achieved a success rate of 80% or greater for each test object, with

an average success rate of 87.5%. Slip detection for the foam sleeve, a very chal-

lenging object, had the worst performance, which was likely due to the smooth and
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Figure 5.4: Mallet-tap test for one trial where the plastic ball was tapped from above
(top) and from the side (bottom). The time stamps were extracted from the video
and may not be accurate.
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Table 5.5: Slip-detection results for two real-world manipulation experiments.

Object Mallet-Tap Object-Lift

Plastic Ball 90% 35%
Plastic Box 85% 100%3

Cardboard Can 90% 85% (45%3 + 40%4)
Football Sleeve 90% 85%
Foam Sleeve 80% 35%
Metal Can 90% 95% (75%3 + 20%4)

Avg. Success 87.5% 72.5%

3Final grasp within 6 cm of the initial grasp position.
4Final grasp between 6-12 cm of the initial grasp position.

deformable surface of the sleeve. Failure modes for this experiment included a nearly

equal number of false negatives and false positives, implying that the TCN did not

exhibit any significant detection bias. The slip detector performed well under con-

stant load conditions despite variations in the material, curvature, deformability, and

smoothness of the object surfaces. Since contact was maintained continuously, this

test detected the true object slip, rather than simply detecting a uniform reduction

in force across the tactile sensor array (i.e., a sudden ‘air gap’ upon grasping force

reduction). This experiment showcased the capability of the slip detector to perform

in basic manipulation scenarios where external disturbances induce slip.

5.3.2 Object Lift Test

Lifting an object is a complicated task that involves precise hand-eye coordination

and continuous grip adjustment to maintain a stable grasp. When lifting an object,

humans intuitively change their grasping force based on the weight of the object. If

a mismatch exists between the perceived and the actual weight, slip will occur due

to insufficient grasping force. As an experiment, we replicated this scenario with our

gripper and arm, using the same set of objects (shown in Figure 5.2). Since the gripper

is not built for fine finger control, it was challenging to find gripper configurations

that maintain contact with the object but generate insufficient grasping force. To

solve this problem, we added weights to the lighter objects (i.e., the cardboard can,

the football sleeve, and the foam sleeve) to increase the likelihood of slip. Figure 5.5

shows the setup used for this experiment. For the purpose of repeatability, we used
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Figure 5.5: Object-lift test setup.

Figure 5.6: Object-lift test with the cardboard can, showcasing a successful trial. The
time stamps were extracted from the video and may not be accurate.

a predetermined gripper configuration for each object and kept the initial grasping

position consistent throughout the experiments. The blue tape on the objects marked

the initial grasp location; additional markings were added to the longer objects (i.e.,

the cardboard can, the metal can, and the plastic box) for reference. Once the gripper

fingers reached a predetermined position, the slip detector was initialized—this was

followed by a lifting motion. If slip was detected for two consecutive time steps, a slip

event was registered and the gripper was programmed to tighten its grasp immediately

in order to compensate. As the normal contact force remained low throughout the

lifting phase (despite the added weights), this task was particularly challenging for

the slip detector.
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Figure 5.7: Object-lift test with the foam sleeve, showcasing a failure trial. The time
stamps were extracted from the video and may not be accurate.

An experimental trial was considered successful if slip was correctly detected and

compensated for, that is, if the object was stably grasped and lifted up during the

course of the hand motion. For the longer objects (namely the cardboard can, the

plastic box, and the metal can), successful trials were split on the basis of the distance

between the initial and the final grasp position—distance thresholds of 6 cm and

12 cm were used to define these two categories. Figure 5.6 shows one trial with

snapshots displayed in succession. The images after the first depict (from left to

right): the gripper closing; the slip while lifting the object; the slip detection with

grasp compensation; and the stable grasp (static) detection. Compared to the mallet

tap test, the detection latency for this test (which was ∼400 ms) was higher due to the

limited normal contact force throughout the slip motion, which lead to low barometer

stimulation and low detection accuracy. We conducted 20 trials for each object; the

experimental results are shown in Table 5.5. As a general trend, the success rate was

greater for longer objects, which was the result of a longer reaction time: there was

more time to ‘catch’ longer objects. Similarly, the tests with the football sleeve were

very successful, which we attribute to its longer body and rough surface texture. Two

of the objects had prominent failure modes: (1) tests with the plastic ball failed due to

the fast reaction time required; and (2) tests with the foam sleeve frequently resulted

in false negatives. Given the curvature of the plastic ball, it could only be stably

grasp at its center—after a small amount of slip over a brief interval, the ball was

off-centre relative to the gripper fingers, making a slower reaction time the dominant

reason for failure. The smooth and compressible surface of the foam sleeve made it
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especially difficult to detect slip, leading to a large number of false negative results.

Figure 5.7 displays a trial with the foam sleeve where the detector fails to detect slip.

We note, however, that deformable objects are generally very difficult to manipulate

and that our detector was not trained on the collected slip data from any of these

objects. Overall, this test was an indicator of the applicability of a slip detector on a

more difficult manipulation task—for example, when lifting a fragile object with low

gripping force, the object may slip out of the gripper. The test also shed light on the

generalization capability of the proposed method as well as its limitations.
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Chapter 6

Conclusion

The human sense of touch is complex and difficult is to replicate artificially. Slip

detection, one of the many tasks tactile sensing is applied to, has proven to be a

challenge to reproduce in robots, despite the plethora of research on this topic. Prior

work includes methods that solve slip detection by using one of several transduction

mechanisms, or by focusing on specific parameters related to slip. In this work, we

presented a learning-based method for slip detection using inexpensive barometric

tactile sensors, addressing many of the shortcomings of prior work and attempting to

rejuvenate interest in barometric tactile-sensing technology.

6.1 Summary and Contributions

We used a temporal convolution network [4] that learned to detect slip events by

extracting spatiotemporal features directly from the tactile data. To ensure that

the learned model was able to generalize, it was trained on a diverse dataset that

included variations in surface curvature, slip speed, slip direction, and slip type.

The accuracy and performance of our slip detection algorithm was demonstrated by

comparing its performance with an existing classical method and a learning-based

method. We also assessed the sensitivity and robustness of our method to the same

variations, and characterized its real-time detection latency. Finally, we evaluated

the performance of the proposed slip detector on two real-world robotic manipulation

tasks, using objects with different surface properties such as curvature, roughness,

and deformability. Compared to [33,35], our method achieved the best performance,

with an accuracy of greater than 91% on a diverse dataset. The detector displayed

49
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high sensitivity to slip type and surface curvature, while being relatively robust to

slip speed and direction. On average, the proposed detector was able to detect a

slip event within 134 milliseconds of its occurrence. We also demonstrated that our

learned model is transferrable to real-world tasks and to different materials without

retraining.

6.2 Potential Improvements

Although better classification performance can sometime be achieved using other

tactile sensors, barometric tactile sensors offer a unique combination of reliability,

mechanical robustness, and price point, making them suitable for many industrial

applications. The slip-detection performance of barometric tactile sensors would be

further improved by increasing the spatial density of the MEMS barometers and im-

proving measurement fidelity. Similarly, a faster sampling rate for the tactile sensors

would greatly improve the latency of the detector. The detection latency would also

be greatly improved through targeted software and hardware optimization—we did

not aim to optimize detection latency in this work.

The training data collected for this work included variations in the type of slip,

that is, translational and rotational slip. However, a scarcity of data containing the

latter slip type limited the current investigation. A similar limitation was due to

the inability to precisely control the normal contact force of the tactile sensor during

data collection. A revised data collection setup, where the UR10 arm is replaced by a

torque-controlled robotic arm with higher-resolution motor encoders, would improve

the quality of training data and the performance of the slip detector.

6.3 Future Work

As a continuation of this work, it would be useful to investigate the benefits of em-

ploying multiple TakkTile fingertips and a palm sensor for slip detection during ma-

nipulation. Similarly, the ability to estimate the type (translational or rotational)

and direction of object slip would be valuable. The use of newly-introduced trans-

former networks [60] as a model for slip detection would be interesting to evaluate,

especially with regards to the trade-off between classification accuracy and inference

speed. Also, it would be interesting to explore control strategies for dexterous manip-
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ulation tasks that rely on controlled slip. Finally, we would like to examine the use

of different barometric sensor configurations for tactile sensing, including as flexible

‘skin,’ similar to [48].
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