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Ensuring that captured images contain useful information is paramount to successful

visual navigation. In this thesis, we explore a data-driven approach to account for envi-

ronmental lighting changes, improving the quality of images for use in visual odometry

(VO). We investigate what qualities of an image are desirable for navigation through an

empirical analysis of the outputs of the VO front end. Based on this analysis, we build

and train a deep convolutional neural network model to predictively adjust camera gain

and exposure time parameters such that consecutive images contain a maximal number

of matchable features. Our training method leverages several novel datasets consisting

of images captured with varied gain and exposure time settings in diverse environments.

Through real-world experiments, we demonstrate that our network is able to anticipate

and compensate for lighting changes and maintain a higher number of inlier feature

matches compared with competing camera parameter control algorithms.
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Chapter 1

Introduction

Visual egomotion estimation is the process by which a robot, using one or more on-

board cameras, determines its motion through an environment relative to a fixed frame

of reference. Egomotion estimation is typically achieved by acquiring a continuous stream

of images as the robot moves. Captured images are passed as input to a visual egomotion

pipeline. The pipeline processes the images and outputs an estimate of the change in the

3D translation and rotation (or “pose”) of the robot between sequential image frames.

The use of cameras to estimate the rigid-body motion of a robot was first proposed

and investigated in the 1960s. In the early 1980s, Moravec published his groundbreaking

thesis on visual navigation [1]. While initially coupled to progress in the field of computer

vision, visual egomotion estimation has since evolved into a largely independent field of

robotics research. Over the decades, many important advances have been made, which

have resulted in successful implementations and applications in a variety of environments

including ground, air, underwater, and in space. Visual egomotion estimation has reached

a level of maturity in that many of the fundamental concepts are now well understood

and much of the focus has shifted to increasing the robustness of the pipeline [2].

With the ever-increasing interest in the realization of autonomous vehicles (AVs) for

commercial purposes, many AV companies are motivated to reduce costs while expand-

ing the capabilities of their machines. AVs are required to operate in a reliable and safe

manner in a wide variety of environments and conditions. Consequently, robust sensing

is crucial. One of the primary costs associated with the mass-production of AVs is the

suite of active and passive sensors required for each vehicle to perceive its surroundings.

AV companies have focused on both reducing costs associated with sensing and maxi-

mizing the efficacy of selected sensors. Cameras, in particular, provide a rich stream of

data for use in a variety of navigation, motion estimation, and localization algorithms.

Additionally, cameras are relatively inexpensive compared to other common sensors such

1



Chapter 1. Introduction 2

as LIDAR units. As a result, cameras have become a popular choice for use on board

AVs.

Successful visual navigation depends on the acquisition of images that contain suffi-

cient information. Image information can be defined loosely as a measure of the ‘content’

in an image that is useful for a visual task. In the case of egomotion estimation or lo-

calization, this information might be the number of unique and identifiable features, the

magnitudes of the image gradients [3], or the spatial entropy [4]. Most visual egomo-

tion estimation pipelines operate under the assumption that the inputs contain sufficient

information, which has led to a dependency on high-quality, well-exposed images. The

quality of captured images is not only dependent on environmental factors such as struc-

ture, ambient lighting, and the speed of the robot platform, but is also dependent on the

camera parameter settings used during image acquisition. Although the former cannot

always be directly controlled, camera parameters can be actively adjusted to improve the

quality of images acquired under challenging environmental conditions.

Two of the primary camera parameters that directly impact the quality of images

captured are exposure time and gain. The exposure time is the length of time that the

shutter allows light to fall on the sensor. The shutter traditionally refers to a covering

over the imaging sensor that mechanically opens and closes to expose the sensor to the

scene. However, the use of a mechanical shutter in high-frame rate cameras is no longer

common as the shutter wears out and its speed is limited. Machine vision cameras

now employ electronic shutters that control the length of time sensor pixels accumulate

photons. Camera gain is an electronic amplification of the signal generated by the imaging

sensor during image acquisition. The size of the camera lens opening (or aperture),

combined with the camera exposure time, determines how much light strikes the imaging

sensor during image capture and can also be manually controlled. We describe camera

parameters in more detail in Section 2.1.

For many robotics applications, the lens aperture is typically set to a fixed value while

the exposure time and gain are either automatically adjusted (using built-in automatic

parameter control algorithms) or manually set to a fixed value. Making use of the built-in

automatic algorithms is usually adequate for vision applications in environments where

lighting conditions are relatively static. However, relying on fixed parameter values or

built-in automatic control algorithms can result in poorly-exposed images in situations

where lighting conditions are dynamic [3]. One reason for the poor performance of built-

in parameter controllers is that they operate in a reactive manner. Adjustments are made

only after a large change in overall image brightness has been recorded, which is too late

to prevent the loss of valuable information (caused by overexposure or underexposure).
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For example, images can become improperly exposed due to sudden glare from the sun,

during transitions between indoor and outdoor environments, and when moving into and

out of tunnels. Indeed, changes in brightness of up to 120 dB are common in the case

of tunnel transitions [5]. Additionally, built-in automatic parameter control algorithms

are typically proprietary ‘black boxes’ that are intentionally obfuscated and difficult to

interpret.

1.1 Techniques for Improving Visual Perception

There are three main approaches to increasing the robustness of visual navigation al-

gorithms operating in dynamic lighting conditions [4]. The first is the application of

post-processing techniques that perform pixel-wise transformations on images in an at-

tempt to extract more useful information [6–11]. The second is the use of robust feature

detection and matching algorithms that are applied in feature-based visual egomotion

estimation pipelines [12–18]. The third is to compensate for dynamic lighting during

the image acquisition process by actively adjusting camera parameters (e.g., exposure

time and gain). The first two approaches can help to improve the performance of visual

navigation algorithms when the acquired images already contain sufficient information,

but will not recover information that is lost due to overexposure and underexposure [19].

Thus, ensuring that captured images contain sufficient information is paramount to the

success of visual navigation algorithms. This thesis focuses on the third approach, that

is, actively adjusting exposure time and gain to compensate for changes in environmental

lighting.

Control of camera parameters to improve the quality of images has been an area

of active study for several decades [20–22]. Almost all digital cameras available today

contain a proprietary automatic parameter control algorithm that adjusts exposure time,

gain, focus, and any additional camera parameters to ensure that the “best quality”

images are acquired. These proprietary control algorithms are hand-crafted and adjust

camera parameters based on heuristics suited for a specific purpose. Additionally, the

control algorithms usually behave in a scene-independent manner and the details of their

operation are often not published by the manufactures [19].

Proprietary control algorithms typically make parameter adjustments based on the

brightness of the current scene [23] and are developed to ensure that images captured

are aesthetically pleasing to consumers. However, the methods by which automatic al-

gorithms operate do not guarantee that acquired images are suited for computer vision

or robotics applications [24]. Although human assessment of image quality is subjective,
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people are generally concerned with the appearance of the entire scene. Visual naviga-

tion algorithms, however, typically rely on smaller image subregions that have distinct

and unique characteristics that aid in navigation. Moreover, it is important that these

unique subregions have some type of consistency between frames (i.e., feature detection

or photometric consistency). There is a need, therefore, to develop a camera parameter

control scheme that is tailored specifically to improve the robustness and performance of

a specific robotic vision task.

1.2 Improving Image Quality for VO

Recent work in the area of camera parameter control for robot vision has focused on

the adjustment of camera parameters to maximize some measure of image quality. The

approaches outlined in the literature typically involve 1) defining a unique image quality

metric and 2) developing an optimization scheme that searches for a maximum of the

corresponding metric in the camera parameter space. The parameter space is sampled,

either by capturing real images or by generating synthetic images, to determine the

contour surface upon which the optimization is performed. Although sampling-based

approaches work well in static environments where there is little lighting change, they

suffer in dynamic environments because the optimization surface changes as the lighting

changes. Thus, prior queries of the objective surface are no longer reliable. Since real-

world autonomous robots commonly operate in dynamic environments, sampling-based

approaches for controlling camera parameters are insufficient. There is a need for a

camera parameter control algorithm that can operate effectively in dynamic environments

without the limitations introduced by sampling. Robust operation in these environments

necessitates a camera parameter control scheme that behaves in a predictive (rather than

reactive) manner so as to avoid sampling of the parameter space during operation.

Traditional feedback control techniques are a potential approach that could be em-

ployed to solve the camera parameter control problem. Traditional controllers, however,

rely on system models that accurately capture the relation between the system inputs

and outputs. The high complexity of the photometric image formation process (Section

2.1.2) is difficult to accurately model. Hand-engineered approximations of this process

would rely on assumptions that are not always valid, reducing the effectiveness of such

controllers in dynamic environments.

The complexity of the image formation process, the desire to predictively adjust cam-

era parameters, and the large amount of data acquired by autonomous robots motivates

the use of a data-driven approach for controlling camera parameters. Specifically, we
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investigate the application of deep convolutional neural networks (CNNs) to solve the

problem of predictive camera parameter adjustment. CNNs extract a hierarchy of useful

features from images and can be trained to regress or classify targets from these features.

We consider a CNN that takes as input a sequence of images and the associated camera

parameter settings and outputs adjustments to the parameter values such that the next

image captured is better suited for use in visual odometry. Our intent is to improve

the performance of VO under challenging lighting conditions by producing images that

contain a higher number of useful, matchable point features.

A natural choice for an optimization objective in the context of VO would be pose

estimation error. However, identifying the correct camera parameters that result in the

highest pose estimation accuracy is, in general, very difficult. The image acquisition pro-

cess is not differentiable; we cannot employ backpropagation to update camera param-

eters from captured images. Further, generating training targets using pose estimation

error would require a prohibitively large amount of ground truth data that is difficult to

obtain. We also want our approach to work with existing VO pipelines that are known

to perform well but may not be differentiable. Hence, we choose to leverage existing VO

pipelines to generate training targets. Specifically, we select the number of image features

(and inlier feature matches between sequential frames) obtained by the VO front end as

the object of our optimization; we justify this selection by demonstrating empirically

that these metrics1 are good indicators of VO accuracy. The VO front end refers to the

feature detection and matching component of the VO pipeline. We use training targets

consisting of gain and exposure values that are appropriate for producing a high quality

image during the next image acquisition. The network, producing gain and exposure

predictions, is trained to regress these target values. The use of the VO front end to

generate a training signal admits a self-supervised training approach since the number

of image features or inlier feature matches is determined on the fly by the VO pipeline

itself.

1.3 Contributions

We develop and implement a CNN that adjusts camera exposure time and gain parame-

ters to improve the performance of visual navigation algorithms such as VO under difficult

and dynamic lighting conditions. In this thesis, we make the following contributions:

• We undertake a comprehensive analysis of existing image quality metrics as they

1We note the use of the word ‘metric’ in this sense refers to a loose measure of image quality rather
than in the strict mathematical sense of a distance measure.
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relate to the task of visual egomotion estimation. We propose and analyze task-

specific image quality metrics for visual egomotion estimation and justify the se-

lection of our final metrics.

• We develop two variants of a predictive CNN that adjusts camera parameters to

obtain images with an increased amount of inlier feature matches between sequential

frames. The first network adjusts the camera exposure time while the second

network adjusts both exposure time and gain.

• To effectively train and test our networks, we collect unique datasets consisting of

a variety of camera trajectories captured with varying camera parameter settings.

• We compare the performance of our predictive networks to a built-in automatic

parameter control algorithm. Additionally, we reimplement an existing camera pa-

rameter controller from the literature and compare its performance to that of our

method. We show that our network yields images containing a higher number of

inlier feature matches over various trajectories under static lighting conditions and

outperforms these controllers in dynamic lighting conditions. Finally, we demon-

strate that our approach results in a higher number of useful images for a monocular

VO application over a large real-world driving route along which lighting conditions

vary.



Chapter 2

Background

This chapter provides background material related to the major technical topics discussed

throughout the thesis. First, key concepts related to the camera image formation process

are described. Next, we present a primer on visual egomotion estimation (or visual

odometry), followed by an overview of the VO front end. We conclude with a brief

review of deep learning.

2.1 Cameras and Camera Parameters

We first discuss monocular cameras and the perspective camera model. Next, we cover

the geometric process by which images are formed. Finally, important camera parameters

related to the image formation process are introduced.

2.1.1 The Perspective Camera and Geometric Image Formation

The monocular camera can be modelled as a pinhole (or an ideal perspective camera)

that maps a point in 3D world coordinates, ρ = [x, y, z]T , to a normalized 2D point,

p = [xn, yn]T , on the image plane. The normalized 2D point is then mapped to pixel

coordinates, (u, v) in the digital image. Figure 2.1 shows the frontal projection model of

a monocular camera, where the image plane is placed in front of the lens (pinhole) for

simplicity. In reality, the image plane is actually located behind the lens and the image

is inverted.

The z-axis (denoted by the dashed line) of the camera frame F−→s is the optical axis,

and is orthogonal to the image plane. The optical axis passes through the image plane

at the principle point, expressed in units of horizontal pixels cu and vertical pixels cv; the

distance between the principle point and the optical centre of the camera is the camera

7
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Figure 2.1: The frontal projection model of an idealized perspective monocular camera,
from [25]

.

focal length f = (fu, fv), also expressed in units of horizontal pixels fu and vertical pixels

fv.

To transform a 3D world point, ρ, into 2D normalized image coordinates, p, we assume

an idealized camera model where f = 1. We express ρ in the camera frame as:

p =
1

z
ρ =


x
z
y
z
z
z

 =

xnyn
1

 , (2.1)

where xn = x
z

and yn = y
z

are the normalized image coordinates of point ρ. From the

normalized image coordinates, we map to the pixel location y = [u, v, 1]T through the

intrinsic parameter matrix K:

y = Kp, (2.2)

y =

fu 0 cu

0 fv cv

0 0 1


︸ ︷︷ ︸

K

xnyn
1

 . (2.3)

The intrinsic camera matrix K is composed of the focal lengths and the principle point.
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We can combine both steps to define the full perspective camera model,[
u

v

]
= PK

1

z
ρ, (2.4)

[
u

v

]
=

[
1 0 0

0 1 0

]
︸ ︷︷ ︸

P

fu 0 cu

0 fv cv

0 0 1


︸ ︷︷ ︸

K


x
z
y
z
z
z

 , (2.5)

where P is simply a projection matrix used to remove the z-component of the projected

point. Note that we have not included the compensation for lens distortion above, which

is usually carried out as a preprocessing step.

2.1.2 Camera Parameters and the Image Formation Process

The geometric mapping from 3D world point to 2D image point is only one aspect of

the image formation process. Images are a collection of pixels, each with an assigned

intensity, that together form a representation of a scene. In this section, we describe

the image formation process, which determines how these pixel intensities are assigned,

and the camera parameters that control how these values can change. Three important

camera parameters that determine the overall brightness (and quality) of captured images

are the lens aperture, the shutter speed (or exposure time), and the gain.

The lens aperture refers to the size of the lens opening that allows light to fall on

the image sensor, contributing to both image brightness and focus [26]. The aperture is

typically measured in f-stops1 which define the ratio between the lens’ focal length and

the effective aperture diameter. The larger the effective camera aperture (or smaller the

f-stop) for a given exposure time, the brighter the image. The aperture also affects the

range of focus, or depth of field, which generally determines at what range objects in

an image can be in focus. A large aperture results in a shallow depth of field, typically

allowing for objects closer to the camera to be in focus and objects further away to be

out of focus. A small aperture yields a larger depth of field, resulting in objects both near

and far from the camera being in focus. However, the depth of field only controls the

depth of focus, while a separate function typically allows the user to control the position

of the focus. Examples of various lens apertures are shown in Figure 2.2.

For most robot vision tasks, we are concerned with both the objects in the immediate

1It is customary to represent the f-stop or (f-number) as the ratio preceded by ‘f/’. Note that this ‘f’
does not represent the focal length and should not be considered as a part of the ratio.
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Figure 2.2: Examples of various camera apertures with associated f-stop (or f-numbers).
The f-stop represents the ratio between the lens’ focal length and the effective aperture.
(Credit: commons.wikimedia.org).

vicinity of the robot as well as the structure of the environment surrounding the robot.

For this reason, the lens aperture is typically set to a relatively small value, ensuring

that image details both near and far are in focus. For our work, we manually fix the lens

aperture to a small value.

The second important camera parameter is the shutter speed (exposure time), which

is the length of time that the camera shutter is open during image capture, exposing

the camera sensor to light [26]. Since most machine vision cameras now have electronic

shutters, the length of time the shutter is “open” refers to the length of time the sensor

accumulates photons. Exposure time is typically measured in microseconds (µs) and

contributes to both the brightness and the amount of motion blur in an image. Intuitively,

the overall image brightness increases with exposure time, due to more photons striking

the sensor (see Figure 2.3). Increased exposure time has the added effect of increasing

image blur in scenes containing motion. Blur is a result of 3D scene points moving while

the shutter is open, which causes a 3D point to be mapped to multiple pixels. The effect

(a) Exposure time = 190 µs (b) Exposure time = 680 µs (c) Exposure time = 5185 µs

Figure 2.3: Examples of a scene captured with varying exposure values while the gain
was held constant at 10 dB.
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Figure 2.4: Motion blur caused by high exposure. The left image corresponds to a shorter
exposure time, resulting in a much sharper image, while the right image corresponds to
a higher exposure time, resulting in a brighter, more blurry image. Note the increase in
motion blur, particularly in the trees.

is magnified with longer exposure times. Shorter exposure times result in darker but

sharper images. The effects of image blur due to camera motion are shown in Figure 2.4.

The final parameter, camera gain, is the amplification of the signal produced by the

image sensor and is measured in decibels (dB). The amplification is applied after an

image has been captured [26]. Gain increases the image brightness, but also increases

the amount of noise in the image. An example of this effect is presented in Figure 2.5,

where the same scene is captured at three different gain settings while the lens aperture

and exposure time are held fixed. The brightest image, corresponding to the highest

gain, contains a significant amount of noise.

The mapping from the quantity of light striking a camera sensor to the pixel intensity

values is determined by the camera response function (CRF) (or photometric response

(a) Gain = 15 dB (b) Gain = 28 dB (c) Gain = 35 dB

Figure 2.5: Examples of a scene captured with varying gain values while the exposure
time is held constant at 2000 µs.
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function) [26–29]. The CRF is a nonlinear mapping that is unique to each camera and

image sensor. It defines the relationship between the quantity of photons measured by

the sensor q, in energy per unit time, and the exposure time E, and the pixel intensity,

I typically expressed between 0–255. For pixel i, and exposure time j:

Ii,j = f(qiEj). (2.6)

The CRF is dependent on both the lens aperture and exposure time, but not on the gain,

which is applied later in the image processing pipeline. An example of a CRF is shown

in Figure 2.6. Each of the lines in the figure represents the response of a particular RGB

colour channel.

Figure 2.6: An example of a typical camera response function, obtained from [27] for
each RGB channel.

2.2 Visual Odometry

Estimating the trajectory of a robot as it moves through an environment is an important

challenge. To effectively estimate the trajectory, the robot must be able determine its pose

(position and orientation) over time. This is a fundamental requirement that enables a

mobile robot to perform more advanced tasks. For example, the simultaneous localization

and mapping (SLAM) task involves constructing an internal map or representation of

the environment and localizing within this map. In a motion planning task, a robot

determines a safe route through the environment based on its current map.

Sensors used for perception are typically organized into categories based on the prop-

erties they measure and how measurements are acquired. Sensors can first be categorized
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based on the type of measurements they record, as interoceptive or exteroceptive. In-

teroceptive sensors measure quantities internal to the robot itself, such as the rate of

rotation of its wheels. Exteroceptive sensors measure a quantity external to the robot,

such as the distance to an object in the environment. Sensors can also be categorized

as active or passive based on the process by which they acquire measurements. Active

sensors emit a signal, typically in the form of radiation such as light or radio waves, and

measure its interaction with the environment. For example, the distance to an object

can be determined based on the time-of-flight (ToF) of a light or radio signal. Passive

sensors, alternatively, measure existing signals within an environment such as the natural

lighting, without contributing any additional signal into the environment.

Cameras are exteroceptive, passive sensors that have become very popular for mobile

robotics applications due to several key attributes. First, cameras are relatively simple

devices that do not contain complex moving parts, unlike most 3D LIDAR sensors.

Second, multiple cameras can operate within the same area without interference, again

unlike many LIDAR sensors. Third, cameras are relatively inexpensive compared to

more niche exteroceptive robotics sensors. Cameras also provide a rich, dense stream of

data that can be used for multiple purposes simultaneously, such as object detection and

avoidance, place recognition, navigation, tracking, and terrain classification. There are

many different types of cameras, including perspective, omnidirectional, and spherical,

that can be used individually or in combination. In fact, it is common for multiple

cameras (along with other sensors) to be used on a single mobile robot platform to

increase the performance of various navigation algorithms.

Prior to the rise of visual sensing in robotics, egomotion estimation was typically

accomplished using only wheel odometry, which is the process of inferring motion relative

to an initial position by integrating wheel rotation rates over time. Wheel odometry

accuracy, in practice, is greatly reduced due to wheel slippage, which can occur on a

variety terrains including sand, mud, and rocks. The inaccuracy of wheel odometry

resulted in the need for a more robust and accurate motion estimation pipeline, one that

was agnostic of the terrain traversed by the robot. Estimation of robot motion using

cameras alleviated many of the issues related to wheel slippage. After Moravec’s [1]

groundbreaking thesis in 1980, the majority of progress in this field for the next two

decades was driven by Larry Matthies and his team at NASA’s Jet Propulsion Laboratory.

Their efforts were crucial in the success of the Mars Exploration Rover program [30] where

wheel slippage on sandy Martian terrain was a common occurrence. The term “visual

odometry,” referring to the process of using images to estimate the egomotion of a rigid

body over time, was formally proposed by Nister in 2004 [31].
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2.2.1 The VO Pipeline

Visual odometry operates as a pipeline that takes as input images captured by one or

more cameras and produces a six degrees-of-freedom (6-DOF) pose change estimate be-

tween sequential frames. There are several distinct types of VO that share this pipeline

structure but differ in the number and type of cameras used and in the general method-

ology of the approach. The three general classes of VO are direct (or appearance-based)

methods, feature-based methods, and hybrid methods that are a combination of the

first two. Direct VO works by matching the intensity information of sequential images

(or subregions of images) to estimate the pose change of the camera between frames.

Direct methods, which are primarily used in monocular VO applications, are generally

more computationally expensive than feature-based VO, more difficult to implement in

the stereo VO case, and less robust to occlusions [32]. Feature-based VO operates by

extracting and matching (or tracking) salient point features across sequential images.

Since only a small subset of the image information is used, feature-based methods are

typically faster than direct methods. This thesis is focused on improving the performance

of feature-based VO specifically, however the general approach proposed could also be

modified to operate with direct methods. Although feature-based VO often relies on

features that are designed to be relatively invariant to intensity changes, dynamic light-

ing can still result in spurious matches, or even failure of the VO system. Further, the

outputs generated by the front end of common feature-based VO pipelines allow for a

convenient gauge of image quality. For brevity, we will refer to feature-based VO simply

as VO throughout the remainder of this thesis.

Block diagrams of typical monocular and stereo VO pipelines are shown in Figure

2.7. Each block in the diagram performs a key function. The image preprocessing

step involves image dewarping (and image rectification in the stereo case) using the

camera intrinsics and distortion parameters, discussed in more detail in Section 2.1.

Feature extraction is the process by which key regions or pixels of interest that have some

defining characteristic are identified in the input image. Once image features have been

extracted from the current image, they are matched to image features from a previous

image using common feature matching algorithms. The specifics of feature extraction

and matching are covered in more detail in Section 2.2.2. In the case of stereo VO,

the 2D features in the left and right images are matched first, before being matched

to the previous frame. By matching 2D features between left and right cameras with

a known baseline, the 3D position of feature points in the environment relative to the

camera can be inferred using simple trigonometry. Thus, stereo VO outputs absolute pose

estimates, while in the monocular VO case, only 2D feature locations are available and
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(a) Monocular VO

(b) Stereo VO

Figure 2.7: Processing blocks of (a) a feature-based monocular VO system, (b) a feature-
based stereo VO system.

translation estimates can be recovered only up to an unknown scale factor. Proposed sets

of feature correspondences are then processed by an outlier rejection module to eliminate

spurious matches. A common outlier rejection algorithm is random sample consensus

(RANSAC) [33]. Finally, the pose change is computed using nonlinear optimization.

The output of the pipeline is the 6-DOF pose change between image acquisitions. Pose

changes can be concatenated together to form a local trajectory over time. The estimated

trajectory can be further refined through windowed bundle adjustment (BA) discussed

later in this chapter.

Formally, using the notation of Barfoot [25], we define the trajectory of a camera

through an environment, and by extension, the robot the camera is rigidly fixed to, as

a set of poses, {T0, ...,TK}. The poses describe the 6-DOF position and orientation

of a rigid body located at the origin of a vehicle frame of reference, F−→v, relative to

an inertial (or world) frame of reference, F−→i, over time. Poses can be represented as

elements of the special Euclidean matrix Lie group SE(3) in the form of equation 2.7

as 4 × 4 transformation matrices. We define a set of poses at discrete time instants

k, k ∈ {0, ..., K} that are relative to the initial pose at T0. The pose can be represented
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as a 4 × 4 transformation matrix of the form:

SE(3) =

{
Tk =

[
Ck rk

0 1

]
∈ R4×4

∣∣∣∣∣C ∈ SO(3), r ∈ R3

}
. (2.7)

The transformation matrix is constructed from a rotation matrix, Ck, and a translation

vector, rk. The special orthogonal group SO(3) represents rotations as the set of valid

rotation matrices, Ck = Civ,k ∈ R3×3, from the vehicle frame2 F−→v to our inertial frame

F−→i at time k:

SO(3) =
{
Ck ∈ R3×3 |CCT = 1, det(C) = 1

}
. (2.8)

The rotation matrix has nine parameters but only three degrees of freedom due to or-

thogonality constraints. The translation at time k is represented in the inertial frame

as rk = rv,ii,k ∈ R3. The translation vector represents a three dimensional position vector

originating at the origin of the inertial frame F−→i and terminating at a point v, measured

relative to the inertial frame. The transformation matrix has six free parameters. Two

camera poses Tk−1 and Tk are related by the 6-DOF pose change Tk,k−1:

Tk,k−1 =

[
Ck,k−1 rk,k−1

0 1

]
. (2.9)

The output of the VO pipeline is an estimated pose change, T̂k,k−1. Using this pose

change, we can calculate the current pose of the camera by multiplying the pose from

the previous time step T̂k−1 with the estimated pose change, T̂k,k−1. The camera pose

at time k relative to the inertial frame at T0, is then:

T̂k = T̂k,k−1T̂k−1. (2.10)

This thesis focuses on the application of monocular VO. There are two general ap-

proaches to estimating the transformation between two camera poses T̂k,k−1 in monocular

VO. The first is using 2D-to-2D feature correspondences [32]. Here, we first find the 2D

features in images Ik and Ik−1 and determine the 2D inlier feature correspondences in

normalized image coordinates, p̃ = [ũ, ṽ, 1]T and p̃′ = [ũ′, ṽ′, 1]T , respectively. From these

feature correspondences, the essential matrix E between the two camera poses can be

computed up to an unknown translational scale factor using the epipolar constraint :

p̃′Ep̃ = 0. (2.11)

2For clarity, we use the notation from Barfoot [25]. In this case, our vehicle frame is interchangeable
with the camera frame.
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The epipolar constraint defines the relationship between the projections of a 3D scene

point into two images acquired from different poses. The projection of the 3D scene

point in one image must lie along an epipolar line in the second image. The epipolar

line is defined by the 3D position of the point and the optical centre of the first camera

projected onto the image plane of the second camera.

The essential matrix relates corresponding image points using the epipolar constraint,

and can be estimated using the five-point algorithm [31] or the eight-point algorithm [34].

From E, we can extract four possible combinations of rotation and translation estimates.

The correct rotation, Ck,k−1, and translation, rk,k−1, can be determined by triangulation

of a point and selection of the rotation and translation pair that result in the point

appearing in front of both cameras. The rotation and translation estimates can then

be used as the initial guess in a nonlinear optimization of the reprojection error of the

point correspondences. The relative scale of the translation estimate can be computed

by triangulating point correspondences in three sequential frames.

An alternative method for recovering the relative pose estimates is to use 3D-to-2D

correspondences as outlined in [32]. Here, at least three point correspondences are re-

quired, unlike the 2D-to-2D method which requires a minimum of five, resulting in faster

data association. In the 3D-to-2D case, 3D points, ρk−1, are calculated from three pre-

vious sequential frames, while the 2D features, pk, are obtained from the current frame.

Next, the 3D points are transformed into the current frame using the transformation

T̂k,k−1 as ρ̂k and projected into the current image as p̂k. The reprojection error between

p̂k and pk is then minimized by optimizing over the parameters of T̂k,k−1:

T̂k,k−1 = arg min
T̂k,k−1

∑
i

‖pik − p̂ik‖2, p̂k =
1

z
T̂k,k−1ρk−1. (2.12)

Fischler [33] outlines one method to solve this problem but there are a variety of other

approaches that can be used [32].

Regardless of the method used to estimate the inter-frame transformation T̂k,k−1,

the end result is a sequence of pose-to-pose transformations that begins at the ini-

tial pose of the camera, {T̂1,0, . . . , T̂k,k−1, . . . , T̂K,K−1}. Using Equation 2.10, we can

process the sequence of pose-to-pose transformations to obtain a trajectory of poses,

{T0, . . . , T̂k, . . . , T̂K}.
Pose estimates can be iteratively improved through the use of the windowed bundle

adjustment (BA) algorithm [35]. BA is one approach to reducing the drift of VO by

utilizing feature measurements over more than two frames. It operates by performing a

nonlinear optimization of both the camera poses and 3D feature coordinates over the last
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n frames. It requires the same features to be tracked over multiple frames. Scaramuzza

and Fraundorfer [2] formulate this optimization the following way:

arg max
T̂k,ρi

=
∑
i,k

‖pik − g(ρi, T̂k)‖2. (2.13)

Here, pik is the projection of the 3D point ρi in image k, and g(ρi, T̂k) is the reprojection

of that same 3D image point using the pose estimate T̂k. The squared reprojection

error is then minimized using a nonlinear optimization algorithm such as the Levenberg-

Marquardt algorithm.

At each time step, the pose estimate will not be perfectly accurate. As the VO

algorithm runs, pose estimation error is propagated forward in time. The compounding

of errors causes VO to drift; drift in the estimated rotation is the most detrimental since

this affects the position and translation accuracy. For this reason, it is vital that pose

estimates are as accurate as possible. Consequently, the image correspondences used to

generate the pose estimates should be of high quality and quantity [2].

2.2.2 Image Features and Matching

A key component of the VO pipeline is the front end, which carries out the feature

detection and matching processes. The problem of identifying and matching unique

regions of interest in images has been extensively studied; we provide a brief introduction

to common feature detectors, descriptors, and matching algorithms below.

Feature detectors identify pixels or groups of pixels in an image that differ from their

surrounding pixels by a significant amount. Identifying whether a given pixel is con-

sidered an image feature is usually determined by comparing the pixel intensities in a

small region. Govender [36] and Fraundorfer [2] provide comprehensive reviews of com-

monly used feature detectors for computer vision and robotics applications. Included in

these reviews are the Harris corner detector [1], the Kanade-Lucas-Tomasi (KLT) detec-

tor [37,38], the scale-invariant feature transform (SIFT) [12], speeded-up robust features

(SURF) [13], and the features from accelerated segment test (FAST) detector [14]. The

primary requirements of feature detectors are that they produce unique and distinguish-

able features that can be identified and matched across multiple images; are robust to

image degradation due to noise, blur, and image compression; have a high repeatability,

meaning that the same features are identified in successive images of the same scene; are

computationally inexpensive to permit real-time operation at a high frame rate; and that

the features produced are relatively invariant to changes in perspective, image distortion,
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and illumination.

Once a feature has been detected by one of the above methods, it is assigned a

unique identifier so that it can be quantitatively compared to other features and matched

between images. The unique feature identifier is called the descriptor of the feature

and is generated by a feature descriptor algorithm. Descriptors are typically generated

by analyzing specific properties of the region around the feature point. Most feature

descriptor algorithms analyze image patches on varying scales or with image operators

(e.g., gradient, Laplacian, and Gaussian edge and line detectors) applied in different

directions. It is common for feature detection and description to be combined into the

same algorithm. Common vector-based feature descriptors are those found in SIFT [12]

and SURF [13]. Other descriptors include the binary robust invariant scalable keypoint

descriptor (BRISK) [15], the binary robust independent elementary feature (BRIEF)

descriptor [16], and the oriented FAST and rotated BRIEF (ORB) descriptor [17]. The

latter three descriptors are binary (bit string) descriptors and are much faster to compute

than SIFT and SURF. Consequently, they have been used more extensively in real-time

robotics applications for VO and SLAM [2]. Alternatively, the entire feature detection

and description process can be learned, as in [18]. Our method is agnostic to the feature

detection and description algorithm used.

The process of feature matching, that is, identifying the same feature across multiple

images, is accomplished by comparing descriptors using a similarity metric. Descriptors

that fall within a specific distance threshold are considered matches while those that do

not are discarded. There exist a number of methods used to match features between

two images. Brute-force matching consists of comparing every descriptor in one image

to every descriptor from a second image and selecting the pairs that are closest to each

other. The similarity between two vector descriptors (e.g., SIFT or SURF) can be cal-

culated by measuring the Euclidean distance between the vectors, while the similarity

between binary string descriptors can be calculated using the Hamming distance. A

mutual consistency check is typically performed on a potential match [2]. The mutual

consistency check consists of performing the feature matching in the opposite direction

(i.e., comparing a feature in the second image to every feature in the first image) and

verifying that the proposed match from the first image to the second is the same as the

proposed match from the second to the first. The mutual consistency check helps in

cases where there are multiple potential matches for a specific feature. Alternatively,

rather than searching an entire image for potential matches, the search window can be

constrained through the use of a known or fixed motion model [2], which improves the

speed of the feature matching process.
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After a proposed set of feature correspondences has been obtained, an outlier removal

scheme is usually employed to eliminate spurious matches since, even with the use of a

mutual consistency check, some feature correspondences may not be correct. A common

approach to remove spurious matches is to consider all feature correspondences as a

group when determining which matches are legitimate (inlier matches) and which matches

are wrong (outlier matches). The most widely used algorithm for outlier rejection is

the random sample consensus (RANSAC) [33]. RANSAC determines whether a set of

matches are inliers or outliers by testing how well they fit an underlying model. In the

case of VO, the model is a 6-DOF pose change from one image frame to another in the

form of a transformation matrix, Tk,k−1. First, a small subset of point correspondences

from the set of all proposed correspondences is randomly selected. Using these matches,

an estimate of the transformation T̂k,k−1 is determined through minimization of the point-

to-epipolar line distance for each of the selected matches. Next, this transformation is

applied to all of the remaining features in one image. For each of these features, the

point-to-epipolar line error between the epipolar line of the transformed feature and its

proposed correspondence is calculated. Features are classified as inliers if their point-

to-epipolar line error falls below a user-defined threshold. The number of inliers for the

proposed T̂k,k−1 is recorded and the process is repeated for a large number of trials, each

with a new subset of randomly sampled feature correspondences. Upon completion, the

transformation yielding the highest number of inlier matches is selected, and all matches

deemed as outliers are discarded. The number of trials, k, needed to find the solution with

a specific probability of being outlier-free can be calculated with the following formula:

k =
ln(1− p)

ln(1− wN)
, (2.14)

where p represents a user defined success rate, or the probability that one of the random

proposals is successful after RANSAC finishes. The value N is the number of data

points (correspondences) used to estimate the transformation during each iteration, and

w represents the probability that a datapoint is an inlier.

2.2.3 Challenges in VO

Accurate VO relies on finding correct feature correspondences between sequential im-

ages over the entire camera trajectory. VO performance degradation is most apparent

in environments where conditions for visual navigation are challenging. As discussed in

Chapter 1, there are three general approaches for improving the robustness of the VO
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front end [4]. The first two approaches (i.e., post-processing and robust feature detection

and matching) have been extensively studied, resulting in many key contributions to the

field of visual navigation. However, the two approaches can only serve to improve (or

operate on) images that already contain a sufficient amount of information. It is exceed-

ingly important that captured images are of relatively high quality, which necessitates the

third approach for improving the robustness of the VO front end. The third approach is

the adjustment of camera parameters during the process of image acquisition. Improving

the performance of the image acquisition process is often overlooked, mainly due to the

assumption that built-in automatic parameter controllers are sufficient, or that there are

minimal lighting changes within an environment [39–41]. In practice, these assumptions

do not always hold, especially in outdoor scenes where lighting conditions cannot be

controlled and the speed of camera motion may be high. Images that are too bright or

dark (i.e., overexposed or underexposed), or that contain significant motion blur or noise,

can cause visual navigation algorithms such as VO to fail outright [3, 39, 40], no matter

how sophisticated the feature detection and matching algorithms are. Through appro-

priate adjustments of the camera exposure time and gain, higher-quality images can be

captured and used in conjunction with the first and second approaches to improve the

robustness of the VO front end in difficult conditions.

2.3 Deep Learning

Machine learning has seen a resurgence in popularity due to both increased computational

power at lower costs and the development and support of widely used machine learning

libraries. Autonomous mobile robotics is a natural application area for machine learning

algorithms. Mobile robot sensors capture large amounts of data that are ideal for the

training of data-driven models.

The predictive control of exposure time and gain, described in this work, is achieved

through the use of neural networks and deep learning [42]. A comprehensive overview of

deep learning is provided in [43]. Deep learning is a branch of machine learning that is

built on the assumption that certain kinds of data can be modelled using a hierarchy of

representations. Low level features extracted from an input are used to construct more

complex, higher-level features. The hierarchical structure can be displayed as a graph

multiple layers deep, hence the moniker deep learning.
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2.3.1 Deep Feedforward Networks

Deep feedforward networks are the most common deep learning models. These models

seek to approximate some function f ∗ by defining a parametrized mapping y = f(x; θ).

The goal of the learning process is to find the parameter weights, θ∗, that best approxi-

mate the desired function, f ∗. A network is designated as deep because it is a composition

of many functions, called layers, in a directed acyclic graph structure. The layers can

each be represented as a function, f (n), and chained together to create a mapping from

the input to the output:

y = f (N)(fN−1(...f (2)(f 1(x))...)). (2.15)

The length of this chain of functions gives the depth of the network. The layers are often

vector-valued and the parameters of the network, θ, are the combination of the parameters

for each vector-valued function. The size of the largest vector-valued function is referred

to as the network’s width. The models are feedforward because they evaluate an input

x by passing it through a sequence of layers until it reaches the output, without any

feedback into previous layers.

Supervised learning is the process by which a network learns optimal parameters from

labelled data such that it approximates a function f ∗. Self-supervised learning refers to

a subset of supervised learning techniques in which the training targets used for learning

are generated automatically. Our training methodology, discussed in Section 4.2.5, can

be considered self-supervised, as we make use of the VO front end to generate training

targets from image data. We note that there exist other methods used to train these

models, (e.g., semi-supervised learning, unsupervised learning), but we only make use

of supervised/self-supervised learning in this work. Supervised training requires a set of

inputs, x and associated output targets y∗ generated from f ∗. This set of inputs and

output targets is referred to as a dataset, D. The inputs are passed through the network

and the output y is compared to the target y∗. The difference between the network

output and target is calculated using a loss function, L, and is used to adjust the values

of θ such that the difference between the output y and the target y∗ is minimized,

θ∗ = arg min
θ
L(f(x; θ),y∗). (2.16)

Though the desired output of the network is fixed, the intermediate representation of the

input as it passes through the network is not predefined and thus, not interpretable. For

this reason, all layers in the network apart from the input and output are referred to as
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hidden layers.

Each layer in a deep network takes the input zn from the previous layer, applies an

affine transformation, then passes the result through a nonlinear activation function, σ(·).
These outputs then feed into the next layer of hidden units, zn+1 (or the output of the

network y in the case of the final network layer):

zn+1 = σ(Wnzn + bn), (2.17)

where Wn is the weight matrix for layer n, and bn is the vector of bias terms for the layer.

The weights and biases are the parameters that the network learns during training. The

nonlinear activation function, σ(·) applies a nonlinear transformation to the input. The

addition of a nonlinear activation function allows the network to learn complex nonlinear

functions. A common activation function, and the one used in this thesis, is the rectified

linear unit (ReLU). The ReLU is a very simple function that maps an input to either

itself or zero:

σ(x) = max(0, x). (2.18)

The process of learning is achieved through modifications of the parameter weights.

The difference between the network output and target is propagated backwards through

the network, and the gradient of this difference is calculated for each weight using the

back-propagation algorithm [42]. The gradient of the loss function with respect to each

weight indicates the direction of maximal increase of the loss. Each weight is then

adjusted in the direction opposite the gradient by a small amount, proportional to a

scaling factor called the learning rate. The adjustment of every weight in the model

results in a reduction of training error over each training iteration. The adjustment of

weights proportional to the gradient of the loss function is called gradient descent. A

common implementation of gradient descent is stochastic gradient descent (SGD). In

SGD, a small random subset of training samples are passed through the network and

their gradients are calculated and averaged. The average gradient is then used to update

the weights. The advantage of SGD is that it avoids calculating the gradient of the

entire dataset during each step. SGD iterations are repeated for all of the samples in the

dataset multiple times until convergence. A modern modification to SGD is the ADAM

optimizer [44], which is the technique used throughout this thesis.
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2.3.2 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a unique family of neural networks specifically

suited to operate on data that is structured in the form of multiple arrays or matrices,

such as images. CNNs differ from traditional neural networks in that they perform a

convolution operation over an input using a kernel, which is more tractable for high

dimensional images. A convolution is a linear operation that maps unique features in a

local area of an image to a more compact representation. Note that the features mapped

in a CNN are not the same as the hand-crafted features discussed in Section 2.2.2. The

continuous and discrete convolution operations are shown in Equations 2.19 and 2.20

respectively:

y(t) = (x ∗ k)(t) =

∫
x(a)k(t− a)da, (2.19)

y(t) = (x ∗ k)(t) =
∞∑

a=−∞

x(a)k(t− a). (2.20)

An input signal, x, is convolved with a kernel, k, outputting a feature map, y. In the

case of a 2D (M ×N) image I, the convolution operation takes the following form:

Y(i, j) = (K ∗ I)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n). (2.21)

The kernel, K ∈ Rm×n is typically a square 2D matrix that is applied to local regions

of the same size over an entire image, outputting a 2D feature map. It is common to

skip over pixels to reduce the number of convolution operations required. The number

of pixels skipped between convolution operations is called the stride of the convolution.

Optionally, padding can be added to the edges of the image to ensure the kernel can be

applied to edge pixels.

CNNs consist of sequential groups of convolutional layers, with each group reducing

the dimensionality of its input. A typical CNN layer group consists of a convolutional

layer, a pooling layer that reduces the size of the feature map, and a nonlinearity (typically

ReLU). The output is passed into the next group, consisting of a similar set of layers. The

pooling layer combines neighbouring features within a region, reducing the size of the

input feature map while retaining important information. Common pooling strategies

include taking the maximum or average value of a local area of the feature map. The

combination of multiple local features into one has the added benefit of introducing an

invariance to small translations of features. The final layer of a CNN is usually a fully

connected (FC) layer.
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One of the main advantages of using CNNs for images is the smaller number of pa-

rameters to learn. The parameters of the kernel are shared across spatial locations of the

input, reducing the number of parameters compared to traditional networks where there

exists a separate parameter for each input-output connection. In traditional neural net-

works, a matrix multiplication consisting of each of the individual parameters is applied

to the input at each layer. For images, consisting of thousands or millions of pixels, the

number of parameters is prohibitively large. CNNs, employing convolutional operations

with shared parameters, only learn the parameters of the convolution kernels, K, and the

weights of any fully connected layers. The reduction in the number of parameters means

that CNNs have reduced memory requirements and increased statistical efficiency [43].
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Modern digital cameras typically are equipped with automatic exposure and gain con-

trollers that are designed to adapt to varying lighting conditions. Depending on the

sophistication of the camera system, the user can often fine-tune specific settings related

to these automatic controllers, or turn them off all together. Built-in algorithms, however,

are suited for general purpose photography (or videography) and are not intentionally

designed for use in computer vision applications. Additionally, built-in algorithms tend

to favour stability over reaction speed, as changes to exposure time and gain are made

gradually while transitions in scene lighting may occur rapidly, resulting in overexposed

or underexposed images. For these reasons, it is apparent that a more targeted approach

is required for robotics applications.

3.1 High-Dynamic Range Imaging

One approach to maximize the information content of an image is high-dynamic range

imaging (HDR) imaging. HDR scenes are characterized by a very wide brightness/radiance

range. It is very difficult to capture all of the important details in an HDR scene within

a single image, as the dynamic range of the scene can be orders of magnitude larger than

the dynamic range of the camera. In order to capture most of the important details, both

dark and bright regions need to be appropriately exposed. HDR imaging is the process

by which images acquired at various exposure times and gain values are fused together.

HDR imaging has been shown to perform well in a variety of challenging environments,

including outdoors. The intuition behind HDR imaging is that important features that

appear in either bright or dark regions of a scene can be combined into one image. An

HDR image is constructed by combining low-dynamic range (LDR) images of a scene for

many different exposure and gain values. The LDR images are typically acquired from

26
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the same perspective and are combined using an image fusion algorithm. The combina-

tion results in a well-exposed final image with a high amount of detail in both bright and

dark scene regions. However, HDR imaging is not suited for real-time operation.

HDR images can be acquired in real time with the use of at least two cameras that

have different exposure time settings and with a very small baseline (as in, e.g., [45]). The

cameras simultaneously capture LDR images of the scene and, given the known baseline,

the images can be fused using a saturation mask. The obvious downside to this approach

is that two cameras are needed. In challenging environments, even more cameras may

be required. Additionally, the fixed settings of a specific camera may result in useless

LDR images in cases where lighting is extreme (e.g., the low-exposure camera will result

in severely underexposed images when the external illumination is low).

Alternatively, LDR images of the same scene obtained with a single camera at differ-

ent times can be fused into an HDR image [27]. This approach removes the requirement

for multiple cameras but introduces several new challenges. First, the camera needs to

capture multiple images from the same pose. Second, any changes in the environment

between the LDR images will impact the quality of the HDR representation, in particular

around object edges. Instead, the camera may move, but images must then be trans-

formed and stitched together. In [46], HDR videos are generated from sequential images

using LDR frames acquired with auto-exposure control and varying gain values. How-

ever, increasing the gain introduces noise into the images and in turn, into the resulting

video.

Although HDR imaging can aid in extracting useful image features in HDR scenes,

it is not suited for use in a visual egomotion estimation application. The motion of the

camera, coupled with the changes in the environmental lighting limit the effectiveness of

HDR imaging. The requirement that images must be acquired from the same position

limits the allowable speed of the robot, while fusing images from multiple positions is

potentially both slow and imprecise. Due to these limitations, the use of HDR imaging

for real-time robotics applications is limited.

3.2 Reactive Control of Camera Parameters

Recent works have sought to increase the performance of visual navigation algorithms

by adjusting camera parameters to maximize a specific image ‘quality’ metric. These

approaches adjust parameters in a reactive fashion: an image is captured, the appropriate

metric is calculated, and adjustments to the camera parameters are made based on the

quality value or score.
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Lu et al. [4] use the Shannon entropy of an image as the quality metric. The Shannon

entropy of an RGB image is calculated as:

Ment = −
255∑
i=0

PRi logPRi −
255∑
i=0

PBi logPBi −
255∑
i=0

PGi logPGi, (3.1)

where PRi, PBi, and PGi represent the probability of a pixel in each channel having an

intensity value of J ∈ {0 − 255} based on the image histogram. The Shannon entropy

defines the information content of an image. Lu et al. [4] posit that increased image en-

tropy will result in images with more useful information, resulting in a greater number of

matchable features. The exposure time and gain of the camera are adjusted to maximize

the entropy; the best parameter values are obtained by performing an optimization over

a surface constructed by acquiring images at different exposure time and gain values and

measuring their entropy. A 1-D optimization is carried out in the parameter space such

that the exposure time and gain are adjusted by the same relative magnitude. The opti-

mization is typically performed once, as it is assumed that the environmental lighting is

relatively static. To determine if the lighting has significantly changed, a simple heuristic

check is employed which involves measuring the mean brightness of a known reference

object in the scene and determining if it has changed by a specific amount. If the mean

brightness change is larger than a user-defined threshold, the optimization is performed

again. The method works in environments that have stable lighting but it is not suited

for dynamic conditions. In fact, the authors state that their approach breaks down in

conditions where lighting changes suddenly. Additionally, the approach requires a known

reference object.

Shim et al. [3] investigate the use of image gradients as a metric. The presence of a

strong gradient indicates a substantial brightness difference between neighbouring pixels,

corresponding to edges, corners, and boundaries between regions of differing colours.

Moreover, many feature detectors find features in gradient-rich areas. By maximizing

the amount of gradient information in an image, the authors assume that more useful

image features will be identified, improving the performance of visual navigation. First,

a mapping function is defined that quantifies the gradient magnitudes in one useful

information metric:

Mgrad =
∑
i

m̄i, m̄i =

 1
N
log(λ(mi − δ) + 1) for mi ≥ δ

0 for mi < δ
, (3.2)

where mi = ‖∇I(i)‖2 represents the gradient magnitude at pixel i, N = log(λ(1− δ)+1)
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is a normalization factor that maps m̄i to [0, 1], δ controls the magnitude of the gradients

that are considered, and λ controls the degree of linearity in the mapping between the

gradient magnitude mi and the gradient information value m̄i of pixel i. The optimal

exposure value is determined by generating seven synthetic images of the current scene at

different exposure values and using the computed metric values of the images in a simple

optimization algorithm. The synthetic images are generated using the current image and

a gamma-correction technique, Iout = Iγin, where γ = [0.1, 0.5, 0.8, 1.0, 1.2, 1.5, 1.9]. The

metric value of each image is then measured as Mgrad,γ, and a fifth-order polynomial is

fit to the values. The maximum of this polynomial in the range of sampled γ values is

determined as γ̂ and used to find the corresponding exposure time. The next exposure

time of the camera, Et+1, is then set using a simple feedback controller:

Et+1 = Et(1 + αKp(1− γ̂)), α =

1/2 for γ̂ ≥ 1

1 for γ̂ < 1
. (3.3)

There are several downsides to this approach. First, this method only adjusts the ex-

posure time, ignoring gain. Additionally, the generation and use of synthetic images for

optimization may not accurately reproduce the photometric effects of varying exposure

times, such as blur due to motion. The approach also requires careful tuning of metric

and control parameters. Finally, the approach is purely reactive, in that it selects the

optimal exposure time based on the current image alone.

Similar to [3], Zhang et al. [39] seek to increase the amount of useful image information

by maximizing a measure of the image gradients, again assuming that an increase in the

amount of gradient information will result in an increased number of matchable image

features. The use of gradient information is extended by defining two new metrics. One

is simply a percentile score of the gradient magnitudes:

Mperc(p) = percentile({mi}i∈I , p), (3.4)

where p indicates the percentage of pixels that have gradient magnitudes smaller than

Mperc. The other metric, called the soft percentile metric, is a weighted sum of sorted gra-

dient magnitudes, {mith}i∈[0,S], and is smoothly differentiable with respect to exposure-

time:

Msoft(p) =
∑
i∈[0,S]

With(p) ·mith, With =

 1
N

sin( π
2bp·Sci)

k i ≤ bp · Sc
1
N

sin(π
2
− π

2(S−bp·Sc)i)
k i > bp · Sc

, (3.5)
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where N normalizes the sum of the weights to 1, S is the number of pixels in the image,

and k controls how similar Msoft is to Mperc. The CRF is used to predict how an image

will change with exposure time. The CRF, combined with the proposed image quality

metric, is used in a simple gradient-ascent algorithm to increase the value of the metric

for the next image:

Et+1 = Et + γ
∂Msoft

∂Et
,

∂Msoft

∂Et
=
∑
i∈[0,S]

With
∂mith

∂Et
. (3.6)

As with [3], the approach is reactive and only adjusts exposure time. Furthermore, the

controller only makes adjustments of the exposure time in the direction of the optimal

value at each step, rather than directly jumping to the optimal value as in [3].

A more complex image metric is introduced in [40] that is constructed by combining

image entropy and gradient information:

MKim =
∑
i

gi, gi = Wimi + π(Hi)Si(Hi)Wi
1

N

∑
j

mj. (3.7)

In Equation 3.7, Hi is the local entropy at pixel i, and Wi is the entropy weight:

Wi =
wi∑N−1
i=0 wi

, wi =
1

σ
exp

{
(Hi −mean(Hi))

2

2σ2

}
. (3.8)

An activation function, π(·), weighs the importance of image entropy relative to image

gradients:

π(Hi) =
2

1 + exp(−αHi + ψ)
− 1, 0 ≤ Hi ≤ 1. (3.9)

The value α determines the balance between maximizing entropy and maximizing gra-

dient magnitudes. An α favouring image entropy will result in fewer saturated image

regions by lowering the exposure time or gain, while an α favouring image gradients will

typically increase the exposure time and gain to magnify intensity differences. The value

ψ controls the minimum pixel intensity value that can be considered saturated. Finally,

Si(Hi) is a mask that identifies regions of the image that are saturated (and thus, have

near zero entropy).

Si(Hi) =

0 Hthreshold ≤ Hi ≤ 1

1 0 ≤ Hi ≤ Hthreshold

. (3.10)

As with the previous work in [3] and [39], the goal is to adjust the exposure time of

the camera such that the metric is maximized. The Kim et al. metric is unique in
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that saturation is incorporated through the entropy measurement. Areas in an image

with low entropy correspond to regions with similar pixel intensities, which commonly

occurs in areas of undersaturation and oversaturation, but can also occur in properly

exposed grey regions. An image saturation mask is applied to areas with an entropy

value lower than a user-set threshold so that the overexposed and underexposed regions

can be compensated for. A user-controlled parameter that weights the importance of

minimizing saturation or maximizing gradient information is used. Additionally, the

gradient information is weighted through the use of entropy, meaning that areas of the

image with large gradients are given a larger weight in the metric calculation, which

minimizes the effects of noise. Control of the exposure time is achieved through Bayesian

optimization. Bayesian optimization is employed to sample the parameter space so that a

minimal number of images are acquired to determine a near-optimal exposure time. The

downsides to this approach are that only exposure time is controlled, the requirement that

several images need to be captured to construct an objective surface for optimization,

and the difficulty in tuning the large number of metric and optimization parameters.

Moreover, the rate at which optimal images are obtained is significantly reduced if the

environmental lighting conditions continuously change.

Shin et al. [41] propose an even more robust image metric to use as an optimization

objective, consisting of a combination of gradient information, entropy, and a noise term.

The gradient metric from [3] is used, with additional consideration given to the uniformity

of the gradient information throughout the image. The image is divided into NC cells

and the sum of the gradient information of each cell is measured:

M̂grid,j =
∑
i∈Cj

m̄i, j = 1, 2, ..., NC . (3.11)

The gradient contribution of the metric is determined by taking the ratio of the mean

value of the cells and the standard deviation of the cells and multiplying it by a normal-

ization factor Kg:

Lgradient = Kg ·
mean(M̂grid)

std(M̂grid)
. (3.12)

Entropy from [4] is used as a base metric to measure the total information contained in

the image and multiplied by a normalization factor Ke:

Lentropy = Ke ·Ment. (3.13)

Finally, a noise term is incorporated to measure the noise introduced by increased gain.
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The noise component of the metric is determined through a filter-based approach by

applying a noise estimation kernel to determine the level of noise in regions of the image.

Noise is only measured in homogeneous regions by masking-out areas with large gradients

through ζ(i), and masking out oversaturated and undersaturated regions through U(i):

ω =

 1 −2 1

−2 4 −2

1 −2 1

 , ζ(i) =

1 for mi ≤ δ

0 for mi > δ
, U(i) =

1 for τl ≤ I(i) ≤ τh

0 otherwise
.

(3.14)

The value δ defines the magnitude of gradients that are considered ‘large’ and removed

from the noise calculation metric. The values of τl and τh define the lower and upper

bounds respectively of pixels that are not considered saturated and therefore valid for

use in the noise metric calculation.

Lnoise =

√
π

2

1

NV

∑
i

ζ(i) · U(i) · |I ∗ ω|(i). (3.15)

Here, NV denotes the number of valid pixels in the mask ζ · U . For colour images, the

noise values of each channel are averaged. Finally, the three metrics are combined with

user-selected parameters to weight each component.

MShim = α · Lgradient + (1− α) · Lentropy − β · Lnoise. (3.16)

The goal of optimizing the above metric is to obtain images with large gradient and

entropy components while minimizing the noise component. For online optimization of

camera parameters, the Nelder-Mead algorithm is employed. The Nelder-Mead technique

does not require the derivatives of the objective function, unlike aforementioned methods.

Nelder-Mead operates by searching the parameter space until a point is reached near the

maximum value of the objective function. To test this approach, the authors collect

a dataset consisting of different scenes captured with stereo cameras using a range of

exposure times and gains. Various image metrics from previous works are compared to

the proposed metric by finding the image pairs that correspond to a maximum value

of each metric. Using these images, various experiments including pose-estimation and

object detection are performed. In these experiments, optimization of the proposed

metric results in images producing the lowest reprojection error when used in a pose

estimation problem. Further, this method results in the best performance in an object

detection experiment. The drawbacks of this approach are the substantial image metric

computation time, the requirement that real images need to be acquired to construct
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the objective surface, and the difficulty of parameter tuning.1 Further, the experiments

in this work were conducted in static scenes, where lighting was fixed between image

samples. The amount of time required to obtain a sufficient number of samples to build

the optimization surface would prevent this approach from performing well in a dynamic

environment on a moving platform.

3.3 Heuristic Image Metrics

The above methods seek to maximize one or more image metrics, many of them heuristic,

that quantify the quality of an image for use in robotic vision tasks. The assumption

is made that the images obtained will result in increased robustness of vision tasks in

challenging conditions. This assumption, however, is unfounded, in that these metrics

are not directly tied into robotic vision pipelines and may not actually improve their

performance in all cases. For example, we computed several of the above metrics for a

single image sequence from one of our datasets and found that these different metrics

indicate widely varying levels of ‘quality’ for the same images, as shown in Figure 3.1. We

normalized the values in the plot to permit direct comparison. We see that the metrics

do not agree, which suggests that image quality is subjective, or task-driven. Most of

the image metrics from the literature are essentially hand-crafted heuristics that measure

quantitative aspects of images but are not tied to the robotic vision pipeline and thus

may not directly improve its performance (and might even make it worse).

1We found this method to be particularly sensitive to changes in tuning parameters during experi-
mentation
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Figure 3.1: A comparison of image metrics from the literature. The plot is of the nor-
malized metric score of each image over a sequence from one of our datasets. It is evident
that the image metrics do not agree on image quality. The metrics used are the gradient
sum, Mgrad [3], entropy, Ment [4], entropy-weighted gradient, MKim [40], and gradient +
entropy + noise, MShin [41].
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Learned Camera Parameter Control

This chapter provides a summary of the problem described in earlier chapters and our

motivation for a learning-based solution. We follow up with an overview of our learning-

based approach, covering the specifics of our network architecture and our dataset col-

lection process. We next discuss our proposed image metrics used to generate training

targets, consisting of the number of inlier feature matches between sequential images,

and the number of features in an individual image. We provide motivation for using the

number of image features as an image quality metric by providing results from a simple

pose estimation experiment. Finally, we outline the network training methodology.

4.1 Problem Formulation

The literature discussed in Section 3.2 describes two general approaches to determining

camera exposure time and gain through optimization of heuristic image metrics. Both

approaches, however, have their own limitations. The first approach requires sampling

real images at different camera parameter settings to construct an objective surface upon

which an optimization can be performed. Doing so limits the effectiveness of these meth-

ods for real-time applications since images cannot be sampled instantaneously. Collecting

samples from the parameter space over several frames can drastically affect the perfor-

mance of these methods in environments where scene lighting rapidly changes. Dynamic

lighting can prevent the optimization algorithm from converging due to the changing

shape of the objective surface, which in turn results in poor performance, and some-

times outright failure of a vision algorithm. Examples of robots operating in challenging

environmental lighting conditions include mobile robots or drones quickly transitioning

from indoors to outdoors and autonomous vehicles (such as cars and trains) entering and

exiting tunnels.

35
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The second approach discussed in Section 3.2 alleviates the concerns related to sam-

pling the parameter space in real time by using synthetic images as an alternative. Syn-

thetic images of a scene are generated at various camera parameter settings for each new

image acquired and used to construct the objective surface. The near-instantaneous sam-

pling of the parameter space negates the issues of sampling real images, but introduces a

source of photometric inaccuracy in the images used for optimization. Synthetic images

may not accurately depict real-world variations of image details due to adjustments of

camera parameters. For example, it is difficult to accurately model motion blur due to

a change in camera exposure time in a single image, as both the speed and direction of

motion is unknown.

Both of the above approaches require the respective metrics to be calculated from

the samples collected at each time step, which contributes to the algorithm processing

time. Additionally, most of these approaches involve algorithms and metrics that contain

specific parameters that need to be tuned (requiring some user expertise) depending on

the intended application environment. Our method requires far fewer tuning parameters.

We seek to alleviate issues related to the sampling-based optimization of camera

parameters by introducing a self-supervised learning-based approach. Our approach can

predictively adjust camera parameters, which eliminates the need to collect samples at

each time step for optimization. Additionally, we avoid generating synthetic images. We

propose a CNN that takes as input a sequence of the past three frames along with the

respective camera parameter settings, and regresses adjustments to the exposure time and

gain. The sequential input of three images ensures that temporal information is passed

into the network to observe how the images are changing, while the inclusion of the current

gain/exposure allows the network to decouple the changes due to varying parameters from

the changes due to varying external illumination. The camera parameter adjustments

output by our network yield images containing a higher number of features, resulting in

more sequential inlier feature matches. The only additional processing required by our

method is a forward pass through the network after each new image is captured. Using

modern graphics processing units, the forward pass only contributes a small amount

of additional time to the image acquisition process. We demonstrate that our network

can be trained offline in a self-supervised manner using the VO front end to generate

regression targets directly from real images. We test our approach in real-world scenarios,

demonstrating its performance in both static and dynamic lighting conditions.

As a proof-of-concept, we first implement, train, and test a network that adjusts

a single camera parameter (exposure time) to reduce the complexity of the problem.

Following the successful implementation of the single-parameter network, we then move
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on to the dual-parameter (exposure time and gain) problem.

4.2 Approach and Methodology

To train our networks, we devise a unique self-supervised training methodology incor-

porating the VO front end, similar to that of [6]. Using this methodology, we train a

CNN to regress values of exposure time in the single-parameter case, and both exposure

time and gain in the dual-parameter case. Our training methodology necessitates the

collection of novel datasets for which training targets can be generated offline. Section

4.2.1 outlines the network architecture for both the single-parameter and dual-parameter

networks. Section 4.2.2 discusses the details of the two novel datasets used for training

and the methodology used to collect them. Section 4.2.4 provides an analysis of our pro-

posed metrics derived from the VO front end used to generate training targets. We also

provide motivation for increasing the number of features in images. Finally, section 4.2.5

covers the label generation process and the training approach for the single-parameter

and dual-parameter case. The experimental results for each case are described in Chapter

5.

4.2.1 Network Architecture

We first investigated the feasibility and effectiveness of a single-parameter network. We

then modified the network structure, training dataset, and training methodology to ac-

commodate the dual-parameter case.

Single-Parameter Architecture

We selected exposure time as the parameter to adjust in the single-parameter case as it

directly impacts the brightness and sharpness of images. Our network takes as input a

sequence of the previous three images {It, It−1, It−2} along with their respective exposure

times {Et, Et−1, Et−2}, and outputs a predicted exposure value, Êt+1. The camera then

adjusts its exposure to this value and acquires the next image. We fixed the gain to

a value of 10 dB for data collection, training, and testing as this value is roughly the

average of typical gain values selected by the camera’s onboard automatic gain control

algorithm for both indoor and outdoor scenes.

The initial challenge for this task was to determine the architecture of the network.

Ensuring that the network had sufficient representational capacity to learn the relation
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between image structure and exposure time while making certain that the network did

not over-fit the dataset was an important consideration.

To ensure that the network had sufficient capacity, we first investigated the use of a

pre-trained deep residual network (ResNet) [47] with 18 layers. The pre-trained fully-

connected (FC) layers used for image classification were removed and replaced by un-

trained FC layers that reduced the final convolutional layer output to a single value. Since

the ResNet architecture accepts 3-channel RGB images as input, we initially tried using

only a single image as an input. This approach did not generalize well, so we adopted

a multi-image input, which consisted of three sequential images. We reasoned that a

multi-image input would capture the dynamics in the environment (e.g., approaching

the entrance or exit of a tunnel) and the corresponding exposure values would provide

context for the training targets to better facilitate learning. Various iterations of train-

ing were completed, each with a varying amount of the pre-trained convolutional layer

weights frozen in order to change the representational capacity. Initial training results

indicated that fully freezing all of the convolutional layers of the pre-trained network (i.e.,

using the pre-trained weights for the convolutions and only training the FC layers) was

not beneficial. The frozen parameters had been trained for an image classification task,

and were not suitable for regressing exposure values. Conversely, completely unfreezing

the network (i.e., training the entire network) tended to result in an over-fitting of the

training data. Consequently, we froze only the first several layers of the ResNet, as these

layers are responsible for detecting simple image features and structures such as corners

and edges. The deeper layers that are responsible for extracting more application-specific

information were unfrozen and retrained.

One of the main issues with using a pre-trained ResNet was that the input dimensions

could not be altered. The pre-trained ResNet was designed to process three channel

RGB image inputs. Using a sequential stream of images as a single input was not

possible without altering the structure of the network, which would have eliminated

the advantage of using pre-trained weights. Additionally, the input exposure values

could not be added directly to the input of the convolutional layers. To maintain the

advantage of using the pre-trained weights, we passed each image in the input sequence

through the convolutional layers independently. For each input image, the corresponding

exposure value was appended to the one-dimensional output of the convolutional layers.

Finally, the outputs of the convolutional layers for each image were concatenated and

then passed through the FC layers. To accommodate the larger input, the FC layers

were adjusted accordingly. Preliminary results indicated that this approach did not work

well. We suspect that the poor performance of this approach was due to the input images
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Figure 4.1: The custom CNN developed for estimating the next exposure Et+1 given an
input sequence {It, It−1, It−2} and corresponding exposures {Et, Et−1, Et−2}.

being processed independently in the convolutional layers. Processing the input images

independently resulted in a loss of the contextual temporal information contained in

the three sequential images. Finally, the size of the ResNet architecture resulted in a

relatively slow forward pass (see Table 4.1). The poor performance of the ResNet led us

to investigate an alternative network architecture.

Table 4.1: Network processing time comparison - modified ResNet vs. custom CNNs for
a three image (+ parameters) input sequence.

Network Architecture Forward Pass (ms) Parameters

Modified ResNet-18 - single ∼ 11.8 12,726,337
Custom CNN - single ∼ 1.5 1,746,609

Custom CNN - dual (large) ∼ 2.2 6,150,322
Custom CNN - dual (small) ∼ 1.3 1,546,498

A custom lightweight CNN architecture was developed that addressed the disadvan-

tages of the ResNet approach (Figure 4.1). First, the input was structured to process

a 12-dimensional input consisting of the concatenation of each three-channel RGB im-

age, along with a fourth channel representing the corresponding exposure (described in

Section 4.2.5). Next, the number of layers was significantly reduced to help speed up

the processing time and reduce over-fitting. Table 4.1 demonstrates the performance

improvement using an NVIDIA GeForce GTX 1050 Ti laptop graphics card. Our cus-

tom CNN only adds an additional 1.5 ms to the overall image processing time, while

the modified ResNet-18 architecture added almost 12 ms, resulting in a 87% reduction
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in processing time. Additionally. the overall size of the network was decreased by 86%.

The network processes all three images as one single input and outputs a predictive ad-

justment to the exposure time at each frame. Our custom CNN generalized well during

training relative to the ResNet-18 architecture due to its smaller size and custom input

architecture.

Dual-Parameter Architecture

After successfully implementing the lightweight custom CNN architecture for the single-

parameter case, we sought to modify and extend this approach. As we discuss in Chapter

5, many of the downsides of using the single-parameter network are due to controlling only

one camera parameter. To improve upon the experimental results of the single-parameter

approach, we adapted the network to also output adjustments to camera gain.

Adding predictive gain capability to the network necessitated modifications to the

network structure. With the addition of gain, the network input contained not only

three RGB images and their corresponding exposure times, but also the corresponding

gain values of each image. This addition increased the size of the input from twelve

channels to fifteen channels. Additionally, the network was required to output both

gain and exposure adjustments. To accommodate these changes, the network structure

was adapted to handle the larger input and to output two values. Two versions of this

adapted network were developed: a larger network containing additional convolutional

layers, and a smaller network with fewer layers. These two networks were both trained

using the same input data to determine if there was an advantage to using the larger

network. The results of the training indicated that there was little difference in validation

performance. In addition, the smaller network contained fewer parameters, resulting in

a faster forward pass as shown in Table 4.1. The smaller network also had the added

bonus of faster training speeds. For these reasons, the smaller network was selected for

our experiments. The architecture of the smaller network is shown in Figure 4.2.

Although the selected network was the smallest out of all tested, including the single-

parameter network, we still found that the training error was reduced to a small value

and that the network generalized well compared to both the single-parameter version and

the larger dual-parameter version.

4.2.2 Dataset Collection

There are currently no publicly-available datasets that are suitable for the supervised

training of a network that adjusts camera exposure time and gain for visual navigation
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Figure 4.2: The smaller version of the custom CNN developed for estimating the next
exposure Et+1 and gain Gt+1 given an input sequence {It, It−1, It−2}, corresponding ex-
posures {Et, Et−1, Et−2}, and gains {Gt, Gt−1, Gt−2}.

algorithms. Consequently, we collected a pair of novel datasets and used them for offline

self-supervised training: one dataset for the single-parameter case and the other dataset

for the dual-parameter case.

Single-Parameter Dataset

To generate training targets for the single-parameter network, a dataset consisting of

several unique trajectories was collected. At each pose, the camera was fixed in place and

roughly fifty images were collected. During image acquisition, the gain was held constant,

while a variety of appropriate exposure values were sampled from predetermined ranges.

These ranges depended on the environmental lighting conditions and were determined

empirically by testing to see when the images became oversaturated or undersaturated.

The images were acquired using a machine vision camera mounted to a camera tripod.

The camera lens aperture was fixed to a small value to ensure a deep depth of field. RGB

images were acquired at a 2048 × 1536 pixel resolution. Examples of images from a single

pose from three different trajectories are shown in Figure 4.3. After collecting images

at a single pose, the camera was manually moved to the next pose in the trajectory,

typically 10–50 cm forward and with only a small amount of rotation. Additionally,

some trajectories were obtained with the camera held stationary while a door to the

outdoors was opened or closed. The poses in these stationary trajectories consist of the

door opening growing larger or smaller over time. Examples of these trajectories are
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shown in Figure 4.4.

The trajectories were collected in both indoor and outdoor environments and during

indoor-outdoor transitions, with rotational and linear movements of the camera between

poses. The purpose of incorporating variety in the training dataset was to assist in

helping the network to generalize. Thirty-six trajectories were collected, containing a

total of 68,265 images. It is important to note, however, that none of the images in this

dataset contain motion blur due to increased exposure time as all images were acquired

using a stationary camera and there were no dynamic objects within the captured scenes.

The single-parameter dataset allows for the analysis of a scene captured under a

variety of exposure values. Using the VO front end (discussed in section 4.2.4), the

settings that yield the best image from each pose can be determined and used as a training

target. Furthermore, our training approach is highly data efficient. Many combinations

of properly exposed, overexposed, and underexposed input images at each pose can be

used as training inputs, allowing for a large number of diverse training samples. Thus,

the network learns the relation between exposure time and image quality in a variety

of environments. During training, images were downsampled to a size of 224 × 224,

however, training labels were generated with full sized images.

Dual-Parameter Dataset

In the dual-parameter case, the data collection approach used for the single-parameter

network proved to be infeasible for a number of reasons. First, adding a second dimension,

in the form of camera gain, to the camera parameter space exponentially increased the

number of images that would need to be acquired at each pose. Rather than fifty images

sampled at each pose, there would need to be ∼2500 images, dramatically increasing the

amount of time required to collect the dataset and introducing an even larger increase

in processing time for generating labels at each pose. Additionally, it would be hard

to ensure that the scene remains relatively static during image acquisition, especially

outdoors. For instance, capturing images at a frame rate of 30 Hz would take roughly 83

seconds per pose and any changes to the scene would make it difficult to fairly compare

images. Second, motion blur due to increased exposure time was not accounted for

in the single-parameter case. One of the main advantages of controlling gain is that

gain can provide an increase to image brightness without increasing the exposure time.

Maintaining a lower exposure time is useful in applications where an increase would lead

to severe image blur such as in indoor, low-light, environments or when moving at high

speeds. Collecting images from a stationary camera tripod prevents any motion blur

from being introduced into the dataset. Moreover, with a stationary camera, it is likely
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(a) Outdoor Trajectory

(b) Indoor-Outdoor Transition

(c) Outdoor-Indoor Transition

Figure 4.3: Examples of the images acquired at three poses from different trajectories.
At each pose, the same scene was captured with a variety of exposure times. Important
image features during transitions can be found both indoors and outdoors, as in (b) and
(c), and are highly dependent on exposure time.
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(a) From left to right: An outdoor-indoor trajectory. The camera is moved between poses.

(b) From left to right: A stationary trajectory consisting of a door opening between poses.

Figure 4.4: Examples of trajectories of poses in the dataset. For each pose, there exist
many images captured at various exposure times.
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that different combinations of gain and exposure time would result in very similar images,

introducing some ambiguity in the training targets and reducing the data efficiency of

the training. Finally, the exponential increase in the number of images required could

introduce storage concerns depending on the system and number of trajectories desired.

For the above reasons, an alternative approach for the collection of a dual-parameter

dataset was devised. We incorporated motion blur into our dataset by acquiring images

from a moving vehicle. Our data collection setup consisted of using two identical cameras,

rigidly mounted as closely as possible next to each other and with identical lens apertures

(Figure 4.5). This setup ensured that images were obtained from the nearly the same

viewpoint, as if acquired by a single camera. The cameras were fixed to a vehicle in

a forward-facing direction and driven through a number of environments. To ensure

that we sampled values in a good region of the parameter space while moving, our

data collection method consisted of sampling the parameter space close to the outputs

of a built-in auto-exposure and auto-gain controller (hereafter AE+AG). One camera

(Camera 1) continuously acquired images using AE+AG, which ensured that half of the

collected images were of reasonable quality in most cases. At each frame, the values of the

exposure time and gain for Camera 1, Ei and Gi, were extracted and modified by a scaling

factor. These perturbed settings, Ei,pert and Gi,pert were applied to the second camera

(Camera 2) and used to acquire an image. Thus, for each camera pose, we acquired

two images of a near-identical scene; one image was captured using AE+AG, and one

was captured with perturbed settings. At each pose, therefore, the target parameters

were generated from either the perturbed image, or the AE+AG image. Although only

two images were acquired at each pose as opposed to fifty in the single-parameter case,

there were far more poses contained in each trajectory. Further, this method of collecting

images while moving ensured that motion blur was incorporated in the dataset. Effort

was taken to ensure that the acquired images were useful through careful selection of the

perturbation method, which we describe next.

It was important that the method by which the AE+AG settings were perturbed

sampled the parameter space to find better image settings but did not select settings

that resulted in very poor images. When designing the sampling method, we needed to

consider the trade-off between the amount by which the parameter space was explored

and the quality of the images. In addition to the scale of the perturbations, the direction

of the perturbations was also considered. The two parameters could each be increased or

decreased, resulting in four possible regions of the parameter space from which to gener-

ate samples. The magnitude of these perturbations was determined using two different

methods to ensure a variety of data. The first method consisted of randomly sampling
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(a) Camera rig used for experiments and
data collection.
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(b) AE+AG settings (in red) and perturbed set-
tings (in blue) sampled during a tunnel transition.

Figure 4.5: (a) The camera rig and (b) parameter setting sampling distribution from a
tunnel transition trajectory. The majority of AE+AG exposure times were located at 0
µs and 30000 µs.

a scaling factor from a uniform distribution between empirically determined values. To

ensure an even distribution of perturbations, the four regions of the parameter space were

sampled in a cycle, repeating once over every four frames.

Ei,pert = Ei ∗ (1± U(0, 0.5)), Gi,pert = Gi ∗ (1± U(0, 0.5)), (4.1)

for exposure time and gain separately. We found that scaling in the range of 0.5–1.5

resulted in a good trade-off between exploration and high quality images. In the case of

Gi = 0 (only occurred for gain), we applied an addition (rather than scaling) of a small

(< 2) or a large (> 5) value drawn from one of two uniform distributions to ensure a

wide variety of samples. The second method for scaling the perturbations was to use a

heuristic search strategy based on the average intensity of the AE+AG image. In this

approach, the average intensity, J , of the image was calculated and used to inform the

direction of the scaling:

Ei,pert =

Ei ∗ (1 + U(0, 0.5)) for J ≤ 128,

Ei ∗ (1− U(0, 0.5)) for J > 128.
. (4.2)

We applied the same function above for gain. If the current AE+AG image was bright, the

parameters were adjusted to sample from regions of the parameter space that resulted in
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(a) A trajectory captured using the four-quadrant cycle method.

(b) A trajectory captured using the heuristic average-intensity sampling method.

Figure 4.6: Examples of trajectories of poses in the dual-parameter dataset. The top
row in each example corresponds to four sequential AE+AG images while the bottom
row consists of the corresponding perturbed images. We seek to identify the best image
within a window of four frames as our target exposure time and gain values.

images with reduced brightness, and vice versa. The downside to the heuristic searching

approach was that both the gain and exposure time were adjusted in the same direction,

meaning that two regions of the parameter space were never sampled from. Consequently,

most of the data was collected using the first approach.

Examples of images from the dual-parameter dataset are shown in Figure 4.6. The

images in Figure 4.6a were acquired using the first parameter sampling approach in which

the perturbed examples were drawn from all four regions of the parameter space. The

images in Figure 4.6b were acquired using the second parameter sampling approach. The

images in Figure 4.6b are all brighter than the AE+AG images, which had an average
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intensity of less than 128. This dataset consists of RGB images acquired at a 2048 ×
1536 pixel resolution. The allowable range of exposure time values was 75–30000 µs while

the allowable range of gain values was 0–30 dB. A total of thirty-eight trajectories were

collected, containing 47,848 images.

4.2.3 Using Image Feature Count as a Metric

Utilizing the camera settings that result in a maximum number of inlier feature matches

between sequential images is an intuitively useful target for a VO application. It cannot

be assumed, however, that maximizing for features in an individual image alone will

result in good images for VO.

To determine if using the number of features in an image as a metric is warranted,

we performed a pose estimation experiment using the KITTI dataset [48]. We sought to

determine if an increased amount of image features results in improved pose estimates. To

test this notion, we utilized a stereo image pair from the KITTI dataset, and extracted a

limited number of features in each image. We then matched these features and computed

the inlier feature matches. Using the inlier feature matches, we computed the essential

matrix E and then extracted the correct rotation from E using the cheirality constraint

[49]. The estimated essential matrix and rotation matrix were then compared to the

ground truth essential matrix and rotation matrix, respectively. We used the rotation

matrix rather than the transformation as the decomposition of the essential matrix only

yields the translation up to scale. We used the Frobenius distance to determine the

accuracy of essential matrix estimate Ê (and rotation matrix) relative to the ground

truth E∗:

||Ê− E∗||F =
3∑
i=1

3∑
j=1

|(ê− e∗)ij|2. (4.3)

To test how the number of features affects pose estimation accuracy, we repeated the

essential matrix estimation test using a varying upper limit on the maximum allowable

number of features in each image, ranging from 20 to 10000 features. For each maximum

allowable feature count, this test was performed using 1000 stereo image pairs and the

results were then averaged. We obtained the stereo image pairs by randomly sampling

100 image pairs from 10 KITTI trajectories. Figure 4.7 shows that, in general, more

features available in images led to better pose estimates. Despite other works showing

that good VO accuracy can be achieved on the KITTI dataset using a small amount of

features [50], we note that in general, having more features increases the chance that a

smaller subset of ‘good’ features is present in the image.
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(a) Essential matrix estimation errors.
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(b) Rotation matrix estimation errors.

Figure 4.7: (a) Essential and (b) rotation matrix estimation errors averaged over 1000
stereo image pairs for various upper limits on the number of features allowed to be
extracted from images. Increasing the maximum number of features results in a more
accurate pose estimate.
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4.2.4 An Analysis of Image Metrics Derived from VO

The literature provides several different image quality metrics based on various image

characteristics. We make note that our use of the term ‘metric’ refers to a (qualitative)

measure of image quality rather than a distance measurement in the mathematical sense.

Figure 3.1 showed that the metrics from the literature do not agree on what constitutes

a favourable image. Instead of using these existing metrics, we take inspiration from [6]

and use the VO front end to inform the quality of the images. Making use of image

quality metrics derived from the VO pipeline will naturally result in training targets that

are suitable for training a network to improve the quality of acquired images for VO

applications. As discussed in Section 1.2, using pose estimation accuracy as a training

target requires a prohibitively large amount of ground truth training data. Due to this

limitation, we used the front end to generate training targets. This notion, of using the

intended visual algorithm to determine which images are best, is a general concept that

can be extended to other visual algorithms [6]. The VO front end consists of feature

extraction and matching, so we selected four variants of metrics to investigate based on

the number of image features and inlier feature matches.

To analyze and compare these image metrics, we used our single-parameter dataset,

as it contains images of the same scenes captured with a wide variety of exposure values.

For a trajectory in our dataset, we found the ‘optimal’ image (and corresponding camera

parameters) in each pose as determined by one of our proposed metrics described below.

We denote the set of optimal images over the entire trajectory for a specific metric as

an M-trajectory. That is, the M-trajectory consists of the set of single images from

each pose that returned the highest scores using a particular image quality metric. Thus,

there exists oneM-trajectory per metric for each trajectory in our dataset. We then used

the VO front end to compare the resulting M-trajectories by measuring the number of

sequential inlier feature matches over each.

The first metric we investigated was simply the number of ORB features within an

image I at a pose t:

Mfeat(It) = nfeatures(It). (4.4)

The best image within the set of images collected at each pose was the one that contained

the largest number of ORB features. We created an M-trajectory using the best image

(and corresponding exposure time) in each pose.

The second metric was a measure of the uniformity of the ORB features within an

image, similar to the uniformity of the gradients from [41]. We divided the image into S
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subregions each denoted as Rj for j = {1, ...., S}, counted the number of ORB features

within each subregion, nj, and then calculated the mean number of features and the

standard deviation of the number of features between subregions. We then calculated a

metric over the entire image as follows:

nj = nfeatures(Rj), j = 1, 2, 3...S, n = [n1, n2, ..., nS] (4.5)

Muni(It) =
mean(n)

std(n)
. (4.6)

We selected the image with the largest value as it corresponded to the image with the

largest number of features that are uniformly distributed. Again, we created an M-

trajectory using the best images at each pose. We note that uniformly-distributed fea-

tures are a valuable metric in environments where there are useful features contained

throughout an image, such as those found indoors. However, measuring the uniformity

of images features may not be a suitable metric for environments that contain feature-

sparse regions such as the sky in outdoor applications.

Next, we investigated inlier feature matches between poses as an image quality met-

ric. Intuitively, selecting camera settings that result in images that yield the maximum

number of inlier feature matches between frames should result in ideal images for VO, as

feature-based VO pipelines depend on good feature correspondences for accurate motion

estimates. Using our dataset, we investigated this hypothesis using two methods. For

the first method, referred to as the sequential method, we selected a good initial image

in the first pose, I∗t , then found the number of inlier feature matches with an image in

the second pose It+1:

Mseq(I
∗
t , It+1) = nmatches(I

∗
t , It+1). (4.7)

The image in the second pose that corresponded to the largest number of inlier feature

matches was determined as the best image for the pose pair {t, t+ 1}. We then used the

second image as the best image I∗t+1 for matching with the next pose t+ 2 and repeated

this process until the end of the trajectory. Using this metric, consistent feature matches

are propagated forward through the M-trajectory.

The second inlier feature match metric, referred to as the gridsearch method, treated

a pair of sequential poses as independent from the rest of trajectory. We then found

the image pair from the two poses that resulted in the highest number of inlier feature

matches,

Mgrid(It, It+1) = nmatches(It, It+1). (4.8)

We matched every image from the first pose to every image in the second pose, and found
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the image pair resulting in the maximum number of matches. The image in the second

pose was selected as the best image for that pair and added to the M-trajectory. This

process was repeated for each sequential pose pair until the end of the trajectory.

After collectingM-trajectories for each of the above metrics, we were able to perform

an analysis of the obtained images. The findings of our analysis are shown in Table

4.2 and Table 4.3. For each M-trajectory, we measured the median number of inlier

matches (Table 4.2), and the minimum number of inlier matches (Table 4.3) between

sequential frames.1 TheM-trajectories yielding the highest number of inlier matches are

highlighted in bold. Table 4.2 shows that using the number of features, Mfeat, and the

gridsearch inlier match method, Mgrid, both resulted in the best trajectories for median

inlier matches while Table 4.3 shows that the sequential inlier match method, Mseq,

yielded the highest minimum number of inliers in most cases. The Muni performs poorly

in all cases, likely due to there not being many features in the sky.

Although Table 4.3 might suggest that the sequential metric is preferred, as it yielded

the highest number of minimum inlier feature matches, further investigation reveals that

this is not the case, especially during transitions. The sequential inlier metric is not ideal

because it selects the images (and the corresponding camera settings) that propagate the

initial feature matches forward through the trajectory. In the case of a transition from

indoors to outdoors, for example, the images selected are those that maintain the indoor

parameter values, as these values ensure the same indoor features are matched over time.

When the camera transitions, the image settings that properly expose features outdoors

are never selected. Features that are identified in the outdoor environment while the

camera utilizes the indoor parameter settings are the features that are maintained as the

trajectory continues to proceed outdoors. The settings used to identify these features

initially (i.e., the indoor settings) are maintained through the transition. Maintaining

indoor feature tracks results in severely overexposed images during indoor-outdoor tran-

sitions and underexposed images during outdoor-indoor transitions. We see evidence

of improperly exposed images in plots of the metric statistics during an indoor-outdoor

transition shown in Figure 4.8. The bottom two plots show the image entropy and gradi-

ent magnitudes as a measure of the amount of information in the images. The amount of

information in the images determined by the sequential metric is greatly reduced during

and after the transition (beginning around Pose 9). The sequential method does not

reward exploration of the parameter space, favouring instead to maintain the selected

1The trajectories presented in these tables are from the single-parameter dataset described in Section
4.2.2 and contain between 10–167 poses. These trajectories consist of indoor, outdoor, and transitional
sequences.
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Table 4.2: Median number of inlier feature matches across each trajectory in the single-
parameter dataset. Each M-trajectory was created using the best images identified by
the respective metric.

Median Inlier Feature Matches

Trajectory Mfeat Muni Mgrid Mseq

Indoor Hallway 230 70 229 233
Indoor Lab 512 363 502 516
Indoor Linear A 455 260 452 455
Indoor Linear B 642 570 645 644
Indoor Linear C 574 525 579 584
In-Out Moving A 399 195 385 305
In-Out Moving B 173 143 203 231
In-Out Moving C 247 112 244 223
In-Out Moving D 438 379 424 445
In-Out Moving E 422 357 361 403
In-Out Moving F 356 360 377 338
In-Out Moving G 562 444 563 431
In-Out Rotating A 192 92 190 91
In-Out Rotating B 193 103 193 173
In-Out Rotating C 221 94 209 173
In-Out Stationary A 333 155 355 185
In-Out Stationary B 248 191 240 234
In-Out Stationary C 352 160 384 167
In-Out Stationary D 425 226 644 243
In-Out Stationary E 165 158 170 173
Indoor Path A 425 283 422 421
Indoor Path B 316 239 306 311
Indoor Path C 479 329 493 493
Indoor Rotating A 526 383 523 529
Indoor Rotating B 324 213 319 324
Indoor Stationary A 723 55 723 723
Indoor Stationary B 885 776 885 885
Indoor Window A 352 264 366 319
Indoor Window B 370 311 399 386
Out-In Moving A 506 367 471 482
Out-In Moving B 323 148 329 315
Out-In Moving C 484 360 486 470
Out-In Rotating A 296 135 297 291
Out-In Rotating B 399 118 375 336
Outdoor Moving A 533 497 562 570
Outdoor Moving B 514 453 553 556

Total Maximums 15 0 15 14
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Table 4.3: Minimum number of inlier feature matches across each trajectory in the single-
parameter dataset. Each M-trajectory was created using the best images identified by
the respective metric.

Minimum Inlier Feature Matches

Trajectory Mfeat Muni Mgrid Mseq

Indoor Hallway 7 0 7 7
Indoor Lab 169 20 172 170
Indoor Linear A 27 8 30 27
Indoor Linear B 549 25 551 551
Indoor Linear C 328 212 324 345
In-Out Moving A 95 14 112 112
In-Out Moving B 18 18 17 17
In-Out Moving C 25 17 51 90
In-Out Moving D 35 10 25 31
In-Out Moving E 18 16 18 28
In-Out Moving F 18 19 21 19
In-Out Moving G 22 13 19 19
In-Out Rotating A 15 17 15 24
In-Out Rotating B 52 15 46 48
In-Out Rotating C 16 8 0 47
In-Out Stationary A 55 21 82 148
In-Out Stationary B 171 33 184 195
In-Out Stationary C 44 40 75 111
In-Out Stationary D 152 81 174 174
In-Out Stationary E 122 127 125 142
Indoor Path A 247 73 254 251
Indoor Path B 144 35 155 155
Indoor Path C 294 57 294 294
Indoor Rotating A 333 66 339 347
Indoor Rotating B 179 107 178 187
Indoor Stationary A 712 45 718 718
Indoor Stationary B 867 768 861 873
Indoor Window A 79 51 103 103
Indoor Window B 28 14 47 60
Out-In Moving A 23 32 26 22
Out-In Moving B 21 64 22 27
Out-In Moving C 24 18 25 23
Out-In Rotating A 26 23 19 29
Out-In Rotating B 27 20 28 22
Outdoor Moving A 326 222 277 343
Outdoor Moving B 324 268 441 445

Total Maximums 6 3 14 24
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Figure 4.8: (a) Inlier matches, (b) exposure times, and corresponding image (c) entropies
and (d) gradient magnitudes for our four metrics of interest over an indoor-outdoor tra-
jectory. Note that all metrics yield a similar number of feature matches over the trajec-
tory, but the propagating method and distributed features methods do not compensate
for lighting change during the transition, maintaining a relatively high exposure. The
resulting overexposed images have low entropy and gradient magnitudes.

settings from the first images in the trajectory. Using the sequential method to generate

targets for training is not ideal, as features that are indoors will not remain in the im-

age frame for long, and few new features in the outdoor environment will be identified.

The other methods, namely Mfeat and Mgrid, sacrifice a small reduction in the mini-

mum number of feature matches across the transition (Table 4.3) for a higher number

of matches over the trajectory (Table 4.2) and more information in the images overall

(Figure 4.8). For continuous operation in dynamic environments, well-exposed images

with more information are favoured. Consequently, the two metrics that we select for
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training our networks are the number of features, Mfeat, and the gridsearch inlier feature

match method, Mgrid.

We further investigated the performance of the Mfeat and Mgrid metrics relative to

existing image metrics from the literature in Section 3. Table 4.4 provides a concise

summary of our proposed metrics compared to the existing heuristic image metrics.

We again recorded the highest median and minimum number of inlier matches over all

trajectories. We see that our two metrics produced the most M-trajectories with the

highest number of median matches. Additionally, the Mgrid method yielded the mostM-

trajectories with the highest minimum inlier matches. The low number of top-scoring

M-trajectories for the Mfeat metric in the bottom row of Table 4.4 was not entirely

representative as most of the values were only slightly smaller than those of Mgrid.

Table 4.4: Comparison of our selected metrics with existing metrics from the literature.
For each metric, an M-trajectory was generated. This table is a summary of the num-
ber of trajectories that had the highest average median and minimum number of inlier
matches between images.

Inlier Feature Matches

Entropy [4]
Gradient
Info [3]

Gradient
Sum [3]

Kim [40] Shin [41] Zhang [39]
Ours
(Mfeat)

Ours
(Mgrid)

# top scoring
trajectories
(Median) 3 3 8 0 2 6 10 13

# top scoring
trajectories
(Minimum) 8 6 11 1 6 9 2 15

4.2.5 Target Generation and Training Procedure

For the single-parameter case, the training label for image It is generated by obtaining

the exposure value of the image It+1 at the next pose that maximizes the selected image

metric (Mfeat or Mgrid). The specifics of this procedure are slightly different in the

dual-parameter case.

Single-Parameter Case

Using the single-parameter dataset, targets are generated for the current image at pose t

by analyzing the images in the next pose, t+1. The network accepts an input sequence of

previous images (including the current image), and using the proposed training targets,

learns to regress the target exposure time for the next image that is to be captured.
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Using our proposed metrics to generate training targets for the network ensures the next

image captured is of a high quality for VO applications (i.e., features or feature matches

are maximized).

Obtaining the target exposure time E∗t,feat using the Mfeat metric is straightforward.

At the tth pose, each image I
(i)
t+1 for i ∈ 1, ..., N at pose t+1 is processed using an OpenCV

ORB feature extractor. We select the image I
(i∗)
t+1 where i∗ is the index of the image at

pose t + 1 with the maximal Mfeat value (i.e., number of features). Finally, exposure

time is extracted from image I
(i∗)
t+1 and is used as the target for training inputs at pose t.

i∗ = argmax
i

Mfeat(I
(i)
t+1), E∗t,feat = E

(i∗)
t+1 . (4.9)

Obtaining the target exposure time E∗t,grid using the Mgrid metric involves matching

two sequential images. For the tth pose, each image I
(i)
t for i ∈ 1, ..., N in the current pose

t, is matched to each image I
(j)
t+1 for j ∈ 1, ...,M in the next pose t+ 1 using an OpenCV

ORB feature matcher. We select the image pair (I
(i∗)
t , I

(j∗)
t+1 ) that results in the maximal

Mgrid value (i.e., number of inlier feature matches between poses). Finally, exposure time

is extracted from image I
(j∗)
t+1 and is used as the target for training inputs at time t. We

define an overloaded argmax function that obtains the values of two arguments i and j

such that the function Mgrid is maximized:

i∗, j∗ = argmax
i,j

Mgrid(I
(i)
t , I

(j)
t+1), E∗t,grid = E

(j∗)
t+1 . (4.10)

Dual-Parameter Case

Exposure time and gain targets E∗ and G∗ are generated for the current image at the tth

pose by analyzing the images in a window of future poses {t + 1, t + 2, t + 3, t + 4} and

finding the image that maximizes the selected metric. The reason for using a windowed

approach is because the dual-parameter dataset, captured using a moving vehicle, only

contains two samples from the parameter space at each pose. To generate training

labels, it is important that the parameter space is explored as much as possible so that

the network learns the best camera settings. Using a windowed approach ensures that all

four quadrants in the parameter space are explored. The downside to this method is that

this look-ahead in time risks the scene changing. The number of features or inlier matches

in future images may not represent the true number that would exist if we could sample

various camera settings simultaneously from the same pose, but we consider our method

a close approximation. Although the dual-parameter dataset does not have the same

sampling resolution as the single-parameter dataset, the downsides of sparse sampling
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are balanced by the inclusion of motion blur and the realistic data used for training.

Obtaining the target exposure time E∗t,feat and gain G∗t,feat using the Mfeat method is

again straightforward. For the tth pose, each image I
(i)
t+a for i ∈ {1, 2} and a ∈ {1, 2, 3, 4}

is processed using an OpenCV ORB feature extractor. The number of features in each

image is counted and we select the image I
(i∗)
t+a∗ where i∗ is the index of the image in pose

t+a∗ with the maximal Mfeat value (i.e., number of features). Finally, the exposure time

and gain values, E
(i∗)
t+a∗ and G

(i∗)
t+a∗ , used to acquire image I

(i∗)
t+a∗ are obtained and used as

the target for training inputs at pose t. Again, we make use of the overloaded argmax

function:

i∗, a∗ = argmax
i,a

Mfeat(I
(i)
t+a), E∗t,feat = E

(i∗)
t+a∗ , G∗t,feat = G

(i∗)
t+a∗ . (4.11)

Obtaining the target camera parameters E∗t,grid and gain G∗t,grid for the Mgrid method

involves performing multiple image matchings over a window of images. Both images

I
(i)
t for i ∈ {1, 2} in the current pose t are matched with both images I

(j)
t+1 for j ∈ {1, 2}

in pose t + 1. This sequential matching is repeated for four pose pairs {It+a, It+a+1} for

a ∈ {0, ..., 4}. We select the image pair (I
(i∗)
t+a∗ , I

(j∗)
t+a∗+1) that results in the maximal Mgrid

value. Finally, the exposure time and gain values, E
(j∗)
t+a∗+1 and G

(j∗)
t+a∗+1, used to acquire

image I
(j∗)
t+a∗+1 are obtained and used as the target parameter values for training inputs

at pose t. We again make use of the overloaded argmax function for three arguments i,

j, and a:

i∗, j∗, a∗ = argmax
i,j,a

Mgrid(I
(i)
t+a, I

(j)
t+a+1), E∗t,grid = E

(j∗)
t+a∗+1, G∗t,grid = G

(j∗)
t+a∗+1. (4.12)

In addition to the Mfeat and Mgrid metrics, we also investigate the use of a combined

metric, designated as Mhybrid, which consists of averaging the values of the target param-

eters generated by Mfeat and Mgrid. Various values of weighting α ∈ [0, 1] can be applied

to the hybrid method:

E∗t,hybrid = αE∗t,feat + (1− α)E∗t,grid, G∗t,hybrid = αG∗t,feat + (1− α)G∗t,grid. (4.13)

To create training samples, we need to generate pairs of input image sequences and

target parameter values. For the single-parameter input sequence, three sequential images

{It, It−1, It−2} are combined with their corresponding exposure times {Et, Et−1, Et−2} into

a 12-channel input, shown in Figure 4.1. In the dual-parameter case, gains {Gt, Gt−1, Gt−2}
are added to create a 15-channel input, shown in Figure 4.2. Using either dataset, a large

number of training samples can be generated at each pose by sampling from the collected
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images and using these sampled images to construct an input sequence. Generating a

large variety of training samples both maximizes data efficiency and provides the network

with a diverse range of inputs. In the single-parameter case, a maximum of twenty-five

training samples were generated for each pose. In the dual-parameter case, the max-

imum of eight training samples were generated. The dual-parameter dataset contains

significantly more poses, making up for the smaller number of training samples per pose.

To create an input, image It is concatenated with its corresponding parameters Et

(and Gt) along the channel dimension, to create a 4-channel (or 5-channel) image. The

extra input channels are created by assigning the same value to each pixel in a 1 × 224 ×
224 tensor, and concatenating it to the 3 × 224 × 224 RGB image. This concatenation

is repeated for each image in the input sequence, and these images are concatenated

with each other sequentially along the channel dimension to result in a final 12 × 224

× 224 (or 15 × 224 × 224) dimensional input. The value for the parameter channel

is determined by scaling the current value to a value between 0–255. To perform this

scaling, an upper and lower limit for exposure and gain are required. We set the allowable

range of exposure times as 75 µs–30 ms and the range of allowable gain values as 0-30

dB. The scaled parameter value can then be calculated as:

Et,scaled =
Et − Emin

Emax − Emin

∗ 255, Gt,scaled =
Gt −Gmin

Gmax −Gmin

∗ 255. (4.14)

The network takes the above input and regresses a scaled version of the absolute value

of exposure (and gain) clamped between 0–1. The targets are also scaled to be between

0–1 using Equation 4.14 and the scaled targets and network outputs are passed to the

loss function. The reason for the parameter standardization is to ensure that the two

parameters are weighted equally and the magnitude of the gradients are on the same

scale. Through empirical testing, we determined that regressing the absolute value of the

exposure (and gain) resulted in better convergence than estimating a scaling or additive

term to the current parameter value. The loss function used to train our network is:

L = ε
1

N

N∑
i=0

|Ĝi −G∗i |+ (1− ε) 1

N

N∑
i=0

|Êi − E∗i |, (4.15)

for a batch of N training samples where we set ε = 0.5. In the single-parameter case,

the loss is simply the L1 loss of the estimated exposure time. For training, we used the

ADAM optimizer [44] with a batch size of 64 and learning rate of 1 × 10−4. Training

hyperparameters were determined empirically using a random-search hyperparameter

tuning strategy on a held-out set of training data.
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Experimental Results

We determined the efficacy of the proposed networks through several experiments con-

ducted in a real-world driving scenario. In Section 5.1, we first outline the experimental

setup including the camera hardware. Next, the single-parameter network results are pre-

sented in Section 5.2.1 and the dual-parameter network results are presented in Section

5.2.2. Finally, we discuss our overall findings in Section 5.3.

5.1 Experiment Details

Our experiments consisted of measuring the number of inlier feature matches in the

images acquired by our networks under a variety of lighting conditions. We compared

the performance of our networks with both built-in AE+AG controllers and an approach

from the literature, [41].

5.1.1 Camera and Hardware Considerations

Real-world experiments are affected by environmental structure and lighting and cannot

be identically replicated over sequential runs. To ensure that a fair comparison was

made between our proposed approach and other methods, we used two cameras that

operated simultaneously with different camera parameter control algorithms. Further,

the cameras acquired images at the same time to account for the fast speed of the vehicle

during experimentation and the rapidly changing lighting conditions. Finally, images

were captured from nearly the same perspective.

We used the camera setup described in Section 4.2.2, consisting of two FLIR Blackfly

S U3-31S4C machine vision cameras. These cameras have a native resolution of 2048

× 1536 (3.1 MP) and can capture at a maximum frame rate of 55 Hz. The cameras

60
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have a global shutter and are fully controllable with the FLIR PySpin API. The range

of possible exposure times is 11 µs–30 s while the range of possible gain values is 0–47

dB. The cameras can be powered and controlled simultaneously via USB 3.0 connections

and also contain a GPIO port for hardware triggering. The lenses used were Fujinon

HF6XA-5M 2/3” C-mount lenses with a 6.23 mm focal length. They have adjustable

focus and aperture knobs that can be locked in place. For the experiments, the cameras

were fixed to a 3D-printed mount in a fronto-parallel configuration with a baseline of

3.92 cm, as shown in Figure 4.5a.

It was imperative that the cameras acquired near-identical images when their param-

eters were the same. Although exposure time and gain can be set to the same values

via the software API, the lens apertures needed to be manually adjusted such that the

openings were equal in diameter. To ensure that the lens apertures were accurately set,

a simple aperture calibration was performed. The cameras were positioned in front of a

well-lit, blank surface and set to continuously acquire images at the same exposure time,

gain, and frame rate. The mean intensity values of the images were then compared. The

lens aperture on the first camera was arbitrarily set to a relatively small value. We used

a small value to ensure that the camera had a large depth of field, and that objects at

various distances were in focus, as discussed in Section 2.1.2. The second aperture was

adjusted such that the mean image intensities produced by each camera were identical

and then the apertures were securely locked in place. The lens aperture calibration en-

sured that the cameras captured near identical images (when all other camera settings

were the same), allowing for fair comparisons of the approaches.

Equally important to the aperture calibration was that the two cameras acquired

images simultaneously. Drastic lighting changes can occur over a timespan of only a few

frames so it was critical that images were captured at the same time. To collect images

simultaneously, we made use of hardware triggering. Hardware triggering consists of the

first camera sending a signal to the second camera over a GPIO cable when it begins the

image acquisition process. This signal triggers the second camera to capture an image at

the same time instant. Hardware triggering was achieved through the use of the GPIO

connections available on the cameras, shown in Figure 5.1.

Another consideration made regarding the cameras was the method by which the

cameras continuously acquired images. There are two operational modes that can be

utilized for continuous image capture. The first mode ensures that a constant frame rate

is maintained. The drawback of using the fixed-frame rate mode is that adjustments

made to camera parameters are not applied to the next frame. Changes are likely to be

applied 3–4 frames later than the frame they are intended to be applied to. The second
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Figure 5.1: The back of our camera rig displaying the USB3.0 and GPIO connections
required for hardware triggering.

operational mode applies parameter changes to the very next frame. The drawback of

using the next-frame mode is that the camera frame rate is variable and dependent on

the exposure time of the current frame. Longer exposure times result in a lower frame

rate. We are interested in adjusting camera parameters based on the current image and

applying these changes to the next frame. The input to our network consists of the three

most recent images and corresponding parameter values and the network processes this

input and outputs the exposure (and gain) of the next frame. Consequently, introducing

a 3–4 frame delay may cause the network to behave in an unexpected manner. Therefore,

we selected the second (i.e., next-frame) mode of operation for these experiments and

ensured that the changes to parameter values were applied to the next frame. Although

using this mode of operation required a variable camera frame rate, it did not signifi-

cantly impact our results as we found the minimum frame rate to be ∼10 Hz, obtained

at a maximum allowable exposure time of 30 ms, which occurred infrequently during

experimentation.

Finally, both cameras needed to be calibrated to determine their intrinsic camera

parameters. Intrinsic calibration was accomplished using OpenCV and a checkerboard

calibration target. The calibration target was fixed to a flat surface and multiple images

were acquired using both cameras from a variety of perspectives. The checkerboard corner

locations were then extracted and used to determine the intrinsic camera parameters of

each camera.
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5.1.2 Experimental Setup

The camera rig was mounted to the inside of a vehicle in a forward-facing position and

driven on busy urban roads in London, Ontario. For dynamic lighting experiments, we

designed a closed-route containing two tunnel passages. The tunnels consisted of railway

overpasses above urban streets and are roughly eighty metres in length. Additionally,

the route contained straight sections of road where lighting was relatively constant. The

selected route allowed for testing in both dynamic and static lighting conditions. A map

of the route is shown in Figure 5.2a.

(a) Arial view (Credit: Google Maps). (b) Test route tunnel.

Figure 5.2: (a) A top-down view of the test route used for experiments. The route
contains two tunnels highlighted by dotted lines located on the east and west sections of
the route. (b) An example of one of the ∼80 metre long tunnels contained in the test
route.

Experiments consisted of collecting full traversals of the above route, starting and

ending at roughly the same pose. In each experiment, one camera acquired images using

our proposed single- or dual-parameter network while the other camera captured images

using the built-in AE (+AG in the dual-parameter case) controller or using the method

from Shin et al. [41]. To determine the performance of our networks, we processed the

images using two VO front end feature matching algorithms and compared them to AE

(+AG) and the Shin method [41]. Namely, we used both OpenCV feature matching

and libviso2 as our two VO front ends. We recorded the number of inlier feature

matches measured over the trajectory as a proxy for VO performance, as more inlier

matches typically results in better VO performance. We are interested in both increasing

the median number of inlier feature matches and increasing the minimum number of

inlier feature matches over the entire trajectory. The minimum number of inlier feature

matches is a statistic referring to the smallest amount of inlier matches between sequential
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image frames measured over a trajectory. The minimum number of inlier matches is an

important performance metric as VO can fail in cases where the minimum number of inlier

matches is too low. The minimum number of inlier matches in a trajectory is typically the

result of sequential frames that are similarly oversaturated or undersaturated and do not

contain any identifiable features. The minimum number of inliers can also be a result

of sequential frames that are significantly different from each other. Large differences

between sequential images can be caused by combinations of fast motion (especially

rotation), blur, noise, and lighting changes.

The cameras were mounted in the vehicle behind the windshield on the front passenger

side. The cameras and networks were operated using a Lenovo Legion Y730 laptop with

an Intel i7-8750H CPU at 2.20 GHz and an Nvidia GeForce GTX 1050 Ti GPU. To ensure

sufficient power for an extended period of experimentation, the laptop was powered by a

12 V, 18 A·h sealed lead-acid rechargeable battery through a 500 W power inverter.

5.2 Real-World Experiments

As a proof-of-concept for a learning-based approach, we conducted our initial experiments

using the single-parameter network. We then carried out experiments with the dual-

parameter network to determine the benefits of controlling both parameters.

5.2.1 Single-Parameter Case

To determine the feasibility of a network-based approach, we initially focused on learning

adjustments to camera exposure values and ignored gain. The single-parameter network

was trained using the single-parameter dataset described in Section 4.2.2 and with targets

generated using the Mfeat metric. We initially conducted a simple driving experiment in

relatively static lighting conditions on a rural highway road. We then tested our approach

under dynamic conditions in the route described in Section 5.1.2.

Static Lighting Experiments

In addition to predictively adjusting camera parameters to compensate for dynamic en-

vironmental lighting, it was equally important that the network did not output erratic

exposure time estimates or oscillate when lighting was relatively stable. To test the

network behaviour in static lighting conditions, several trajectories were captured in

relatively static, open-road, rural environments.
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The results of these experiments are displayed in Table 5.1. In this table, our proposed

method is compared with two variants of built-in AE: one with fixed gain, similar to

our method, and one with auto-gain control enabled (AE+AG). We also compared our

proposed network with the Shin method. The Shin method is relatively brittle and is

highly dependent on the selection of appropriate tuning parameters. The most important

tuning parameter is the convergence criterion which determines whether the current

parameter settings are optimal based on a comparison between the metric value of the

current image and metric value of the most recent optimal image. The convergence

criterion dictates the maximum allowable difference between the metric values in which

the algorithm is still considered to have converged to the optimal parameter settings.

The optimization process restarts if the difference in metric values becomes greater than

the threshold. Since our camera and lens systems were different from those used in the

Shin et al. experiments, we selected three different values for the convergence criterion

for testing: low-tolerance, mid-tolerance, and high-tolerance.

Table 5.1: Single-parameter network performance in static lighting conditions. A com-
parison of average inlier feature match statistics over the recorded trajectories.

Method
Inlier Matches
Median

Inlier Matches
Minimum

ORB libviso2 ORB libviso2

AE 277 3165 43 1857
Ours 317 3810 47 2545

AE+AG 504 6709 53 4538
Ours 475 6464 56 4382

Shin method [41]
(High-Tolerance)

526 5655 144 4269

Ours 542 5206 162 3459

Shin method [41]
(Mid-Tolerance)

545 5398 294 3611

Ours 555 5369 251 3786

Shin method [41]
(Low-Tolerance)

410 4939 45 12

Ours 396 4040 48 228

From Table 5.1, we can see that our proposed network outperforms AE control with

fixed gain and has comparable results to all three variants of the Shin method. Our

approach, however, fails to outperform built-in AE+AG, which is expected, since we are

limited to controlling exposure time only.
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(a) Single-parameter network (left) vs AE (right).

(b) Single-parameter network (left) vs Shin method (mid tolerance) (right).

Figure 5.3: Examples of individual frames from ORB matching experiments showing
our proposed method compared with (a) AE, and (b) the Shin method with medium
tolerance for the thresholding hyperparameter. Note that our proposed network favours
higher exposures, resulting in more feature matches.

We highlight the performance of our method compared with both fixed-gain AE

control and the mid-tolerance version of the Shin method. Figure 5.3a shows example

frames from an experiment comparing our method with fixed-gain AE. The network,

trained using targets generated by the Mfeat metric, selected exposure times that are

generally higher than the exposure times output by AE, resulting in images with a high

number of features. In Figure 5.3a, we see that the network selected exposure times that

brightened the road and surrounding scenery while overexposing the sky. The brighter

scene, consequently, resulted in more features and a higher number of inlier feature

matches over the trajectory. The increased number of inlier feature matches is due to

an increase of brightness in the regions containing useful features for VO. The Mfeat
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Figure 5.4: ORB and libviso2 inlier feature matches along with exposure times for our
method and built-in AE across an entire static lighting trajectory.

method of generating training targets yields higher exposure times, as images with an

overexposed sky and a brighter surrounding environment typically have more detectable

features than images that properly expose the entire scene, including the sky. The same

performance can be seen in Figure 5.3b when compared to the Shin method. Again, our

network selected exposure times that yield brighter images, often resulting in more inlier

features matches.

Figure 5.4 shows plots of the inlier ORB and libviso2 feature matches along with

the corresponding exposure times for our method compared with AE with fixed gain.

The average number of inlier feature matches was improved for both feature matching

algorithms as a result of the brighter images. Note, however, that the single-parameter

network did not output a smooth exposure time profile over the entire trajectory, which

suggests that there may be a trade-off between the speed of lighting compensation and

the stability of the network outputs.
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The downsides of the single-parameter network approach are due to the training

dataset and the limitation of single-parameter control. Since all of the training images

were captured with a stationary camera, images acquired with higher exposure times

were just as sharp as images captured with lower exposure times, but were brighter and

contained more features. Consequently, the training targets were typically identified as

images that had a relatively high exposure time. Unfortunately, the training images

did not contain motion blur that would have been included had the higher exposure

images been captured while the camera was moving, and was likely the reason why the

AE+AG controller outperformed our approach. Additionally, we noticed some oscillatory

behaviour in the outputs of our network in a few instances, resulting in lower inlier feature

match statistics.

Dynamic Lighting Experiments

Once it was determined that the single-parameter network performed relatively well under

static lighting conditions, our next task was to determine its performance in dynamic

conditions. We made use of the route outlined in Section 5.1.2 to conduct experiments

in dynamic lighting conditions.

In our analysis of the experimental results, we focused on sections of the route contain-

ing tunnel transitions as these introduced the greatest challenges for feature matching.

For these experiments, we fixed the gain value of AE to be the same as our network

(10 dB) to ensure a fair comparison in performance. We also selected the mid-threshold

Shin method variant as the representative case for the Shin method as performance was

similar in all cases in the static lighting experiments. From this point, all experiments

involving the Shin method were conducted using the mid-tolerance criterion. Table 5.2

summarizes the average performance of the single-parameter network across ten tunnel

transitions.

It is clear to see that our method resulted in a higher number of median inlier feature

matches on average compared with AE using both ORB and libviso2. The downside

of our approach, however, is that it resulted in a significantly lower average minimum

number of inlier matches for both feature matching algorithms, which is a more important

metric for image quality in dynamic lighting conditions. When compared with the Shin

method, our network yielded higher average median and minimum inlier feature matches

using libviso2, but lower averages for both performance metrics using ORB. These

results were not ideal, as the Shin method is quite brittle and not intended to be used in

dynamic lighting conditions. To determine the cause of the low minimum inlier feature

match averages, we examined the network outputs over the course of a trajectory.
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Table 5.2: Single-parameter network performance in dynamic lighting conditions. A com-
parison of average inlier feature match statistics across ten tunnel transition trajectories.

Method
Inlier Matches
Median

Inlier Matches
Minimum

ORB libviso2 ORB libviso2

AE 324 5514 68 509
Ours 342 6467 21 293

Shin method [41]
(Mid-Tolerance)

341 3739 78 205

Ours 284 4420 32 282

Figure 5.5 shows a plot of the inlier feature matches across a tunnel transition. Our

method obtained a higher average inlier feature match count but performed poorly dur-

ing the fast transition into the tunnel. It is apparent from the exposure time plot that

our method correctly predicted the approach of, and exit from the tunnel, and compen-

sated for the changes in lighting by adjusting the camera exposure time before the AE

algorithm. Additionally, the network began to lower the exposure time almost immedi-

ately after entering the tunnel and greatly reduced it closer to the exit of the tunnel.

The predictive exposure time adjustments resulted in a higher number of inlier feature

matches during the transition out of the tunnel (between frames 120–140). However,

the predictive adjustments yielded poorly matched images at the entrance of the tunnel.

The experimental results suggest that increases in exposure time while the camera is

in bright daylight can reduce feature matching performance, while decreasing exposure

before exiting from a darker environment can benefit feature matching performance.

Figures 5.6a and 5.6b each show a frame during the transition into and out of the

tunnel respectively and demonstrate the quality of images obtained using the network.

With both the network and AE, the number of inlier feature matches was drastically

reduced at the entrance of the tunnel, however, the faster adjustment made by the

network actually resulted in worse performance. There are several reasons why this

faster response may have resulted in worse matching performance. First, increasing

exposure time quickly, rather than gradually, can cause sequential frames to be quite

different from one another. Reductions in matching due to differences in exposure during

the transition into the tunnel occurred with both approaches, but to a greater degree

with the quicker adjustments made by the network. Second, the cameras were located

within the vehicle, behind the windshield. As the vehicle transitioned into the tunnel,

we noticed that a significant amount of glare appeared on the windshield. Additionally,
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Figure 5.5: ORB inlier feature matches, libviso2 inlier feature matches, and exposure
times over a tunnel transition for our method and built-in AE with fixed-gain.

details within the car were reflected onto the inside of the windshield. An example of this

glare can be seen in Figure 5.6a, on the left side of the left (network) image. Features in

the environment outside of the vehicle were obscured by the glare, and spurious matches

with reflected details from inside the vehicle further contributed to a reduction in inlier

feature matches. We noticed that the quantity of glare was significantly increased with

the higher exposure time of the network, perhaps attributing to the lower minimum inlier

match counts. Conversely, the reduction in exposure time was significantly more gradual

when exiting the tunnel, especially for the network, resulting in a higher number of inlier

feature matches. Most notably, however, is that both the single-parameter network and

the built-in AE (with fixed-gain) were limited in that they could only adjust the camera

exposure time, which resulted in significant blur during the tunnel transitions, evident

in Figures 5.6a (left) and 5.6b (right). Further, the network was not trained with images

containing blur, so it did not learn the relation between increased exposure time and
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(a) Tunnel entrance. Network (left) vs AE (right).

(b) Tunnel exit. Network (left) vs AE (right).

Figure 5.6: Examples of individual frames from a libviso2 matching experiment com-
paring our proposed method to AE with fixed gain over a trajectory through a tunnel.
(a) Shows that our method performs relatively poorly at the entrance of the tunnel while
(b) demonstrates greatly improved performance at the exit of the tunnel.

image blur. The lack of gain control necessitated larger increases to exposure time, and

resulted in blurry images with fewer matchable features, especially within the tunnel, and

is likely why AE+AG outperformed our single-parameter network. The results obtained

using the single-parameter network reinforce our motivation for using a learning-based

approach. The network learned to compensate for changes in environmental lighting and

behaved in an expected manner. These experimental results also indicate that the main

limitation of using a learning-based approach is the method of collecting training data.
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5.2.2 Dual-Parameter Case

In Section 5.2.1, we demonstrated that a data-driven approach to adjusting camera pa-

rameters can, in some cases, improve the quality of images for the VO front end. The

shortcomings of the single-parameter experiments were mostly due to the training dataset

and the lack of gain control. These shortcomings were most evident in the static exper-

iments, where AE+AG outperformed the single-parameter network. Consequently, we

trained a network using the dual-parameter dataset described in Section 4.2.2 to learn to

adjust both exposure time and gain in a predictive fashion. We also investigated the ef-

fects and differences in training with variants of two metrics of interest (Mfeat and Mgrid).

For a full comparison with the single-parameter controller, we conducted the same static

and dynamic lighting experiments, recording the average median and minimum ORB

and libviso2 inlier feature match statistics.

Comparison of Network Training Methods

The dataset collection method used for the dual-parameter network, as previously dis-

cussed in Section 4.2.2, sampled the parameter space in a very sparse manner. Using

two cameras allowed us to sample only two images (camera parameter settings) at each

pose. For generating training targets, the number of available parameter samples was

increased to eight using the windowed approach. Due to the sampling sparsity and the

differences between the proposed image metrics, the training targets generated using our

image metrics differed substantially from each other. We sought to determine which

target generation method resulted in the best network performance. To determine which

metric was optimal, we compared the performance of four networks trained using differ-

ent target generation methods, 1) Mfeat, 2) windowed Mfeat, 3) windowed Mgrid, and 4)

windowed Mhybrid, over static and dynamic lighting conditions. We then measured both

the median and minimum inlier feature counts for ORB and libviso2 feature matches.

Figure 5.7 shows a comparison of network performance in static lighting conditions while

Figure 5.8 displays a comparison of the performance in dynamic conditions.

From Figures 5.7 & 5.8, is it clear that the windowed hybrid method of generat-

ing training targets resulted in a network that consistently outperformed all others in

both static and dynamic lighting conditions. The Mfeat method resulted in inconsistent

median inliers matches and consistently low minimum inlier matches over the recorded

trajectories. The poor performance of the Mfeat method was due to the oscillatory be-

haviour introduced by the sparsity of the training samples generated at each pose and

can be seen in Figure 5.9a. Obtaining targets from a window of poses greatly improved
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Figure 5.7: Median and minimum ORB and libviso2 inlier feature match statistics for
static lighting trajectories. These statistics were generated over at least four trajectories
for each method. The hybrid training method was the most performant.
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Figure 5.8: Median and minimum ORB and libviso2 inlier feature match statistics
for dynamic lighting (tunnel) trajectories. These statistics were generated over at least
four trajectories for each method. Again, the hybrid training method was the most
performant.
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(a) Features method.
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(b) Features (windowed) method.
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(c) Gridsearch (windowed) method.
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(d) Hybrid (windowed) method.

Figure 5.9: Examples of target profiles for the proposed target generation methods across
a tunnel transition. The plots indicate the value of the targets over time generated using
the respective target generation method.

the performance of the Mfeat method through a reduction of oscillations in the training

targets as shown in Figure 5.9b. The windowed gridsearch method, alternatively, had a

much more stable training signal, as shown in Figure 5.9c, but this stability led to slower

parameter adjustment speeds during transitions, again reinforcing the notion of a trade-

off between reaction speed and output stability. The effects of the slower response can

be seen in the plots of the minimum inlier feature matches for the dynamic experiments

(Figure 5.8) where the windowed gridsearch method scored the lowest. The windowed

hybrid method, which averages the parameters determined by the windowed Mfeat and

Mgrid methods, yielded the best results in almost every case. The hybrid method com-
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bined the relative stability of the windowed gridsearch targets with the quick response

and higher feature count of the windowed features targets during transitions, shown in

Figure 5.9d. For these reasons, we utilized the dual-parameter network trained with the

windowed hybrid target generation method for all experiments in this section.

Static Lighting Experiments

It was important that the dual-parameter network output consistent exposure time and

gain values in environments where lighting was relatively static. The oscillation in the

exposure value outputs of the single-parameter network contributed to a reduction in the

number of inlier feature matches. Using the windowed hybrid training method to train

the dual-parameter network effectively reduced oscillation of the network outputs. The

hybrid training method also maintained a high number of features in captured images

and made quick adjustments to exposure time and gain during transitions. We compared

the performance of our network trained with the windowed hybrid targets with built-in

AE+AG and the Shin method [41].

Table 5.3: Dual-parameter network performance in static lighting conditions. A compar-
ison of average inlier feature match statistics across multiple (≥4) trajectories.

Method
Inlier Matches
Median

Inlier Matches
Minimum

ORB libviso2 ORB libviso2

AE+AG 593 8301 366 5840
Ours 600 9591 401 6636

Shin method [41]
(Mid-Tolerance)

414 5295 183 3555

Ours 439 5666 200 4032

We see from Table 5.3 that our proposed dual-parameter network trained using the hy-

brid method consistently yielded higher median and minimum inlier feature matches for

both ORB and libviso2. The higher number of median inlier matches can be attributed

to brighter images resulting from the windowed feature component of the training tar-

gets. The higher number of minimum inlier matches can be attributed to the stability

introduced by the windowed gridsearch component of the training targets. Overall per-

formance improvements can also be attributed to the addition of gain control. Examples

from the static experiments are displayed in Figure 5.10. Again, we can see that our

network selected parameter values that yielded brighter images, with a slightly overex-

posed sky but containing more detail in the scene. The brighter images, consequently,
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contained a higher number of identifiable features in each image and culminated in more

inlier feature matches on average over the trajectory. An example of the inlier matches,

exposure times, and gains over a static lighting trajectory is presented in Figure 5.11,

where we can see that our network favoured a higher relative gain value while main-

taining a lower relative exposure time across most of the trajectory. The combination

of lower exposure time and higher gain led to brighter images with less blur and more

inlier feature matches compared with those generated by AE+AG. We conclude that

our network yields better images for feature matching in environments where lighting is

relatively static.

(a) Dual-parameter network (left) vs AE+AG (right).

(b) Dual-parameter network (left) vs Shin method (mid tolerance) (right).

Figure 5.10: Examples of individual frames from libviso2 matching experiments in
static lighting conditions showing our proposed method compared with (a) AE+AG,
and (b) the Shin method with medium tolerance for the thresholding parameter. Note
that our proposed network, in general, favoured higher gain values, resulting in brighter
images with more feature matches.
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Figure 5.11: ORB and libviso2 inlier feature matches along with exposure time and
gain for our method and AE+AG across an entire static lighting trajectory.

Dynamic Lighting Experiments

Our single-parameter network did not outperform built-in AE or the Shin method [41] in

the tunnel transition experiments. The limitations of the single-parameter approach were

due to adjusting only one camera parameter and the lack of any motion blur contained

in the training dataset. We removed these limitations using our dual-parameter network

configuration and training regime using our dual-parameter dataset. The average results

of eight tunnel transition experiments are summarized in Table 5.4.

From Table 5.4, we can clearly see that our network outperformed both built-in

AE+AG and the Shin method in dynamic lighting conditions. In fact, the Shin method

failed during a transition out of the tunnel, resulting in very low median inlier match

values and in one case, zero minimum inlier match values. We suspect the optimization

method used to search the parameter space reached a local minimum in a poor region and
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Table 5.4: Dual-parameter network performance in dynamic lighting conditions. A com-
parison of average inlier feature match statistics across multiple tunnel transition trajec-
tories.

Method
Inlier Matches
Median

Inlier Matches
Minimum

ORB libviso2 ORB libviso2

AE+AG 433 5288 65 377
Ours 434 6582 97 473

Shin method [41]
(Mid-Tolerance)

131 614 0 0

Ours 202 3530 37 127

could not recover. The authors of Shin et al. [41] informed us1 that their method is not

intended for use in dynamic lighting environments and can fail in such cases if not tuned

correctly. We found the Shin method particularly difficult to correctly tune, which limits

the practicality and effectiveness of their approach. The median number of inlier feature

matches using our method was higher in all cases. More importantly, however, is that

the minimum number of inlier features matches for ORB and libviso2 was significantly

higher in all cases as well. These results indicate that our method yields images that are

well suited for the VO front end compared with built-in AE+AG and the Shin method

in dynamic lighting conditions. We show examples of frames from these experiments in

Figure 5.12.

Figure 5.12 demonstrates that our method produced images that are relatively well-

exposed during fast transitions. In the dynamic lighting experiments, the network pre-

dicted that the camera was entering and exiting a tunnel and compensated faster than

AE+AG. Additionally, our network was able to maintain useful images during the entire

transition, unlike the Shin method [41].

We present an example of the inlier matches, exposure time, and gain values over

time during a tunnel transition in Figure 5.13. We see that the network outputted similar

exposure times but slightly higher gain values compared with AE+AG before and after

the transition. The increased gain values resulted in brighter images containing a slightly

overexposed sky, similar to those described in the static lighting experiments. These

brighter images contained a higher number of features that were able to be identified and

matched. We see that the gain was preemptively increased before entering the tunnel

to account for the darkness inside and reduced earlier than the AE+AG controller to

1We discussed the applicability of the Shin method to dynamic lighting environments with the authors
in a private communication.
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(a) Dual-parameter network (left) vs AE+AG (right) exiting a road tunnel.

(b) Dual-parameter network (left) vs AE+AG (right) entering a road tunnel.

(c) Dual-parameter network (left) vs Shin method (mid tolerance) (right).

Figure 5.12: Examples of individual frames from libviso2 matching experiments show-
ing our proposed method compared with AE+AG during (a) a tunnel exit and (b) a
tunnel entrance. We also show a comparison with (c) the Shin method with medium tol-
erance for the thresholding hyperparameter. The Shin method failed to recover during
the transition out of the tunnel, resulting in severely overexposed images.
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Figure 5.13: ORB inlier feature matches, libviso2 inlier feature matches, exposure
times, and gain values across a tunnel transition trajectory for our method and built-in
AE+AG.

compensate for the brightness outside. The exposure time was increased similarly to

AE+AG during the transition into the tunnel, however, it was reduced much earlier once

the cameras began passing through the tunnel. The reduced exposure time within the

tunnel produced images containing less blur and led to an increased number of inlier

feature matches. Again, the largest increase in performance was found at the exit of the

tunnel. The performance increase at the exit of the tunnel can be attributed to the earlier

adjustments of the exposure time and gain relative to the built-in AE+AG algorithm.

We note that although the gain was preemptively increased at the beginning of the tunnel

transition relative to AE+AG, there was no discernible increase in inlier matches over

the AE+AG algorithm during this transition. However, since the network did increase

gain more preemptively, it can be expected that in other scenarios, the predictive nature

would result in more inlier matches.
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5.2.3 Libviso2 Image Processing Experiment

To further support our approach, we investigated how our proposed network improved

the actual performance of a VO pipeline. To measure if improved performance was ob-

tained, we recorded the percentage of frames that were used to estimate pose change

by monocular libviso2 over the entire experimental route consisting of two tunnels de-

scribed in section 5.1.2. Monocular libviso2 reports a failure each time that it does

not recover sufficient sequential inlier feature matches between frames. It is important

to note that monocular libviso2 also reports failures when there is little or no camera

motion between properly exposed frames. Since the cameras captured images simulta-

neously, the number of failures related to a lack of motion of the cameras occurred for

the same frames acquired by each approach. Although the failures caused by a lack of

motion of the cameras lowered the overall number of processed frames, the comparison

between the approaches is still valid. We tested monocular libviso2 using two variants

of the hybrid target generation method (Equation 4.13) where we selected differing α

values. The first was with an equal weighting (α = 0.5) between the windowed feature

targets and windowed gridsearch targets denoted equal. The second was with weighting

in favour of the gridsearch method (α = 0.33), denoted gridsearch-weighted.

Table 5.5: A comparison between the number of frames processed by monocular libviso2
using images captured by the dual-parameter network trained using the hybrid data
generation method and built-in AE+AG. We also present a comparison between the
mean number of inlier features relative to all identified features in the captured images.

Method Frames Processed Mean Inliers

AE+AG 65.17% 50.84%
Ours (Hybrid)
(Equal)

72.56% 58.36%

AE+AG 52.43 40.48
Ours (Hybrid)
(Gridsearch-weighted)

56.69% 44.38%

Table 5.5 shows that our method produced images that were better suited for use in

a monocular VO system compared with built-in AE+AG algorithms. We found greater

improvements over the automatic algorithms when using an equal weighting between

training targets in Equation 4.13 for the hybrid target generation method. Improvements

were likely due to the equal-weighted network variant favouring higher exposure time and

gain values while still maintaining parameter stability. The higher exposure time and

gain values produced images containing more features and yielding more inlier feature
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matches.

5.3 Discussion

Our results indicate that predictively adjusting camera exposure time and gain parame-

ters to produce consistently well-exposed images across lighting transitions can culminate

in increased inlier feature matches between sequential frames. We found that it is im-

portant to adjust both exposure time and gain rather than simply adjusting just one

parameter. Through appropriate adjustments of both parameters, we can ensure that

acquired images are both bright and sharp.

Unlike the sampling-based strategies from the literature, our learning-based approach

considers temporal information contained in the images and uses this information to pre-

dictively adjust the camera parameters. We demonstrated that the predictive capabilities

of our networks resulted in large improvements in the quality of acquired images, partic-

ularly under dynamic lighting conditions. Although sampling-based strategies can pro-

duce high-quality images in controlled environments, it is apparent that these approaches

are not suitable for use in dynamic situations. Furthermore, tuning the parameters of

sampling-based methods can be difficult and time-consuming. Conversely, data-driven

methods can account for environmental dynamics (e.g., transitioning from indoors to

outdoors) and can improve over time with more data. Additionally, there are few pa-

rameters to tune once appropriate training hyperparameters have been identified. We

note, however, that our approach is not entirely robust. Environmental changes or con-

ditions that do not appear in the training data may yield nonsensical network outputs,

and further experimentation is needed to determine how well the network generalizes.

Further, the network was trained using images captured with a fixed lens aperture. If

the lens aperture or camera system were changed, the network would likely no longer

function correctly, as the relation between image intensity and the parameter settings

would change. The network would need to be retrained with data captured using the

new camera or using the new lens aperture setting.

The performance of our data-driven approaches is mainly limited by the quality and

quantity of the training data. Since the single-parameter and dual-parameter networks

are similar in size and architecture, we can attribute the difference in performance be-

tween networks to both the addition of gain targets generated with the dataset and the

incorporation of blur in the training images. There are likely further improvements that

can be obtained with an increase in the quantity and quality of training data, improved

data collection methods, and careful tuning of the metric used.
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One of the main challenges we faced was determining efficient and effective methods

for collecting large amounts of useful training data. Collecting images for our initial

single-parameter dataset proved to be an arduous task; we collected long trajectories

composed of dozens of poses, each with fifty images, in varied environments. Determin-

ing an appropriate sampling strategy for the dual-parameter dataset also proved to be

challenging, and further improvements can likely be made with better sampling.
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Conclusion

In this thesis, we examined how visual navigation algorithms, namely visual odometry,

are heavily dependent on the quality of the captured input images. The image acquisition

process is often overlooked, with users relying on built-in automatic camera parameter

controllers or simply fixing the exposure time and gain values manually. These settings

are normally not an issue under static lighting conditions, but in environments where the

lighting can rapidly change, the parameter settings can produce severely overexposed or

underexposed images that are missing important details useful to the VO pipeline.

6.1 Summary and Contributions

Our literature review revealed that the image acquisition process in the context of robot

vision had not been thoroughly investigated. The relatively few papers related to camera

parameter control have only focused on reactive control techniques (usually just expo-

sure time). Additionally, the approaches outlined in these works typically measure image

quality using a heuristic quality metric, without consideration for the final application or

task. The reactive algorithms from the literature are often not suited for use in dynamic

lighting conditions, and are instead designed to obtain “optimal” images, determined by

a heuristic metric, in relatively static environments. The limitations of the techniques

outlined in Chapter 3 presented an opportunity to improve the image acquisition pro-

cess used by visual navigation algorithms by introducing a predictive camera parameter

controller.

We presented an alternative to existing control algorithms (AE+AG, and methods

from the literature) which are generally slow, reactive, and based on heuristics. Our

data-driven approach used a CNN to predictively adjust camera gain and exposure time

parameters to compensate for lighting changes expected to occur in future frames. We

84
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trained the networks to learn the camera parameter values that resulted in images that

are favourable for use in a VO system. We generated training targets for the networks

by using the VO front end to inform the quality of training images. Making use of the

VO front end to generate training targets for the networks allowed us to ensure that

the learned camera parameter adjustments would produce improved images for feature

matching. In the dual-parameter case, we found that the best way to generate training

targets for the network was to use a combination of two image metrics derived from

the VO front end. Namely, we combined camera parameter values that yielded images

containing a high number of features with camera parameter values that yielded images

containing a high number of inlier feature matches between two sequential frames.

We collected large datasets that contained images acquired with various parameter

settings and used our proposed metrics to generate training targets. Our networks were

trained using the collected datasets and training targets. We compared the performance

of our networks with built-in AE+AG and the Shin et al. [41] approach from the literature

by measuring the number of sequential inlier feature matches contained in the acquired

images. Experiments with both single-parameter and dual-parameter networks were

conducted in both static and dynamic lighting conditions. We found that our dual-

parameter approach resulted in images with a higher number of inlier feature matches

between frames.

We showed that both the single-parameter and dual-parameter networks can pre-

dict changes in lighting due to an approaching tunnel entrance or exit, and compensate

for these changes by adjusting the camera parameters preemptively. The predictive be-

haviour of our networks resulted in images containing significantly more sequential ORB

and libviso2 inlier feature matches. Our networks favoured parameters that produced

brighter images because there were more identifiable features in these images compared

with AE+AG images. Unlike AE+AG, our networks learned that there are few impor-

tant image features located in the sky and overexposed this region to ensure that the

feature-rich regions of the scene remained bright. The behaviour of our networks relative

to automatic algorithms supports the findings from Shim et al. [3] that built-in auto-

matic algorithms generally attempt to compensate for the brightness of the entire scene,

including the sky, and consequently reduce brightness in feature-rich regions of images.

Finally, our dual-parameter method yielded a higher number of useful frames (i.e., image

frames that contained sufficient information for estimation of inter-frame pose changes)

using the libviso2 monocular VO system compared with built-in AE+AG. Apart from

the specifics of our results, this thesis further explored the notion proposed in Clement

et al. [6] of using the VO pipeline to generate training targets for a neural network.
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6.2 Potential Improvements

Although we were able to obtain convincing results in both the static and dynamic exper-

iments, we believe that the quality of our results could be improved if some adjustments

to the data collection and training methodologies are made. The main disadvantage,

specific to the dual-parameter case, is that our training procedure samples the param-

eter space in a very sparse manner; only two images are captured at each pose. If a

more refined sampling strategy could be employed, or better yet, if more images could

be obtained at each pose (similar to the dataset used in the single-parameter case), we

could generate better training targets. Furthermore, our training samples would likely

not oscillate to the same extent as shown in Figure 5.9. Reduced oscillations may improve

the network performance as targets generated under static lighting conditions would be

relatively stable. Additionally, the more dense sampling of the parameter space would

yield improved targets across lighting transitions.

Further improvements could be made if a larger and more diverse collection of training

data could be collected. The main difficulty with this project was that the very nature of

an image acquisition algorithm necessitates real-world experimentation and data collec-

tion. It was not feasible to simulate realistic environments or accurately model the effects

of parameters changes on acquired images. It was difficult to manually collect a very large

amount of training data and cumbersome to conduct multiple experiments. It was also

difficult to iterate and test new ideas quickly as all testing needed to be conducted in

real time during image capture, rather than offline using preexisting datasets. Exploring

how to generate realistic data in simulation would help to increase the efficiency of data

collection and experimental testing. Alternatively, automating real-world data collection

through the use of algorithms such as visual teach and repeat could also improve the

performance of our data-driven approach. Finally, further support for our method could

be obtained through a more diverse set of experiments, for example, experiments onboard

drones that transition between indoors and outdoors.

6.3 Future Work

Vision is likely to remain an integral component of mobile robotic perception systems.

Novel localization, mapping, and perceptions algorithms continue to be developed for

robotic systems. Consequently, the quality of acquired images remains an important

consideration for future robotics research.

Specific to this thesis, there are several avenues of research that could be explored
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in future work. One method we wish to explore is to iteratively train a model and use

this model, in place of AE+AG outlined in Section 4.2.2, to collect additional training

data. By replacing AE+AG with our initial trained model, the camera parameters used

as a baseline for data collection would be closer to the ‘optimal’ values, and sampling a

second time would explore the parameter space in more suitable regions. We could then

iteratively train the network with the improved data and repeat this process. Iteratively

training in this manner is essentially manual reinforcement learning (RL). An alternative

avenue of research is the notion of formulating predictive camera parameter adjustments

as an RL problem. The state and actions are relatively simple and clearly defined, and

the reward function can be modelled to incorporate the specific robot vision task in a

number of interesting ways. The downside of heuristically exploring the parameter space

during data collection, as described in Section 4.2.2, would be replaced with strategies

employed in RL. Further, an RL implementation could be automated and improved over

time.

We also wish to investigate the incorporation of classical control techniques into the

camera parameter control problem. The addition of classical control techniques, such

as model predictive control, could provide predictive capabilities similar to our learned

approach. Additionally, the well-defined theoretical framework of classical control could

be leveraged in ways that are not possible with black box neural networks. Finally,

we would like to explore the feasibility of using pose error as a training target for our

networks, that is, determining the camera parameters used to acquire images that produce

the most accurate pose estimates from a VO system.

In summary, while this thesis focused on improving the quality of images acquired in

dynamic lighting conditions for use in VO, the problem of robust visual sensing is far from

solved. We investigated how machine learning techniques can be leveraged to improve

camera parameter control, but greater improvements can likely be achieved through the

marriage of classical techniques and advances in machine learning.
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T. Krajńık, “Adaptive image processing methods for outdoor autonomous vehi-

cles,” in Modelling and Simulation for Autonomous Systems, pp. 456–476, Springer

International Publishing, 2019.

[25] T. D. Barfoot, State Estimation for Robotics. Cambridge University Press, 2017.

[26] R. Szeliski, Computer Vision: Algorithms and Applications. Texts in Computer

Science, Springer London, 2010.

[27] P. E. Debevec and J. Malik, “Recovering high dynamic range radiance maps

from photographs,” in Proceedings of the 24th Annual Conference on Computer

Graphics and Interactive Techniques, SIGGRAPH ’97, (USA), pp. 369–378, ACM

Press/Addison-Wesley Publishing Co., 1997.

[28] M. D. Grossberg and S. K. Nayar, “What is the space of camera response functions?,”

in 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recog-

nition, vol. 2, pp. 602–609, 2003.

[29] M. D. Grossberg and S. K. Nayar, “Determining the camera response from images:

What is knowable?,” IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, vol. 25, no. 11, pp. 1455–1467, 2003.



Bibliography 91

[30] Yang Cheng, M. Maimone, and L. Matthies, “Visual Odometry on the Mars Ex-

ploration Rovers,” in 2005 IEEE International Conference on Systems, Man and

Cybernetics, vol. 1, pp. 903–910, 2005.

[31] D. Nister, O. Naroditsky, and J. Bergen, “Visual odometry,” in Proceedings of the

2004 IEEE Computer Society Conference on Computer Vision and Pattern Recog-

nition (CVPR), vol. 1, pp. I–I, 2004.

[32] D. Scaramuzza and F. Fraundorfer, “Visual odometry: Part I: The First 30 Years and

Fundamentals,” IEEE Robotics and Automation Magazine, vol. 18, no. 4, pp. 80–92,

2011.

[33] M. A. Fischler and R. C. Bolles, “Random Sample Consensus: A Paradigm for

Model Fitting with Applications to Image Analysis and Automated Cartography,”

Communications of the ACM, vol. 24, no. 6, pp. 381–395, 1981.

[34] H. C. Longuet-higgins, “A computer algorithm for reconstructing a scene from two

projections,” Nature, vol. 293, no. 5828, pp. 133–135, 1981.

[35] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon, “Bundle Adjust-

ment - A Modern Synthesis,” in Vision Algorithms: Theory and Practice - Interna-

tional Workshop on Vision Algorithms, Proceedings, pp. 298–372, 2000.

[36] N. Govender, “Evaluation of Feature Detection Algorithms for Structure from Mo-

tion,” Council for Scientific and Idustrial Research, Pretoria, Technical Report,

2009.

[37] B. D. Lucas and T. Kanade, “An iterative image registration technique with an

application to stereo vision,” in Proceedings of the 7th International Joint Conference

on Artificial Intelligence - Volume 2, IJCAI81, (San Francisco, CA, USA), pp. 674–

679, Morgan Kaufmann Publishers Inc., 1981.

[38] J. Shi and C. Tomasi, “Good features to track,” in Proceedings of IEEE Confer-

ence on Computer Vision and Pattern Recognition CVPR-94, pp. 593–600, IEEE

Comput. Soc. Press, 1994.

[39] Z. Zhang, C. Forster, and D. Scaramuzza, “Active exposure control for robust visual

odometry in hdr environments,” in 2017 IEEE International Conference on Robotics

and Automation (ICRA), pp. 3894–3901, 2017.



Bibliography 92

[40] J. Kim, Y. Cho, and A. Kim, “Exposure control using bayesian optimization based

on entropy weighted image gradient,” in 2018 IEEE International Conference on

Robotics and Automation (ICRA), pp. 857–864, 2018.

[41] U. Shin, J. Park, G. Shim, F. Rameau, and I. S. Kweon, “Camera exposure con-

trol for robust robot vision with noise-aware image quality assessment,” in 2019

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

pp. 1165–1172, 2019.

[42] Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553,

pp. 436–444, 2015.

[43] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

[44] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimization,” in

Proceedings of the 3rd International Conference on Learning Representations (ICLR

2015), 2015.

[45] J. Kim and A. Kim, “Light condition invariant visual slam via entropy based image

fusion,” in 2017 14th International Conference on Ubiquitous Robots and Ambient

Intelligence (URAI), pp. 529–533, 2017.

[46] S. B. Kang, M. Uyttendaele, S. Winder, and R. Szeliski, “High dynamic range

video,” ACM Transactions on Graphics, vol. 22, pp. 319–325, July 2003.

[47] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”

in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

pp. 770–778, 2016.

[48] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The kitti

dataset,” International Journal of Robotics Research (IJRR), 2013.

[49] D. Nister, “An efficient solution to the five-point relative pose problem,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 6, pp. 756–

770, 2004.

[50] I. Cvǐsić, J. Ćesić, I. Marković, and I. Petrović, “SOFT-SLAM: Computationally

efficient stereo visual simultaneous localization and mapping for autonomous un-

manned aerial vehicles,” Journal of Field Robotics, vol. 35, no. 4, pp. 578–595, 2018.


	Introduction
	Techniques for Improving Visual Perception
	Improving Image Quality for VO
	Contributions

	Background
	Cameras and Camera Parameters
	The Perspective Camera and Geometric Image Formation
	Camera Parameters and the Image Formation Process

	Visual Odometry
	The VO Pipeline
	Image Features and Matching
	Challenges in VO

	Deep Learning
	Deep Feedforward Networks
	Convolutional Neural Networks


	Related Work
	High-Dynamic Range Imaging
	Reactive Control of Camera Parameters
	Heuristic Image Metrics

	Learned Camera Parameter Control
	Problem Formulation
	Approach and Methodology
	Network Architecture
	Dataset Collection
	Using Image Feature Count as a Metric
	An Analysis of Image Metrics Derived from VO
	Target Generation and Training Procedure


	Experimental Results
	Experiment Details
	Camera and Hardware Considerations
	Experimental Setup

	Real-World Experiments
	Single-Parameter Case
	Dual-Parameter Case
	Libviso2 Image Processing Experiment

	Discussion

	Conclusion
	Summary and Contributions
	Potential Improvements
	Future Work

	Bibliography

