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Abstract
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Master of Applied Science
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University of Toronto

2018

This thesis aims to develop an automatic spatiotemporal calibration routine for lidars

and egomotion sensors that relaxes many common requirements, such as the need for

overlapping sensor fields of view, or calibration targets with known dimensions. In par-

ticular, a set of entropy-based calibration algorithms are extended to allow estimation

of sensor clock time offsets in tandem with sensor-to-sensor spatial transformations. A

novel Bayesian optimization routine is developed to address the non-smooth behaviour

observed in the entropy cost function at small scales. The routine is tested on both

simulation and real world data. Simulation results show that, given a set of lidar data

taken from many different viewpoints, the calibration can be constrained to within less

than 5 mm, 0.1 degrees, and 0.15 ms in the translational, rotational, and time-delay

parameters respectively. For real-world data, in the absence of a reliable ground truth,

we present results that show a repeatability of ± 4 mm, 1 degree, and 0.1 ms. When

a monocular camera is used as the egomotion sensor, the routine is able to resolve the

scale of the trajectory. A very brief analysis of the applicability of the method to Inertial

Measurement Unit (IMU) to lidar calibration is presented.
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Chapter 1

Introduction

The exploitation of multiple sensor types is an important tool for the refinement of a

mobile robotic platform’s knowledge of the world. Sensor suites are usually chosen such

that the disparate sensors’ benefits complement each other. For example, the precise,

lighting-invariant distance measurement of a Light-Detection-and-Ranging sensor (lidar)

make it a popular choice for applications where collision avoidance is of critical impor-

tance, such as self-driving cars [1] [2] and fast moving aerial platforms [3]. However, the

most ubiquitous, cheap, 2D scanning lidars lack the ability to measure outside of a single

plane. Thus they are unable to measure their own motion when translating and rotating

arbitrarily in 3D [4].

In contrast, camera systems are capable of measuring their own motion, provided

there are enough identifiable features to track between frames [5]. Unfortunately, when

estimating the trajectory from a single camera feed, there is an ambiguity in the scale of

the trajectory, as a camera can only measure the bearing to a feature, and not the depth.

A camera-lidar system is a naturally complementary sensor pair, as the precise metrical

lidar data can be used to resolve scale ambiguities in the environment. This system’s

mapping capabilities are demonstrated in Figure 1.1b, where we reconstruct a point cloud

by stitching together lidar scans based on a trajectory provided by the camera.

In any multi-sensor system, the data fusion process requires the system to be cali-

brated with precise knowledge of the 6 degree of freedom (6-DOF) inter-sensor spatial

transforms, also known as the extrinsic sensor calibration. This permits the individual

sensors’ data to be combined into a single common reference frame. Manual measure-

ment of the inter-sensor transforms is inaccurate for two reasons. First, any measurement

is made difficult given that the sensor mounting surfaces may be in the way. Secondly,

it is not known where the origin of a sensor’s measurement frame is located within the

sensor body. For these reasons, calibration methods that make use of the sensors’ data

1
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(a) (b)

(c)

Figure 1.1: Point cloud reconstruction of a simulated environment, (a) before calibration
(with calibration errors of 6 cm per translational parameter, 0.06 radians per rotational
parameter, and 25 ms time delay error), and (b) after calibration has been performed.
Note that planar surfaces appear to be planar after calibration. The simulation environ-
ment is pictured in (c) for reference.
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usually result in more accurate estimates of the transforms. The canonical methods for

calibration almost all make use of a specific calibration target, such as a checkerboard

or other planar surfaces. A method that works in an arbitrary environment, absent any

specific calibration targets, would be an improvement on these methods in allowing the

re-calibration of a long-lifespan platform in the field.

Also of importance is the fusion of sensor data to a single temporal reference frame.

The sensor clocks used to produce data timestamps might not be consistent. That is,

they may differ from each other by some amount. Naively fusing the data based on the

timestamps can result in inaccurate estimates about the environment, as there will be

some mismatch in the sensor data when one “leads” the other. The temporal calibration

of the sensor system permits the recovery of any offsets between the sensor clocks [6].

In [7], it was demonstrated that an accurate temporal calibration can be obtained if

the spatial transform has already been calibrated to a sufficient degree of accuracy. We

extend the method in [7] to simultaneously calibrate the time offsets in combination with

the spatial transform. We calibrate by evaluating the “crispness” of the point cloud

constructed with various calibration parameters. Specifically, we quantify the degree to

which the points form surfaces, such as planes and curves. The temporal and spatial

offsets are correlated through the structure of the point cloud. As shown in [7], if a poor

time offset estimate is assumed, the “most crisp” point cloud will be achieved by an

erroneous set of spatial calibration parameters, so the calibration routine will fail. The

simultaneous calibration procedure ensures that this does not occur.

In this work, we make the following contributions:

• We show that time delay (temporal) calibration can be directly folded into the

spatial calibration procedure using Renyi’s Quadratic Entropy as an evaluation

metric

• We allow for asynchronous data streams by utilizing a theoretically rigorous method

for interpolating poses

• We demonstrate that full spatiotemporal calibration can be performed in environ-

ments with unknown and arbitrary structure

• We reduce the required number of cost function evaluations through the use of

a fast Bayesian optimization procedure which does not require explicit Jacobian

matrices to be computed

• We provide experimental evaluation on real world data
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Our novel calibration procedure works by using a camera as an egomotion sensor, and

passing its data to an existing Simultaneous Localization and Mapping (SLAM) routine

which provides an estimated camera pose for each frame in the video. From these poses,

we can formulate a continuous-time representation of the trajectory by interpolating

between poses using a set of equations known as Simultaneous Trajectory Estimation

and Mapping (STEAM). With a continuous-time camera trajectory, a set of timestamped

lidar scans, and an estimate of the spatial transform and temporal offset between the

sensors, we can stitch the lidar scans to the camera trajectory to create a point cloud.

We then compute a cost value based on the entropy of the point cloud. We calibrate

the sensor pair by formulating the problem as an optimization of this cost function, the

inputs being the set of calibration parameters, and the outputs being an approximation

of the entropy. We make use of Bayesian Optimization to circumvent the effects of local

discontinuities of the gradient of the cost function.

We present simulation results that indicate calibration accuracies with errors of less

than 5 mm, 0.1 degrees, and 0.15 ms in the translational, rotational, and time-delay

parameters respectively, are readily achievable. For real-world data, in the absence of a

reliable ground truth, we present results that show a repeatability of ± 4 mm, 1 degree,

and 0.1 ms, over three datasets collected in different environments.

This thesis is structured as follows. In Chapter 2 we summarize related camera to lidar

calibration methods. In Chapter 3, we provide motivation for our chosen cost function.

Chapter 4 describes our method of estimating a continuous-time camera trajectory, and

our chosen optimization routine. Chapter 5 provides our results on simulated and real

data, Chapter 6 motivates the possibility of calibrating a 2D lidar and IMU system, and

Chapter 7 provides conclusions and suggests future extensions.



Chapter 2

Related Work

We present a brief summary of the recent history of sensor-to-sensor calibration. We be-

gin with a discussion of automatic spatial calibration, including target-based and target-

free methods. We then discuss automatic temporal calibration—the recovery of sensor

clock time offsets. We conclude with an analysis of the small body of literature con-

cerning spatiotemporal calibration—the simultaneous estimation of spatial and temporal

offsets—which presents a host of novel challenges.

2.1 Spatial Calibration

Spatial Calibration routines can generally be categorized as either target-based or target-

free. The former category includes methods that require both sensors to view a known

object, such as a checkerboard. The latter consists of methods designed to work with

views of any arbitary scene, and constrain the problem with other assumptions.

2.1.1 Target-based Spatial Calibration

As we have discussed, manual spatial calibration is impractical for a number of reasons,

including the difficulty involved in physically measuring distances when other parts of

the sensor platform are in the way. For this reason, all of the calibration methods we

will consider herein are “automatic” methods. That is to say they require only the

data streams from both sensors, and no user intervention. However, this requires a

numerical evaluation of the quality of the data fusion, which will be maximized with the

true calibration parameters. An obvious method of evaluation is to validate that known

calibration targets are reproduced faithfully. These calibration targets are objects with a

known scale and pattern that can easily be picked up in both sensors data streams, and

5
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that provide constraints to the optimization.

The method of Wasielewski and Strauss [8] is among the first target-based calibration

routines. Their method calibrates a camera and planar lidar pair by having the sensors

simultaneously view a target creased along a line seperating black and white sections.

Edge detection is used to determine the equation of the line in the frame of the cam-

era. Because of the crease in target, the lidar scan displays a kink at the point where

it intersects with the line. The system builds up several sets of camera and lidar mea-

surements with the target in different positions. The system uses the set of intersection

points to solve for the calibration parameters under least-squares constraints. The idea

of constraining the calibration with points of known location in each sensor frame has

remained prevalent in calibraion research.

Zhang and Pless [9] expand upon the target-based method by introducing a checker-

board as the target. The camera can detect all of the checkerboard’s interior corners,

and so has far more features to constrain its estimate of the target’s position and ori-

entation using the Perspective n-Point algorithm [10]. The lidar scans the length of the

checkerboard, partially constraining the orientation of the target relative to the lidar.

Multiple measurements are required, each with the target in a different position, and the

user must provide the dimensions of the checkerboard. The routine then solves for the

lidar to camera transformation which produces the minimum least-square error in the

projection of the lidar points into the checkerboard plane observed by the camera. This

method does not estimate temporal offsets.

There have been many extensions and variations to the target-based calibration

method. Guo and Roumeliotis [11] develop a method that analytically solves for cal-

ibration parameters using a modified planar target. Zhou [12] presents a method that

intelligently selects the permutation of variables to avoid singularities that can occur with

the given rotation parameterization. This method is numerically stable and allows a min-

imal solution to the problem requiring only three measurements (three camera images

and three lidar scans).

Though it is outside the scope of this work, target-based methods are even better

suited for the calibration of 3D lidars to cameras. In contrast with 2D lidars, these

sensors measure outside of a single plane and thus provide a 3D snapshot of the world

in the form of a depth map. Geiger et al. [13] demonstrate that the camera to 3D lidar

transform can be accurately evaluated using a single camera image and lidar scan, by

having each sensor observe multiple checkerboards simultaneously. The orientations of

each checkerboard can be directly observed by each sensor (unlike with a 2D lidar) and

aligned under least-squares constraints to obtain the calibration.
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There are two main difficulties in using any of the above methods. First, both sensors

must view the target at the same instant, so they must have overlapping fields of view.

Secondly, they require a means of moving the target in between each measurement. Bok

et al. [14] present a method aimed at solving the first issue. Their method allows for

non-overlapping sensor fields of view by having the camera view a checkerboard and the

lidar view either a planar surface or the line connecting two planar surfaces. However, for

this routine to work, the user must supply the transformation between the checkerboard

and the lidar target. Estimating this transform to a sufficient degree of accuracy presents

a new challenge entirely.

2.1.2 Target-free Spatial Calibration

Many target-free camera-to-2D lidar calibration methods are designed to automatically

select correspondences from whatever objects are viewed by the sensors. Yang et al.

[15] calibrate a 2D lidar and camera pair by using mutually observed line and point

features as correspondences. The use of direct correspondences between the data streams

greatly simplifies the structure of the optimization, as the cost function is the squared

sum of the reprojection error of the correspondences as viewed by the camera. This is

simpler than minimizing the alignment error of a checkerboard viewed by both sensors.

Similar approaches have been applied to camera-to-3D lidar calibration by Scaramuzza

et al. [16] and Moghadam et al. [17]. The former requires manual selection of the point

and line correspondences, while the latter extracts them automatically. The method

of Castorena et al. [18] takes the edge alignment paradigm even further for camera to

3D lidar calibration. Rather than directly extracting edges from the lidar point cloud,

the authors fuse the entire lidar point cloud with the camera image to obtain a fused

depth map. They compute a score penalizing the misalignment of lidar data with edges

extracted from the camera image. This allows for simultaneous calibration and data

fusion by using the data fusion quality as the optimization metric.

The work of Pandey et al. [19] can be considered an abstraction on the targetless

edge alignment approach to calibration. This method works by maximizing the mutual

information between camera and lidar data, and can calibrate both camera-2D lidar

and camera-3D lidar pairs. Work developed by Taylor and Nieto [20] around the same

time presents a similar mutual information based approach. The authors calibrate a

hyperspectral camera to 3D lidar.

Brooskhire and Teller develop a calibration method that requires only the individual

trajectories of two or more sensors arranged within the same plane [21] or arbitrarily in
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3D space [22]. The authors show that except for a few degenerate trajectories (which

are discussed in detail), the calibration transform that best aligns the sensor trajectories

under least-squares conditions is directly observable. The simplicity of this formulation is

attractive, and it has been applied to the vehicle-mounted camera to 3D lidar calibration

problem [23]. The drawback of this approach is that it requires every sensor have the

capability to measure its own egomotion. 2D lidars can achieve this using scan matching

if they are traveling within a single plane. However, when travelling arbitrarily in three

dimensions, 2D lidars only observe the environment via a single planar scan. Thus, there

is always an unconstrained rotation of the lidar about the scanning plane [4], so it can

not directly observe its trajectory.

Le Gentil et al. [24] adapt egomotion based calibration for the transform between an

IMU and 3D lidar by adding a few constraints. In particular, the lidar moves such that

it always scans a set of three mutually orthogonal planes (for example, the vertex where

two walls connect with the floor). The lidar can easily segment which parts of its line

scan lie on each plane. Coupled with the knowledge that the three planes are mutually

orthogonal, this allows the lidar to measure its relative movement between measurement

times by a SLAM routine which represents the map entirely with planes [25, 26].

Several groups have developed entropy-based calibration methods for 2D lidar to

2D lidar [27], and 2D or 3D lidar to an arbitrary egomotion sensor [28, 7, 29]. These

calibration algorithms all determine the extrinsic transform between one or more sensor

pairs (including at least one lidar), by minimizing the Rényi Quadratic Entropy (RQE)

[30] of the resulting lidar points cloud(s). Therefore, they fall under the category of

simultaneous data fusion and calibration algorithms. The egomotion sensor is required

to provide a base trajectory, which the lidar data can be registered to via the calibration

transform. The work by Lambert et al. adapts [28] to allow use of a single monocular

camera as the egomotion sensor. It does so by adding the scale of the camera trajectory

to the calibration transform as a parameter to be estimated. They key discovery in this

work is that there is a single global minimum to the cost function under the correct scale

and calibration parameters. That is to say, the point cloud displays the most “crispness”

with the correct parameters.

2.2 Temporal Calibration

Temporal calibration consists of the recovery of any offset from one sensor clock to

another. This step must be performed every time the system is used, as it will change

each time the sensors are powered on.
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2.2.1 Two Way Timing Data and Hardware Methods

A sensor data packet is timestamped by the sensor’s internal clock, which is extremely

unlikely to perfectly agree on the time with other sensors’ clocks. For this reason, it is

imperative to consider the time offset required to align sensor data streams to properly

fuse their data. Much of temporal calibration literature builds on the work of Cristian

[31], who develops a probabilistic model for estimating the time delay between system

clocks. This work, and the work that builds on it (e.g., [32, 6]) requires two way timing

data. This means that a sensor client sends the original data packet and receives a

response packet from the host computer. The specified synchronization routines require

that both computers provide a timestamp when they send and receive a packet (either

the original or the response).

Estimating sensor clock offset is complicated by the fact that the difference in packet

sending and receiving time is caused by three factors. The first is the clock offset—the

difference between the sensor clocks. The second factor is the non-zero network delay

- the minimum amount of time it takes for a packet to travel between computers. The

third factor is random packet delay, which is caused by high CPU load among other

things. We wish to estimate the first quantity, but we can only measure the timestamp

differences - the sum of the three quantities. To complicate matters further, the first

quantity will change over time, as the various clocks exhibit different drift rates. That

is, they count time at slightly different rates

The work by Harrison and Newman [6] uses the two way timing data to set upper and

lower bounds on the offset and to probabilistically estimate the offset and offset drift rate

(the time derivative of the offset). The key here is that the majority of packet transfers

will be free from random packet delay. As the routine collects more measurements, it can

continually refine the upper and lower bounds on the clock offset, improving its estimate

of the offset and the drift rate.

Unfortunately, the vast majority of low cost sensors can not provide two way timing

data. Instead, they provide a packet with a timestamp at the time of measurement. Other

methods have been developed to synchronize sensor clocks under this condition, such as

using external hardware [33], or interrupt signal lines [34] to detect the exact measurement

instant. These methods are very precise, and should be considered if the calibration

hardware is available, or the sensors have measurement interrupt lines. However, these

are not available for most low cost platforms and sensors.
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2.2.2 Data Driven Methods

In many cases, the only tool available for time delay estimation is the sensor data. Such

data driven methods follow a similar structure to spatial calibration estimation, with

the time delay being added as a parameter to estimate using some optimization criteria.

Kelly et al. [35, 36] formulate a solution by aligning two sensor trajectories using a variant

of Iterative Closest Point (ICP). The time delay is introduced as a parameter to ICP,

meaning that the sensor trajectories can be slid backwards and forwards through time

to achieve a better alignment. The optimized time-delay is that which achieves the best

trajectory alignment.

Tungadi and Kleeman [37], and Furrer et al. [38] have developed similar methods

for time delay estimation using sensor trajectory information. The former minimizes the

error between relative sensor poses (i.e., the pose changes between measurement instants),

and the latter minimizes error between interpolated angular velocity measurements.

Mair et al. [39] move the sensor platform through specialized sensor trajectories. This

allows the authors to estimate the time delay by maximizing the cross-correlation and

phase congruency of the sensor trajectories. This can be considered an abstraction on

the other trajectory alignment based methods. It is worth noting then that all of the

methods considered in this section require both sensors to be able to measure their own

egomotion.

2.3 Simultaneous Spatiotemporal Calibration

Compared with the body of literature on spatial calibration and temporal calibration,

the amount of work concerning simultaneous spatiotemporal calibration is small. The

problems of calibrating either spatial or temporal offsets is made easier if the other has

already been calibrated. For this reason, much of calibration literature assumes that time

offsets have been pre-calibrated [7], spatial offsets have been calibrated [37], or alternates

between optimizing the two [38]. There are very few methods that wrap spatial and

temporal offsets into a single estimator.

Li and Mourikis [40] add sensor time delay to an Extended Kalman Filter routine that

additionally estimates the trajectory of a base sensor (an IMU for their purposes) and

the transform from the IMU to a camera. The use of an EKF allows the calibration to

be performed online, at the expense of the improved accuracy available with offline batch

estimation methods. Furthermore, adapting this method to work with a lidar would

require the formulation of a measurement model for a 2D lidar in a 3D environment.
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Unlike a camera, a lidar is a sparse sensor, so formulating a measurement model in 3D is

difficult. The scanning plane is constantly changing, and it is hard to predict what the

lidar should observe without making significant assumptions about the environment.

Rehder et al. [41, 42] develop a novel lidar measurement model by making the assump-

tion that the environment contains many planes. Building on the method of Furgale et

al. [43] for spatiotemporal calibration of an IMU and camera system, the lidar-compatible

method works in a similar fashion. A set of batch least-squares estimators are derived

based on each sensor’s measurement model. The optimizer then solves for base sensor

trajectory, sensor-to-sensor transforms, time delays, and other parameters such as gyro-

scope biases. The lidar measurement model is formulated by initializing a map of planes

observed in the environment. This allows easy computation of the expected return value

for the distance of a lidar laser beam aimed at any of these planes. An additional point

to note is that the authors never directly solve the camera to lidar or IMU to lidar cali-

bration problem. Instead, the lidar is only included as part of a suite containing all three

sensors.
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Calibration Theory

The key insight to our method follows [27, 28, 7]. When one creates a point cloud of

a real world environment, the majority of the points will lie on a set of a few surfaces.

In man-made environments, these tend to be regular objects such as planes arranged

at right angles. However, the principle holds true even in natural environments. In a

forest for example, the surfaces include the ground, the trunks of tree, roots, etc. Any

environment that we can scan is relatively structured.

To achieve an accurate reconstruction of the environment, we require accurate cali-

bration parameters. If any parameters differ from their ground truth values, each lidar

scan will be affected in a highly nonlinear fashion. The ultimate effect is to “muddle”

the point cloud. That is to say the lidar points spread out from surfaces, creating a

blurring effect demonstrated in Figure 1.1a. To highlight the mechanics of what causes

this, Figures 3.1 and 3.2 present a trivial example of an egomotion sensor and a lidar

arranged on a mobile platform for mapping purposes. The two sensors lie along a line, so

the calibration is a single distance value (in general, the calibrations we wish to estimate

will be arbitrary 3D transformations). Figure 3.2 shows what happens if this distance is

misestimated. Scans of the same object taken at different times will be transformed in

different ways, and the average distance between points in the point cloud will increase.

Therefore, the point cloud becomes less structured. As in our example, scanned line

segments taken at different times no longer neatly align. This is a minimal example of

the same blurring effect as in Figure 1.1a.

We proceed in this chapter by detailing the registration of 2D lidar scans to a set

of egomotion sensor poses to create a full 3D point cloud. We then present a brief

background on the concept of entropy and the various mathematical formulations that

exist to quantify it. We conclude with an explanation of how the Renyi’s Quadratic

Entropy formulation will allow us to compute the entropy of a 3D structured point

12
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Figure 3.1: A mobile position sensor and lidar platform scans the same surface at two
different timesteps. When the calibration - the distance between the sensors - is known
accurately, the platform can construct an accurate map of the environment.

Figure 3.2: A mobile position sensor and lidar platform scans the same surface at two
different timesteps. When the calibration - the distance between the sensors - is under-
estimated, the map that is constructed is muddled and has higher entropy.
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cloud. This will serve as our cost function, taking poses and lidar scans as input, and

returning a single scalar entropy value.

3.1 Kinematics

We make extensive use of Lie groups for representing sensor poses. A full discussion of

the use of Lie groups in estimation is beyond the scope of this work. We refer readers

to [44] for an excellent introduction to Lie groups, and a motivation for their use in

estimation.

3.1.1 Point Cloud Construction

We choose to represent sensor poses with homogeneous transformation matrices of the

form

T =

[
C r

0T 1

]
, (3.1)

where C is a 3 × 3 rotation matrix1, and r ∈ R3 is a translation vector. C and T are

members of the SO(3) and SE(3) Lie groups respectively. We store transformations in a

minimal, 6 parameter representation in the se(3) tangent space.

We assume that the platform’s base sensor (a monocular camera for our application,

but any egomotion sensor could be used) provides a set of M 6-DOF poses, Y:

Y = {y1,y2, ...,yM}, ym = [ρ1,m ρ2,m ρ3,m φ1,m φ2,m φ3,m]T , (3.2)

where ρm = [ρ1,m ρ2,m ρ3,m]T and φm = [φ1,m φ2,m φ3,m]T are the translational and rota-

tional portions of ym ∈ se(3) respectively. We can obtain a homogeneous representation

for ym by converting from se(3) to SE(3) through the matrix exponential.

T′G,Cm
= exp(

[
φ∧m ρm

0T 0

]
), (3.3)

φ∧ =

 0 −φ3 φ2

φ3 0 −φ1

−φ2 φ1 0

 . (3.4)

1A rotation matrix is an orthonormal matrix whose columns represent the projection of one coordinate
frame’s base axes into a second coordinate frame that is rotated arbitrarily from the first.
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The ′ superscript indicates that the pose has not been scaled, and is therefore not the

same as the actual camera pose, which we will denote TG,Cm . We further note that each

pose ym has an associated timestamp tm and pose covariance matrix Qm.

The lidar provides a set of K observations at N timesteps, Z, where

Z = {z1, z2, ..., zN}, zn = {z(1)
n , z(2)

n , ..., z(K)
n }, (3.5)

z(k)
n =

[
x(k)n y(k)n

]T
, (3.6)

and each scan zn has associated timestamp tn. We express each point in lidar frame F−→Ln

as
p
(k)
Ln

=
[
x(k)n y(k)n 0 1

]T
. (3.7)

Here we see the main limitation of a 2D lidar as opposed to a 3D lidar. The former

only measures within a single scanning plane, so the measured point z
(k)
n only has two

coordinates, x
(k)
n and y

(k)
n .

We likewise express each camera pose as a homogeneous transformation from cam-

era frame F−→Cm to a fixed global frame F−→G, where matrix TG,Cm is the homogeneous

representation of pose ym.

Our goal is to estimate the set of (constant) transform parameters from the lidar

frame F−→L to the camera frame F−→C . We omit n and m in the coordinate frame notation

here to indicate these frames never change with respect to each other (the lidar and

camera are rigidly attached).

Ξ = [xL yL zL φL θL ψL s td]
T . (3.8)

The six spatial parameters are used to construct TC,L, the rigid body transformation

matrix from the lidar frame F−→L to the camera frame F−→C . The scale factor s is applied to

the translational component of the camera pose (the top-right 3x1 elements of T′G,Cm
).

TG,Cm =

[
CG,Cm srCm,G′

G

0T 1

]
, (3.9)

where CG,Cm and rCm,G′

G are the rotational and translational portions of T′G,Cm
obtained

following the conversion from se(3) to SE(3).

We account for time delay by adopting a continuous time representation of the sensor

trajectories:

TG,L(t) = TG,C(t+ td)TC,L. (3.10)
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TG,L(t) is evaluated at t = t1, t2, ..., tN to obtain a corresponding lidar pose for every

scan zn. We obtain TG,C(t+ td) by interpolating between camera poses. If td is positive,

the camera clock is leading the lidar clock, and vice-versa for negative td. We use the

STEAM model [45, 46, 47] for interpolation, explained in greater detail in Section 4.1.2.

We estimate the position of a lidar point in the global frame via the inverse sensor

model:

p̂
(k)
G,n = h−1(p

(k)
Ln
| Y,Ξ) = TG,L(tn)p

(k)
Ln
. (3.11)

We omit the homogeneous component so that x̂
(k)
G,n ← p̂

(k)
G,n.

x̂
(k)
G,n =

x
(k)
G,n

y
(k)
G,n

z
(k)
G,n

 =

1 0 0 0

0 1 0 0

0 0 1 0

 p̂
(k)
G,n (3.12)

We use the Jacobian of this model and the camera pose covariances to obtain a

covariance estimate of points in the world frame,

Σ(k)
n = J(k)

n SQnS
TJ(k)

n

T
, (3.13)

S =

[
sI3 0

0 I3

]
, J(k)

n =
∂h−1(x

(k)
Ln
|Y,Ξ)

∂yn
,

where yn is the interpolated 6-DOF camera pose used to generate TG,C(tn + td) and Qn

is its associated uncertainty. S is included to appropriately scale the uncertainty of the

translational part of the poses by the same scale factor as the translations themselves.

The form of J
(k)
n is given in Appendix A.2. Note that Qn is the covariance matrix of

the interpolated pose, rather than the covariance of any of the camera poses in Y. The

requirement for an interpolation scheme that is able to provide an estimate of uncertainty

was a major motivation in choosing the STEAM model. Finally, we obtain a set of 3D

points x̂
(k)
G,n ∈ X̂ expressed in the global frame, each with associated 3 × 3 covariance

matrix Σ
(k)
n and timestamp tn.

3.2 Entropy

3.2.1 Background

The use of entropy to quantify the amount of information provided by a series of events

is attributed to Shannon [48]. In our context, an “event” is the measurement of a lidar
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point at a specific point in the world. There is some uncertainty about the measured

value, so it can be formulated as a probability distribution. For a series of N independent

events, with respective probabilities p1, p2, . . . , pN defined by the probability distribution

P , the Shannon entropy is given by

HSHANNON(P) =
N∑
i=1

pi logb
1

pi
. (3.14)

The choice of base b is arbitrary to the overall pattern of the entropy. b is commonly

chosen to be 2, in which case the units of HSHANNON(P) are referred to as “bits”. Shan-

non’s measure of entropy was formulated to satisfy three requirements for information

[48][49].

1. Continuity: H(P) must be continuous in pi.

2. Additivity: If P and Q are two independent probability distributions, the entropy

of their direct product must be additive:

HSHANNON(P ∗ Q) = H(P) +H(Q). (3.15)

3. Uniform property: H(P) is maximized when all events are equally probable,

pi = 1/N ∀ i ∈ {1, 2, ..., N}. Moreover, if this is the case, then H(P) increases

monotonically with the value of N .

The Additivity property follows from the definition that P and Q are independent.

All of the information gained from observing their events is novel, as neither has any

bearing on the other. The total information gained must therefore be the sum of the

information provided by both sets of events.

The Uniform property follows from the understanding that the uncertainty in the

potential outcome is highest when all events are equally probable. Furthermore, if all po-

tential outcomes are equally probable, then uncertainty will be higher the more potential

outcomes there are.

Renyi [30] formulated a more general family of equations to quantify entropy by

relaxing the Additivity requirement:

Hα(P) =
1

1− α
log

(
N∑
i=1

pαi

)
, α > 0, α 6= 1. (3.16)

This family of equations is referred to as α entropy, and tends toward Shannon entropy
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as α → 1. Although this function lacks the Additivity property of Shannon entropy, it

has been shown to be maximized at the same points as Shannon entropy[50].

3.2.2 Point Cloud Entropy

As hypothesized in previous work [27, 28, 7] a proper reconstruction of the environment

will represent the most ordered or lowest entropy of all possible reconstructions. One

can suggest examples where this would not be the case (for example, a set of points

distributed evenly throughout a volume). However, it is hard to imagine a real world

environment that has this form. Therefore, the entropy of the reconstructed point cloud

will serve as our metric for evaluating the calibration parameters.

We quantify the probability of scanning a point at location x in RD using Parzen

window density estimation [51], which introduces a bandwidth parameter h. This allows

us to formulate a probabilistic model of what the world looks like. As there is positional

uncertainty in the coordinates of a scanned lidar point, the Parzen window density allows

us to “validate” a point’s position. If the point coordinate is within a cluster of many

other points, it is likely accurate. Parzen window density estimation is thus well-suited to

our previously stated assumptions about environment structure as it implicitly assumes

points in a point cloud, xi, i = 1, 2, . . . ,M , are structured into surfaces. The probability

is given by

p(x) =
1

M

M∑
i=1

1

hD
K

(
x− xi
h

)
. (3.17)

The function K(·) is a kernel function used to weight the distances. For our purposes,

we can use a Gaussian kernel function, with mean xi, introducing a covariance matrix in

place of the bandwidth parameter h:

p(x) =
1

M

M∑
i=1

N (x; x̂i,Σi + σ2I), (3.18)

where N (x;µ,Σ) is the value at x of a Gaussian distribution with mean µ and covariance

matrix Σ.

Intuitively, we are weighting point x’s distance to xi by the uncertainty in the latter’s

position. This uncertainty is made up of the sum of point xi’s covariance matrix (Σi)

and isotropic noise (σ2I) added to capture the uncertainty in range measurements.

With this formula for probability, the Shannon entropy can not be solved analytically,

and computational approximations are expensive to compute. However, our aim is to
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minimize the entropy, so we are free to choose another metric that is minimized at the

same point. As shown in previous work [27, 28, 7], using the α-entropy of order 2 allows

us to solve the integral in the entropy formula analytically. This equation, also known as

the Renyi’s Quadratic Entropy (RQE), is given by :

H(X̂) = − log

∫
p(x)2dx. (3.19)

We can insert our equation for p(x) and expand into a double sum over all points in

the point cloud:

H(X̂) =− log

∫ (
1

M

M∑
i=1

N (x; x̂i,Σi + σ2I)

)2

dx (3.20)

=− log

(
1

M2

M∑
i=1

M∑
j=1

∫
N (x; x̂i,Σi + σ2I)N (x; x̂j,Σj + σ2I)dx

)
. (3.21)

The integral above is a convolution of two Gaussian distributions and can be simplified

as follows

∫
N (x;µ1, σ

2
1)N (x;µ2, σ

2
2)dx = N (µ1−µ2; 0, σ2

1 + σ2
2) = N (µ2−µ1; 0, σ2

1 + σ2
2), (3.22)

H(X̂) = − log

(
1

M2

M∑
i=1

M∑
j=1

N (x̂i − x̂j; 0,Σi + Σj + 2σ2I)

)
. (3.23)

Our choice of α = 2 has allowed us to make the above simplifications, leaving us

with a very attractive formula for the entropy. The term inside the logarithm is simply

the sum of all point-to-point distances within the point cloud, weighted through the

Gaussian kernel. This weighting makes the equation smooth, and robust to outliers, as

the value of the Gaussian tends to 0 for large point-to-point distances. Furthermore,

using the covariance sum as a bandwidth parameter means that large point-to-point

distances have less effect on the entropy if we are highly uncertain about either point’s

position.
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Calibration Algorithm

It was shown empirically in [7, 29], that the entropy of a point cloud is convergent with

respect to the spatial calibration parameters, and the scale of the camera trajectory. That

is, there is a single global minimum entropy at or very near the ground truth parameters.

We demonstrate herein that the same is true for the time-delay between the sensors, and

that there is furthermore a single global minimum in the 8-DOF parameter space that is

highly accurate with respect to the ground truth parameters. We proceed by outlining

our procedure for constructing a point cloud from a set of camera poses, lidar scans, and

an estimate of the 8-DOF calibration vector. We then present our formula for point cloud

entropy, and highlight a number of simplifications we make to the computation to make

it tractable on a CPU. This will allow us to formulate the calibration as an optimization

problem, with the camera poses and lidar scans as static data, and the calibration vector

as the input to the cost function, which the entropy will be minimized with respect to.

The entire routine is presented visually in Figure 4.1.

Figure 4.1: Summary of the calibration routine. Proceeding with camera images and
lidar scans as given, static data, we solve for the calibration parameters resulting in the
point cloud reconstruction with the minimum entropy value.

20
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4.1 Camera Trajectory Estimation

We formulate the camera trajectory in continuous time, proceeding in two steps. First,

we estimate a set of discrete time camera poses at the measurement instants (each frame

in the video stream). We then allow for interpolation of the camera pose at any time by

using the Simultaneous Trajectory Estimation and Mapping (STEAM) model [45, 46, 47].

Each measurement time pose has an associated 6x6 covariance matrix representing the

uncertainty in the transform. Furthermore, we can use STEAM to compute a covariance

matrix for any interpolated pose. This allows us great flexibility to process asynchronous

camera and lidar data, and to evaluate the effect of the inter-sensor time delay on the

point cloud entropy.

4.1.1 Discrete Time Camera Pose Estimation

Our algorithm is designed to work with any egomotion sensor. To this end, we abstract

out the specifics of the egomotion sensor used, and assume that we are able to supply a

set of M sensor poses ym with associated timestamps tm, m = 1, . . . ,M . Therefore, as a

preprocessing step, we require a means of converting from the data supplied by the sensor

(e.g., frames of a camera stream, IMU inertial rates) to a set of poses and timestamps.

For our monocular camera based system, we use ORB-SLAM [52].

As with all monocular SLAM algorithms, ORB-SLAM identifies a set of visually

distinctive features in each video frame. Through the inverse camera model, it estimates

the 3D coordinates of each point relative to the camera focal point.

πi =

[
fu

xi,j
zi,j

+ cu

fv
yi,j
zi,j

+ cv

]
, (4.1)

where πi is the pixel coordinates of landmark j in camera frame i,
[
xi,j yi,j zi,j

]T
are

the coordinates of the point relative to the camera, fu and fv are the horizontal and

vertical focal lengths, and cuand cv are the horizontal and vertical principal points. The

focal lengths and principal points are known, so the algorithm can solve for the values
xi,j
zi,j

and
yi,j
zi,j

from the measured pixel coordinates. As we have mentioned, monocular VO can

determine camera trajectory up to an ambiguous scale factor. The cause is apparent from

Equation (4.1), as we can only compute the relative values of the x and y coordinates to

the depth z, but there is no way of determining the depth value.

As the camera moves and captures more video frames, it tracks features, and can

estimate its own movement based on the perceived motion of features. ORB-SLAM is
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the state of the art algorithm for monocular SLAM largely because of its effectiveness

in determining correspondences, that is, correctly matching point landmarks between

frames, despite appearance changes caused by viewing from a different viewpoint. The

system uses ORB features, which are very fast to compute relative to other popular

feature choices such as SIFT [53] and SURF [54], and invariant to lighting and viewpoint

changes. This allows the algorithm to track many features accurately, contributing to

the overall accuracy in camera pose estimation.

ORB-SLAM’s design informs what kind of environments work well for tracking. In

particular, we want to ensure the camera views visually salient areas so that there will be

many features available for tracking. We want to capture areas with lots of transitions

between light and dark colours. Anecdotally, we have found that posters and printed

copies of research papers provide accurate tracking because ORB-SLAM is very effective

at tracking black characters on light coloured backgrounds. Furthermore, we want to

ensure lighting is fairly consistent throughout the video, so well-lit areas work well for

data capture.

Ultimately, we obtain a camera pose for each frame of the camera data. The times-

tamp is given by the frame’s associated timestamp. ORB-SLAM does not directly provide

covariance matrices for the camera poses. However, as with [29], we find that a standard

deviation of 0.01 m and 0.025 rads for each parameter is an accurate reflection of the

pose uncertainty.

4.1.2 SE(3) Pose Interpolation

To optimize the time delay parameter with respect to its effect on RQE, we require a

method of evaluating the pose of the camera-lidar system at any arbitrary time during

its trajectory. Interpolation is carried out using the STEAM model [45]. This model

interpolates between 6-DOF poses that are members of the SE(3) group (i.e., homoge-

neous matrices) by representing the continuous time trajectory with a Gaussian process.

The benefits of using this model are threefold: 1) the interpolation equations are derived

from the physically motivated prior that the trajectory is smooth and accelerations are

small, 2) the interpolation model operates in the se(3) algebra, avoiding the issue of

singularities inherent to other 6-DOF pose representations, and 3) the STEAM model

allows principled estimation of the uncertainty on interpolated poses [46, 47]. The third

point is particularly important for our purposes as the pose uncertainty affects the weight

given to a lidar point’s RQE contribution. Lidar points captured from very uncertain

poses will be given less weight in the entropy calculation, and therefore have less effect
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on the optimization.

Use of the STEAM model requires each camera pose to have an associated body-

centric velocity variable. The authors of [45, 46, 47] formulate the error metric for poses

and velocities as

ei =

[
ln(Ti+1T

−1
i )∨ − (ti+1 − ti)$i

J (ln(Ti+1T
−1
i )∨)−1$i+1 −$i

]
, (4.2)

where Ti is the i’th measured pose, $i is its associated 6-DOF velocity, and ti is the

associated measurement time. The matrix logarithm and ∨ operator serve to transform

an SE(3) member to the se(3) algebra, and J is the SE(3) left jacobian.

To solve for the velocities, we minimize the weighted least-squares cost function J .

J =
1

2

M−1∑
i=1

ei
T Q−1i ei (4.3)

Qi serves to weight the error components, and has the following analytic expression,

resulting from the kinematics of an object travelling in SE(3) [55],

Qi =

[
1
3
(ti+1 − ti)3Qc

1
2
(ti+1 − ti)2Qc

1
2
(ti+1 − ti)2Qc (ti+1 − ti)Qc

]
, (4.4)

where Qc represents the power spectral density of the white noise on the acceleration.

Qc weights how strictly to hold to the assumption that accelerations are small.

We assume that the camera poses estimated by ORB-SLAM are highly accurate,

up to the scale factor. Therefore, unlike [45, 46, 47], we optimize only the velocities,

and not the poses. This makes the optimization a linear least-squares problem (the

ei terms are linear in the $i), and we can directly solve for the minimum of the cost

function. Therefore, our choice of Qc has no effect on the estimated camera velocities. It

does however have a small effect on the computed covariance matrices of the velocities,

which are used in the calculation of the interpolated pose covariance. This effect is

demonstrated in Figure 4.2, which plots the variance of two representative interpolated

pose parameters. In all cases, the variance is greatest in the middle, when we are furthest

from the measured poses. Qc affects the degree to which the variance grows. We tune Qc

by finding a value which suitably captures the variation of the estimated measurement

time velocities from a simulated ground truth.

With the STEAM model, the interpolation between two poses Ti and Ti+1 is for-

mulated to estimate a local se(3) perturbation on the first pose. The interpolation thus
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(a) (b)

Figure 4.2: Effect of the matrix Qc on uncertainty of interpolated pose parameters a) x
b) φ.

consists of three steps: 1) transforming variables into local perturbations on Ti, 2) per-

forming the interpolation, and 3) transforming the result back into a global variable.

γi(ti) =

[
0

$i

]
, γi(ti+1) =

[
ln(Ti+1T

−1
i )∨

J (ln(Ti+1T
−1
i )∨)−1$i+1

]
, (4.5)

[
ϑi(t)

$(t)

]
= Λ(t)γi(ti) + Ψ(t)γi(ti+1), ti ≤ t ≤ ti+1, (4.6)

T̂(t) = exp(ϑi(t)
∧)Ti. (4.7)

The subscript i on the γ and ϑ variables denotes that these are local se(3) pertur-

bations relative to pose Ti. Ψ(t) and Λ(t) are state transition matrices which have the

following form [55],

T = ti+1 − ti, r =
t− ti
T

,

Ψ(t) =

[
(3r2 − 2r3)I6 (r3T − r2T )I6
1
T

(6r − 6r2)I6 (3r2 − 2r)I6

]
, (4.8)

Λ(t) =

[
(2r3 − 3r2 + 1)I6 (rT + r3T − 2r2T )I6

1
T

(6r2 − 6r)I6 (1 + 3r2 − 4r)I6

]
. (4.9)

To compute a covariance on the interpolated pose, we follow a similar pattern: trans-

forming global pose covariances into covariances of the local perturbations, performing

the interpolation, and transforming the interpolated value back to a global representation.



Chapter 4. Calibration Algorithm 25

Let P(ti, ti) and P(ti+1, ti+1) be the global self-covariances of poses Ti and Ti+1.

These are available either from simulation or from the visual odometry routine. Let

Pi(t
′, t′′) be an arbitrary self (if t′ = t′′) or cross (if t′ 6= t′′) covariance of the local se(3)

perturbations to Ti. These must be computed as follows [47],

Pi(ti, ti) = Γ(ti)(P(ti, ti)−Ω(ti)P(ti, ti)Ω(ti)
T )Γ(ti)

T , (4.10)

Pi(ti+1, ti+1) = Γ(ti+1)(P(ti+1, ti+1)−Ω(ti+1)P(ti, ti)Ω(ti+1)
T )Γ(ti+1)

T , (4.11)

Pi(ti, ti+1) = Pi(ti, ti)

[
I6 0

T I6 I6

]
, (4.12)

Pi(ti+1, ti) = Pi(ti, ti+1)
T , (4.13)

where

Γ(t) =

[
J (ln(T̂(t)T−1i )∨)−1 0

1
2
$(t)fJ (ln(T̂(t)T−1i )∨)−1 J (ln(T̂(t)T−1i )∨)−1

]
, (4.14)

Ω(t) =

[
Ad
(
T̂(t)T−1i

)
0

0 0

]
. (4.15)

The forms of the f, J (), and Ad () operators are given in Appendix A.3

To get the local interpolated covariance [47]:

Pi(t, t) =
[
Λ(t) Ψ(t)

] [ Pi(ti, ti) Pi(ti, ti+1)

Pi(ti+1, ti) Pi(ti+1, ti+1)

][
Λ(t)T

Ψ(t)T

]
+ Qi(t), (4.16)

where

Qi(t) = Qi(t)−Qi(t)

[
I6 0

(ti+1 − t)I6 I6

]
Qi(ti+1)

−T

[
I6 (ti+1 − t)I6
0 I6

]
Qi(t)

T , (4.17)

and Qi(t
′) is a generalization of Equation (4.4),

Qi(t
′) =

[
1
3
(t′ − ti)3Qc

1
2
(t′ − ti)2Qc

1
2
(t′ − ti)2Qc (t′ − ti)Qc

]
. (4.18)

To get the global interpolated pose covariance [47]

P(t, t) = Γ(t)−1Pi(t, t)Γ(t)−T + Ω(t)P(ti, ti)Ω(t)T . (4.19)
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4.2 Entropy Computation Approximation

With a continuous-time representation of the camera trajectory, and an estimate of the

calibration parameters, we register the set of lidar scans to the camera trajectory as

outlined in Section 3.1.1. This results in a point cloud of P = KN 3D points (where, as

before, K is the number of points per lidar scan, and N is the total number of lidar scans

in the dataset). Evaluating the analytic expression for RQE (Equation (3.23)) requires

O(P 2) evaluations of a Gaussian distribution function for a point cloud of P points.

Evaluating the value of a Gaussian is an expensive operation. Furthermore, while there

are many algorithms designed to efficiently compute values from a Gaussian distribution

for a large number of inputs [56, 57], they require the distribution to have the same

covariance matrix for every computation. In our case, the covariance will change with

both indices i and j.

However, we are able to apply the same simplifications to the cost function as in

[28, 7]. We will recount those here and provide motivation for each step. In addition, we

make a novel simplification based on the contribution of lidar points in the same scan.

As both indices i and j loop over every point in the point cloud, we will evaluate the

distance between every pair of points twice. This is redundant since the distance and

covariance values will remain the same regardless of the direction we are evaluating. It

is helpful to imagine the lidar points as nodes on a graph, and the distances between

them as edges. There are
(
P
2

)
= P (P−1)

2
unique edges we wish to evaluate. The original

formulation evaluates each edge twice, P (P−1) computations. Ultimately, we can ignore

duplicate edges, and simply double the contribution of each edge to arrive at the same

entropy value.

H(X̂) = − log

(
2

P 2

P∑
i=1

P∑
j=i+1

N (x̂i − x̂j; 0,Σi + Σj + 2σ2I)

)
(4.20)

Given that the logarithm is a monotonic function and the 2
P 2 term is constant, we

can remove them from the cost function f(Ξ̂). Note that we have changed notation from

H(X̂) to f(Ξ̂) to denote that this does not evaluate to the same value as Equation (3.23),

but will be minimized at the same point.

f(Ξ̂) = −
P∑
i=1

P∑
j=i+1

N
(
x̂i − x̂j,Σi + Σj + σ2I

)
(4.21)

Next, we include the novel simplification of not including distances between points

captured as part of the same lidar scan. All points within a single lidar scan are assumed
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to be captured at the same instant, and are registered to the same place in the lidar

trajectory. There is in fact a non-zero delay between the capture of each point, but it

is small enough (e.g., 24 ms per 1081 point scan on the Hokuyo lidar) that it can be

ignored unless the lidar is moving fast enough to have a noticeable displacement in that

time. The spatial and scale parameters affect the shape of the lidar trajectory, and the

time-delay parameter affects where in the trajectory each scan is registered to. None of

the parameters affect the distances between points within a scan, so these distances can

be ignored for the purposes of our optimization.

Let S(p) be the function that takes the index of a lidar point and returns the index

of the scan from which it is captured. We modify the cost function as follows,

f(Ξ̂) = −
P∑
i=1

P∑
j=i+1

S(j)6=S(i)

N
(
x̂i − x̂j,Σi + Σj + σ2I

)
. (4.22)

We have found that this typically reduces the total number of Gaussian evaluations

by 3− 4 %.

Lastly, following [28, 7], it is possible to speed up the nominally O(P 2) RQE com-

putation by ignoring points that contribute negligible entropy. Introducing a tuning

parameter, k, one can then make the approximation

N
(
x̂i − x̂j,Σi + Σj + σ2I

)
≈ 0 if

‖x̂i − x̂j‖ ≥ 2k(max(λ1(Σi), λ1(Σj)) + σ2), (4.23)

where λ1(Σ) is the largest eigenvalue of matrix Σ. The intuition here is that the con-

tribution of any point pair to the entropy calculation is the exponential of the squared

Mahalanobis distance between them, and as such, drops off exponentially. The most

relevant point pairs then, are those that are close together relative to the uncertainty in

their positions.

Smaller k values will reduce computation time at the expense of accuracy. However,

increasing k yields diminishing returns in accuracy with respect to the total number of

Gaussian computations that must be performed. This effect is displayed in Figure 4.3.

We can obtain highly accurate entropy values by considering only a small subset of point-

to-point distances. For example, in Figure 4.3, a k value of 3 corresponds to 3.3 × 108

Gaussian computations out of a potential total of 5.1× 1012. We determine which points

to consider at any given k-value by constructing a k-d tree to efficiently determine which

point pairs do and do not have a significant impact on the RQE calculation [28].
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Figure 4.3: Relationship between cost function value and the number of Gaussian com-
putations performed. There are diminishing returns on the improved RQE accuracy
obtained by considering a larger neighbourhood around each point.

Criterion 4.23 makes the computation of the RQE tractable on a CPU, and is therefore

critical to our calibration routine. However, as we will discuss in Section 4.3.2, this

simplification results in non-smooth behaviour of the cost function over small regions in

the parameter space. This will motivate our use of Bayesian optimization, as we will

discuss in Section 4.3.3.

4.3 Optimization

4.3.1 Cost Function Validation

It was found in [7, 29] that the calibration can be formulated as a 7 degree of freedom

optimization problem. The cost function displays a single global minimum at the cor-

rect calibration (6 parameters) and scale (1 parameter). The macro scale cost function
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behaviour we present below in Section 4.3.2 confirms this finding.

To accommodate for time delay as an eighth calibration parameter, it is worth asking

whether or not it has the same effect on entropy as the other parameters. That is, will

an incorrect time delay estimate increase point cloud entropy? Moreover, will it display

the nearly convex behaviour we desire to make it amenable to standard optimization

methods? Intuition would suggest that the answer to the first question is yes. Much like

with spatial calibration, incorrect time delay estimates will have a different effect on each

lidar scan. At different times in the data collection, the sensor platform will be moving

different directions and at varying speeds. A small time delay misestimate will have a

larger effect on lidar scans captured when the system is moving very fast. We should

expect the point cloud to be most structured when we have correctly estimated the time

delay.

Figure 4.4 shows that our assumption is correct, and also demonstrates that the

entropy is nearly convex with respect to the time delay. This graph was created using a

simulated dataset, by evaluating the entropy of the point cloud at a series of time delay

values around the ground truth of 0.02 s. All other spatial and scale parameters were

held constant at their ground truth values when performing this line search. It is worth

noting that although this line search shows a minimum to the one-dimensional time delay

problem, this does not confirm that there is a global minimum to the 8DOF problem

at the ground truth parameters. However, as we present in Chapter 5, the optimization

does converge to such a global minimum at or very near the true calibration parameters.

4.3.2 Complications of Gradient-Based Optimization

To solve for the calibration parameters, we must optimize Equation (4.22). One would

expect this equation to have continuous analytical derivatives with respect to the calibra-

tion parameters, since it is ultimately the sum of a set values of Gaussian distributions.

The inputs, for which we compute the Gaussian distributions values, are distances be-

tween lidar points, which should be expected to change smoothly with the calibration

parameters. Indeed, the authors of [28] claim that the cost function can be optimized

by Newton’s method or similar gradient-based methods. However, we have found that,

over small regions in the parameter space (e.g., 10−4 m or radians) the local behaviour

of the cost function is jagged and unpredictable (Figure 4.5). This is a result of the

simplification in Equation 4.23, where different subsets of points are selected on each

iteration; very small changes to the parameters affect each lidar point differently, causing

variations in those points that meet or fail the criterion in Equation 4.23.
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Figure 4.4: Effect of the time delay parameter on the entropy of the point cloud. The
ground truth time delay is 0.02 s. The spatial calibration and trajectory scale parameters
were held constant at their ground truth values when plotting this graph.

We confirmed that the jagged behaviour is caused by the changes in point selection

by evaluating cost function for a specific set of lidar points, not making use of criterion

4.23. To ensure computational tractability, we tested a much smaller set of points than

we would use for calibration. We stored the indices of the lidar point pairs that pass

criterion 4.23 when the point cloud is constructed using the ground truth parameter

values. We then use the same set of point pairs when evaluating the entropy elsewhere

in the state space. We found that the cost function is smooth under these conditions.

The results are shown in Figure 4.6. The cost function is now totally smooth even at the

micro scale (the jumps in entropy value shown in Figure 4.6a, 4.6b, and 4.6c are simply

the result of the limited precision used for computing cost function values).

This begs the question, why not always evaluate the cost with a small, constant set of

point pairs? The major roadblocks to doing so are that 1) evaluating every set of point

pairs in the point cloud is computationally intractable, and 2) there is not currently an

informed method of selecting which subset of point pairs will provide enough information

to converge to the correct calibration parameters. In Figure 4.6, we initialized the set of

point pairs by finding those that pass criterion 4.23 when the point cloud is constructed

with the correct calibration parameters. In other words, from that point forward, we

are trying to bring point pairs close together that were originally close together when

constructed with the correct parameters. It is no surprise then that all of the parameters
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.5: Macro and micro scale behaviour of entropy for each calibration parameter.
In each plot, all seven other parameters are held constant at ground truth values. a) xL
b) yL c) zL d) φL e) θL f) ψL g) scale h) time delay
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.6: Macro and micro scale behaviour of entropy for each calibration parameter
when the set of lidar points is held constant at each cost function evaluation. a) xL b)
yL c) zL d) φL e) θL f) ψL g) scale h) time delay
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converge to (close to) ground truth. However, in the real world, we do not know what

the true calibration parameters are, so the best we can do is to initialize the point pairs

with some set of calibration parameters that is hopefully close to ground truth.

However, when we do so, we change the behaviour of the cost function such that it

converges to the initialization point. As before, it is attempting to bring points together

that were brought close together by the initialization parameters. This effect is demon-

strated in Figure 4.7. In this example, we initialized the set of point pairs by selecting

those that pass criterion 4.23 when the calibration parameters are roughly one quarter

of the way from the ground truth parameter values toward their negative bounds. As

can be seen, each of the parameters now converges to some point with a lower value than

ground truth. The exception is xL, which converges to a point with higher value than

ground truth. The problem remains however that the convergence point has shifted away

from ground truth.

Ultimately, we find it is best to allow the set of point pairs used for entropy com-

putation to change throughout the state space, as selected by criterion 4.23. There are

methods for dealing with the micro scale jaggedness it causes in the cost function. We

discuss our approach for doing so herein.

As a result of the cost function jaggedness, the behaviour of the gradient is unpre-

dictable, and will not perform well for gradient-based minimization techniques. It is clear

from Figure 4.5 though, that the cost function can be approximated by a smooth curve

over large enough regions in the parameter space.

4.3.3 Bayesian Optimization

Despite local jaggedness in the cost function, it can be well approximated at the macro

scale by a smooth curve. Bayesian Optimization [58] is an algorithm for efficiently op-

timizing functions that are a) expensive to evaluate (as is true of RQE), and b) noisy.

We note that the RQE is not noisy in the same sense as many other problems Bayesian

Optimization is applied to. Unlike these functions, RQE is deterministic and will always

return the same value if repeatedly evaluated with the same inputs. However, the micro-

scale jaggedness of RQE is very similar to the effect displayed by a non-deterministic cost

function with low amplitude noise corrupting some smooth behaviour.

Bayesian Optimization works by sampling the state space to build up a surrogate

model of the cost function as a Gaussian Process. This parametric approximation to the

cost function ignores the “noise” in the true cost function. The program can therefore

quickly find the minimum of the surrogate model. If the surrogate model is accurate
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.7: Macro scale behaviour of entropy for each calibration parameter, when a
constant set of lidar points is chosen by initializing at a point other than the ground
truth parameters. a) xL b) yL c) zL d) φL e) θL f) ψL g) scale h) time delay
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enough, this point will approximately coincide with the minimum of the real cost function.

The optimizer seeks to minimize the number of cost function evaluations by balancing

exploitation (evaluating the cost function at points it believes to be near the minimum)

with exploration (evaluating the cost function in other regions to build up a more accu-

rate surrogate model). The optimizer achieves this balance by computing an expected

improvement score. For an input Ξ which has not yet been sampled, let us denote that

there is uncertainty about the value Y of the cost function at this point.

Y (Ξ) = N
(
ŷ, σ2

)
(4.24)

Letting y∗ be the minimum value of the cost function obtained so far, then the potential

improvement I at Ξ is a random variable [58],

I(Ξ) = max(y∗ − Y (Ξ), 0). (4.25)

From [59], the expected value of the improvement is

E [I(Ξ)] = (y∗ − ŷ)Φ(
y∗ − ŷ
σ

) + σφ(
y∗ − ŷ
σ

), (4.26)

where Φ and φ are the standard normal density and distribution functions respectively.

The Gaussian process model gives us a value of ŷ and σ for all inputs Ξ. Therefore, with

user-supplied lower and upper bounds for Ξ, Equation (4.26) can be maximized with

respect to Ξ with branch and bound algorithms [60].

From Equation (4.26), one can note that expected improvement will be highest when

either a) there is a high likelihood that Y (Ξ) < y∗, or b) the value of Y (Ξ) is highly

uncertain (large σ). Thus, it is a useful score for balancing exploitation and exploration.

Using Bayesian Optimization allows us to achieve an eightfold or greater speedup in

computation when compared with [7] (∼250 iterations as opposed to ∼2000).

4.4 Implementation

The calibration routine is written in C++. We use nanoflann [61] to efficiently store and

query the point cloud as a k-d tree. We use Eigen3 [62] for efficient matrix operations.

We use BayesOpt[63] to implement Bayesian Optimization.

Algorithm 1 describes the entire optimization process, beginning with a set of images,

lidar scans, and user-supplied bounds for the calibration parameters. We use ORB-SLAM

to obtain the set of camera poses
[
y1, . . . ,yM

]
, their associated se(3) space velocities
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Algorithm 1 BayesianRQEOptimization

1: Data In: {Images}, Z, Ξinit, Ξlb, Ξub

2: Y = ORBslam({Images})
3: Set: Ξ = Ξinit, Nsample = 51, Niter = 250
4: function BayesianOptimizationRoutine(Ξinit,Ξlb,Ξub)
5: CostFunction = PointCloudRQEApprox
6: Set: y∗ =∞
7: for i = 1, ..., Nsample do
8: Ξi = LatinHypercubeSampling(i, Nsample,Ξlb,Ξub)
9: yi = CostFunction(Y, Z, Ξi)

10: BayesOpt::AddToSurrogateModel(Ξi,yi)
11: if yi < y∗ then
12: y∗ = yi, Ξ∗ = Ξi

13: end if
14: end for
15: for i = 1, ..., Niter do
16: Ξi = BayesOpt::MaximizeExpectedImprovement(y∗)
17: yi = CostFunction(Ξi)
18: BayesOpt::AddToSurrogateModel(Ξi,yi)
19: if yi < y∗ then
20: y∗ = yi, Ξ∗ = Ξi

21: end if
22: end for
23: return Ξ∗

24: end function
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Algorithm 2 PointCloudRQEApprox
1: Data In: Y, Z, Ξ
2: Parameters: k = 2, σ = 0.01
3: Set: H = 0
4: function TransformPointCloud(Y,Z, Ξ)
5: TC,L ← ConvertToTMatrix(Ξ[0 : 5])
6: s ← Ξ[6]
7: td ← Ξ[7]
8: for n = 1 : N do
9: [m,m+ 1] ← FindBoundingCameraPoses(tn + td)

10: T̂G,Cn ← InterpPose(tn + td,ym,$m, tm,ym+1,$m+1, tm+1)
11: Qn ← InterpCovariance(tn+td,ym,$m,Qm, tm,ym+1,$m+1,Qm+1, tm+1)

12: T̂G,Cn [0 : 2, 3] = sT̂G,Cn [0 : 2, 3]
13: Qn[0 : 2, 0 : 2] = s2Qn[0 : 2, 0 : 2]
14: for k = 1 : K do
15: X̂ ← p̂

(k)
G,n = TG,CnTC,Lp

(k)
Ln

16: J
(k)
n =

∂h−1(x
(k)
Ln
|ym,Ξ)

∂ym

17: Σ(k)
n = J

(k)
n QnJ

(k)
n

T

18: λ← λ
(k)
n = MaxEigenvalue(Σ(k)

n )
19: X̂,Σ,λ = SortDescending(λ)
20: end for
21: end for
22: return X̂, Σ, λ
23: end function
24: function ApproximateRQE(X̂,Σ, λ, k, σ)
25: for i = 1 : P do
26: R = 2k(λp + σ2)

27: for all {xj ∈ X̂ | ‖xi − xj‖ ≤ R} do
28: if λi > λj and ScanIndex(xi) 6= ScanIndex(xj) then
29: H ← H +N (xi − xj,Σi + Σm + 2σ2I)
30: end if
31: end for
32: end for
33: return H
34: end function
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[
$1, . . . ,$M

]
, and associated covariances

[
Q1, . . . ,QM

]
. Bayesian Optimization begins

by sampling the cost function at Nsample points in the 8DOF calibration space, arranged

evenly throughout the state space. It adds the point-cost pairs to its Gaussian process

surrogate model of the function. The algorithm also remembers the optimal calibration

vector it finds in the sampling phase, for comparison with future values.

The Bayesian Optimization algorithm then performs Niter iterations probing the cost

function. At each iteration, it uses a branch and bound routine to determine the cal-

ibration parameter that maximizes expected improvement score (as explained in Sec-

tion 4.3.3) based on the surrogate model. The algorithm probes the cost function at this

point and incorporates the result into its surrogate model. In this way, each successive

probing of the cost function is better informed than the one preceding it. Finally, the al-

gorithm returns the calibration parameters resulting in the minimum cost function value

it encountered.

In practice, we have found that 50 initial samples and 250 optimization iterations

are sufficient to minimize the RQE cost function. However, this is an unscientific way

of ensuring convergence. One could replace the set number of iterations with another

stopping criteria, such as an absolute cost value threshold, or absolute or relative changes

in cost function value from one iteration to the next.

Algorithm 2 presents the cost function, as described in Section 4.2. It takes as in-

put the structure Y (containing the camera poses, velocities, and associated covariance

matrices), the set of lidar scans Z, and a vector of calibration parameters Ξ. The first

six calibration parameters are used to construct the lidar-camera transformation matrix.

The seventh and eighth are used for the scale and time delay parameters respectively.

The point cloud is constructed by iterating over all N lidar scans, and finding the

camera poses immediately before and after the lidar measurement instant, accounting

for time delay. The interpolated camera pose and covariance at the lidar measurement

instant are found using the STEAM model. The translational portions of the interpolated

pose and covariance are scaled accordingly.

For all K points in a lidar scan, the point’s position in the global coordinate frame

is found via the composition of the interpolated camera pose and the lidar to camera

transformation. The point’s 3× 3 covariance matrix is computed using the interpolated

camera pose covariance and the Jacobian of the point position with respect to the camera

pose. The form of the Jacobian is given in Appendix A.2. Points are sorted and stored

in a k-d tree according to the maximum eigenvalue of their covariance matrix.

To compute the RQE, we loop over all P points in the point cloud (P = KN)

and find all points within a radius R whose value depends on the point’s maximum
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eigenvalue, and the user supplied parameters k and σ. We then ensure that we are not

double counting the entropy between points, and that we are not counting the entropy

between points from the same scan. If two points pass this condition, we add to H

their entropy contribution, which is the exponential of the squared Mahalanobis distance

between them. The resultant value of H after the loop exits is the approximated RQE,

and is returned as the cost function value.
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Results

Here we present results demonstrating the accuracy in the calibration parameters esti-

mated by our routine. We first present results from simulated data, demonstrating the

ability of the routine to converge to ground truth values specified in the creation of the

simulated data. We then present results on real world data. As it is difficult to obtain

accurate ground truth calibration parameter values in the real world, we show that the

estimated calibration parameter values are repeatable, even with loose bounds for the

optimizer’s search space.

5.1 Simulation

We simulated a 2D lidar rigidly attached to an egomotion sensor following a smooth

trajectory through one of five environments, shown in Figures 5.2-5.5. In the real world,

a smooth sensor trajectory is required to ensure the camera maintains accurate tracking

with a VO routine. Sharp discontinuities or severe accelerations can cause motion blur,

resulting in ambiguity about the location of landmarks, and a loss of tracking [64]. To

mimic this, the simulation trajectories were created by setting each parameter of the

camera’s position (x y z φ θ ψ) as a sinusoidal function of time. We are using the roll,

pitch, yaw standard of rotations. We use this standard for formulating the simulation

trajectory because it is easier to understand and visualize than the so(3) rotation vectors

we use in the calibration step. As we will discuss in Section 5.1.1, the shape of the

sensor trajectory has a significant effect on the calibration results. It is critical to find

a set of amplitude and frequency values for each parameter sinusoid that allows for

accurate calibration. To introduce some variability into each simulated dataset, we set

each amplitude and frequency value with a normal distribution centered on values that

are found to work well.

40
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We tested the effect of noisy pose estimates from the egomotion sensor by adding

zero-mean uncorrelated Gaussian noise with standard deviation of 5 mm (positions) and

0.5o (roll, pitch, and yaw angles) to the output poses. Trajectory scale uncertainty was

simulated by scaling the positional component of the published poses. Both sensors

published at 40 Hz, but were offset in time to simulate the effect of time-delay between

sensor clocks. The datasets were 90 seconds long and the lidar published 1081 points per

scan in a 270o FOV for a total of nearly 4 million lidar points per dataset.

The environments were designed to vary in the amount of structure they exhibit,

to test the response of the algorithm to less structured targets. For example, the first

consists of a set of planes, while the last contains no planes at all. We tested five

simulation environments.

1. Simple Room - consists of six planes shaped as a rectangular prism. (Figure 5.1)

2. Plane City - consists of 11 planes (including floor and ceiling) arranged as a

rectangular prism with additional interior planes at irregular angles. (Figure 5.2)

3. Underground Parking Lot - consists of a six plane rectangular prism shaped

room. In addition, there are six cylindrical “pillars” (such as one might find in a

parking garage) and two spherical targets. (Figure 5.3)

4. Circular Room - consists of a single cylindrical room with two planes making

up the floor and ceiling. (Figure 5.4)

5. Forest - is the most irregular environment. It consists of a wavy “ground”, and

cylindrical “trees” with attached spherical “leaves”. The trees and leaves are placed

randomly. (Figure 5.5)

The ordering of the above list represents our expectation about the suitability of

each environment as a calibration environment. Environments with more structure are

expected to be more suitable for calibration. Entropy minimization dictates that lidar

points hitting surfaces be clustered together as tightly as possible. Having more surfaces

is therefore expected to constrain the optimized calibration transforms. Furthermore,

planes are considered the best type of surface to scan for calibration, as they provide

more certainty about where the points should be, since they constrain the points’ posi-

tions along the axis normal to the plane. However, unlike most calibration routines, we

will demonstrate that our routine works even if the lidar is mainly scanning non-planar

surfaces, such as Circular Room.
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Figure 5.1: Simple Room simulation environment.

Figure 5.2: Plane City simulation environment.
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Figure 5.3: Underground Parking Lot simulation environment.

Figure 5.4: Circular Room simulation environment.
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Figure 5.5: Forest simulation environment.

5.1.1 Effect of simulated trajectory

We began by simulating datasets using the values in Table 5.1 to construct the sensor

trajectory. An example sensor trajectory in the Plane City environment is shown in

Figure 5.6. Formally, the sensor position was represented as a homogenous position

matrix Tc(t), constructed as

Table 5.1: Original amplitude and frequency values used for constructing the simulated
sensor trajectory.

Parameter Nominal amplitude (m or rad) Nominal frequency (Hz)

x 3.2 0.5

y 2.5 0.29

z 2.3 0.4

φ 1 0.27

θ 0.63 0.2

ψ 1.26 0.28
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Figure 5.6: Example of the original simulation sensor trajectory.



xc(t)

yc(t)

zc(t)

φc(t)

θc(t)

ψc(t)


=



ax sin(fxt)

ay sin(fyt)

az sin(fzt)

aφ sin(fφt)

aθ sin(fθt)

aψ sin(fψt)


, (5.1)

Tc(t) =

[
Cc(t) tc(t)

0 1

]
, (5.2)

Cc(t) = C1(φc(t))C2(θc(t))C3(ψc(t)), (5.3)

tc(t) =

xc(t)yc(t)

zc(t)

 , (5.4)

where C1(·),C2(·),C3(·) are rotation matrices representing a principle rotation (rotations

strictly about a single base axis). The matrices represent rotations about the x, y, and z

axes respectively. We can also construct Cc(t) directly from the three rotation angles in

a single step. The construction of the matrix is given in Appendix A.1.

Using this trajectory formulation, we simulate the sensor platform travelling through



Chapter 5. Results 46

Figure 5.7: Corner Nook simulation environment.

each of the simulation environments and collecting lidar data. We forward the lidar

data, along with estimates of the egosensor pose in se(3) (the ym in Section 3.1.1), to

the calibration routines. We tested the calibration routine under two conditions: 1)

with the ground truth camera positions, and 2) with noise-corrupted camera positions,

simulating the inherent uncertainty of estimating camera position with VO. We used

a sixth environment, Corner Nook, displayed in Figure 5.7 instead of Circular Room

because, at the time, the latter had not yet been created.

The results in Table 5.2 demonstrate that accurate calibration is possible when we

forward the ground truth poses to the calibration routine. The results for the Corner

Nook, Plane City, and Underground Parking Lot datasets are of sufficient accuracy for

most industrial applications. However, the results for the other two environments are

not sufficient. Furthermore, the results are much worse when we corrupt the estimates of

the camera positions with noise (a more realistic situation) in Table 5.3. For all results

considered herein, we use 51 sampling iterations 1 (Nsample in Algorithm 1), 250 expected

improvement maximizations (Niter), and a k-value of 2.

151 may seem an oddly specific number, but it follows from the suggestion in [59] that 1
Nsample−1

should result in a finite decimal value for the spacing between sample points
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Table 5.2: Average absolute error over 2 unique trajectories in simulation, using ground truth camera position values for calibration. These
datasets use the original amplitude and frequency values.

Average absolute error

Environment x [mm] y [mm] z [mm] φ [deg] θ [deg] ψ [deg] Scale [×10−3] td [ms]

Simple Room 19.0 9.7 22.5 0.23 0.29 0.60 3.5 13.2
Corner Nook 1.0 6.1 10.0 0.72 0.0 0.63 0.0 1.4

Plane City 0.0 0.3 1.0 0.029 0.0 0.029 0.0 0.1
Underground Parking Lot 1.5 1.0 8.0 0.20 0.0 0.29 0.0 0.6

Forest 15.0 49.6 40.0 2.52 2.29 2.86 10.0 6.5

Table 5.3: Average absolute error over 2 unique trajectories in simulation, using noisy estimates of camera position for calibration. These
datasets use the original amplitude and frequency values.

Average absolute error

Environment x [mm] y [mm] z [mm] φ [deg] θ [deg] ψ [deg] Scale [×10−3] td [ms]

Simple Room 1.0 8.2 32.5 1.20 0.0 1.43 0.0 6.8
Corner Nook 3.5 5.8 2.0 1.29 0.29 1.29 0.50 9.7

Plane City 5.0 3.9 26.5 0.43 0.0 0.46 0.50 6.1
Underground Parking Lot 13.5 12.1 27.5 0.95 0.29 0.95 0.50 6.3

Forest 62.0 71.4 33.0 0.46 2.29 0.057 19.0 7.4
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Table 5.4: New amplitude and frequency values used for constructing the simulated
sensor trajectory.

Parameter Nominal amplitude (m or rad) Nominal frequency (Hz)

x 12.8 0.5

y 10.0 0.29

z 9.2 0.4

φ 4.0 1.08

θ 2.52 0.8

ψ 5.04 1.12

When camera position estimates are corrupted by noise, it has a highly non-linear

effect on the lidar point positions, because they are functions of both the camera position

and the calibration (the lidar to camera transform). It is possible for the camera positions

to be altered in such a way that an inaccurate calibration transform ultimately results

in a lower entropy cloud (lower average point-to-point distances). The assumption in

this work and its predecessors is that with enough lidar data, the effect of zero-mean

Gaussian noise on the camera positions estimates should cancel out. However that is not

the case for the datasets in 5.3.

Ultimately, we discovered that a key to obtaining accurate calibration is to use a large

sensor trajectory. We increased the nominal trajectory amplitude and frequency values

so that the platform would move farther and faster through the simulation environment.

We believe that this alleviates the impact of noise in trajectory estimates, because it

effectively reduces the size of the error relative to the trajectory. When neighbouring

scans are further apart, there are fewer possibilities for calibration transforms that form

lidar points into common surfaces. Furthermore, using a faster trajectory also increases

the temporal sensitivity of the cost function, as misestimating the sensor clock offsets

will cause proportionally larger error in the estimated lidar poses. The new amplitude

and frequency values are given in Table 5.4.

After creating new datasets with the trajectories defined in Table 5.4, we were able

to obtain calibration accuracy on the order of 5 mm or less for translation, 0.1 degrees

for orientation, and 0.15 ms for the time delay. This compares favourably to state of the

art methods—such as [42] which achieves calibration accuracy of less than 1 mm, 0.01

degrees, and 0.05 ms—given that we remove the need for a known target. The results

are given in Table 5.5.
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The exception to the accurate results is the Forest dataset, which continues to display

poor calibration accuracy. We believe that the poor accuracy is primarily the result of

scanning mostly free space, ultimately giving far fewer usable lidar points. 2 million

of the 3.8 million simulated lidar beams (slightly more than 50 %) did not return a

measurement for the forest dataset. In contrast, all 3.8 million lidar beams returned a

measurement for the other four simulation environments.
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Table 5.5: Average absolute error over 5 unique trajectories in simulation, using noisy estimates of camera position for calibration. These
datasets use the new amplitude and frequency values.

Average absolute error

Environment x [mm] y [mm] z [mm] φ [deg] θ [deg] ψ [deg] Scale [×10−3] td [ms]

Simple Room 1.07 1.68 2.21 0.0118 0.0252 0.0115 0.0132 0.0196
Circular Room 0.963 3.12 3.54 0.026 0.0498 0.0078 0.0547 0.135

Plane City 2.45 3.37 2.8 0.0096 0.0383 0.0088 0.126 0.0292
Underground Parking Lot 2.45 4.33 3.69 0.0282 0.0645 0.0139 0.178 0.0811

Forest 12.9 11.4 13.9 1.06 0.548 0.235 35.8 4.76
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5.2 Real World Data

In order to confirm the applicability of the algorithm, we tested its performance on

several datasets collected in the real world. For many of the reasons discussed before

(e.g., difficulty of measuring around sensor platform, unknown measurement origin within

sensor body), we do not have an accurate ground truth spatial transformation. The same

is true for the sensor clock offsets. As we do not have access to two way timing data, we

cannot make use of something like TICSync [6] to obtain an accurate value to evaluate

against. Instead, we evaluate the repeatibility of the output of our routine. We follow

with a description of the data capture platform and an analysis of the results of our

routine.

5.2.1 Experimental Setup

We tested several datasets collected using a hand-held sensor rig with attached Hokuyo

UTM-30LX 2D lidar, and PointGrey Flea3 monocular greyscale camera. The lidar col-

lects data in a 270◦ arc with 0.25◦ angular resolution. However, we found it difficult to

avoid scanning the operator at the edges of the scan. To avoid corrupting the algorithm

with any lidar beams hitting the operator, we only use the middle 180◦ arc of the scan,

for a total of 721 lidar returns per scan. The lidar collected scans at a rate of 30 Hz.

The camera collects images in greyscale with a 640 x 512 resolution. The camera col-

lects data at 200 frames per second, but we downsample it to obtain a data stream of

roughly 30 frames per second. Unlike [29], we do not assume the lidar and camera data

streams are synced. We instead maintain a seperate set of timestamps for the streams

from each sensor, and handle asynchronous data by interpolating between camera poses,

as explained in Section 4.1.2. We used ORB-SLAM2 [52] to estimate the trajectory of

the camera (with unknown scale). This dataset was used previously in [7, 29].

5.2.2 Real World Results

We seeded the Bayesian optimization procedure with fairly loose bounds on the calibra-

tion parameters as follows,

Ξlb =
[
−50 −100 −350 149 −17 −115 0.05 −30

]
, (5.5)

Ξub =
[
150 100 −150 206 17 −69 0.8 30

]
, (5.6)

where values are in units of ([mm] [mm] [mm] [◦] [◦] [◦] [unitless] [ms]) respectively.
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Figure 5.8: Sensor platform used for real world data collection. Note that the sensors do
not have overlapping fields of view.

Figure 5.9: Office space at the MIT STATA Center used for data collection.
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Table 5.6: Calibration results for three real-world datasets.

Estimated calibration parameter

x [mm] y [mm] z [mm] φ [o] θ [o] ψ [o] Scale td [ms]

Dataset 1 50.5 0.24 -211.0 181.7 -1.1 -88.8 0.216 15.2

Dataset 2 55.1 7.68 -244.2 186.1 1.04 -89.4 0.212 18.8

Dataset 3 47.8 -0.35 -224.2 184.2 -1.45 -89.7 0.214 18.2

Figure 5.10: Repeatability of the estimation of translational calibration parameters with
respect to parameter bounds.

For each optimization, we used 51 sampling iterations and 250 expected improvement

maximizations. We found that a k-value of 10 (Criterion 4.23) was the largest we could

feasibly allow while still finishing the computation in a realistic amount of time.

The results are summarized in Table 5.6. We find that the estimated calibration

parameters are highly repeatable between datasets, with the exception of some outliers

(e.g., z in Dataset 2). Discounting these outliers, the results show a repeatability of ± 4

mm, 1 degree, and 0.1 ms in the translational, rotational, and time-delay parameters re-

spectively. Figures 5.10 and 5.11 further demonstrate the repeatability of the calibration.

For all six spatial calibration parameters, the estimated values for each dataset agree to

within a small fraction of the total width of the bounds supplied to the optimizer.

Lastly, we perform a subjective validation of the algorithm by comparing the resultant

point cloud of a dataset collected at the University of Toronto Institute for Aerospace
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Figure 5.11: Repeatability of the estimation of rotational calibration parameters with
respect to parameter bounds.

Studies. When we construct the point cloud using parameter values at the optimizer

bounds (Figure 5.12a), walls appear crooked, and scans of planar surfaces do not align

properly. Using the output calibration values from our algorithm, the constructed point

cloud in Figure 5.12b looks as it should, a set of 3 flat surfaces arranged at 90 degree

angles.
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(a) (b)

Figure 5.12: Lidar sweep of a portion of the experimental laboratory space at the In-
stitute for Aerospace Studies, (a) before calibration, and (b) after calibration has been
performed. Note that planar surfaces appear to be planar after calibration. This dataset
was collected with a different lidar than the MIT data, the Hokuyo UST-20LX.
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Extension to IMU-Lidar Calibration

As we have noted, the egomotion sensor in our calibration routine is used solely in the

preprocessing step to supply a base sensor trajectory. Our choice to use a camera is

motivated primarily by the ability to obtain highly accurate trajectory estimates using

visual odometry. In theory, any sensor can be used if it is possible to analyze its data

and obtain a set of estimated poses. The calibration of a planar lidar directly to an

IMU is an intriguing research problem. Some methods, such as [42] calibrate a multi-

sensor suite containing one or more of each of a planar lidar and IMU, but in this case a

camera is also included in the sensor suite. Although this adds an additional calibration

transform to be estimated, adding a camera actually simplifies the process as it allows

the fusion of camera and IMU data to obtain a highly accurate base sensor trajectory.

To our knowledge, there is no existing calibration routine designed for direct planar lidar

to IMU extrinsic calibration. Such a routine would be valuable for applications where

designers may want to use only a planar lidar and IMU, and forgo a camera to minimize

costs.

6.1 Problem Formulation

An IMU provides a stream of measurements of its own angular velocity and linear accel-

eration. We can estimate an IMU’s trajectory by storing its position, rotation, and linear

velocity as the sensor state, and integrating the angular velocities and linear accelerations

obtained as measurements. However, the use of an IMU as a platform’s sole egomotion

sensor is complicated by inertial rate measurement biases which occur in MEMS IMUs.

These biases corrupt the measurement of the true velocity/acceleration, and evolve as

Gaussian random walks over short periods of time [65]. The IMU system can be modelled

56
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by

x =
[
pIW φIW vIW

]T
, (6.1)

ṗIW = vIW , v̇IW = aIW , φ̇IW = ωIW ,

am = aIW + ba, ωm = ωIW + bω,

ḃa ∼ N (0,Σa) , ḃω ∼ N (0,Σω) ,

where the subscript m denotes a measured quantity, the subscript IW denotes a velocity or

acceleration of the IMU relative to the inertial (or “world”) frame, and a dotted quantity

denotes a time derivative.

It is clear that ignoring the IMU bias will result in an inaccurate trajectory (Fig-

ure 6.1). Even a small constant bias results in linear error growth in the estimated

rotation, and quadratic error growth in the estimated position. It is clear that to ob-

tain an IMU trajectory of sufficient accuracy, we must filter out the measurement biases.

Just as we did with trajectory scale for a camera, we can add the IMU biases as pa-

rameters to be optimized. Our hypothesis is that given enough lidar data captured from

many different viewpoints, the RQE will be minimized when we register the lidar data to

the true base sensor trajectory, rather than an inaccurate trajectory resulting from bias

misestimation.

We can simplify the problem by assuming that the rates of change of the IMU biases

are not too severe, such that the biases are nearly constant over short periods of time

(60 - 90 s). For our purposes then, we will need to estimate 6 additional parameters:

the 6 measurement biases. However, we no longer have the issue of trajectory scale.

Furthermore, for our first attempt at solving this problem, we will ignore time-delay

effects. Ultimately, we estimate a 12DOF state using our RQE formulation.

Ξ =
[
xL yL zL φL θL ψL ba bω

]T
(6.2)

ba =
[
bx by bz

]T
, bω =

[
bφ bθ bψ

]T
We construct the point cloud and compute its entropy just as before. The only

difference is that instead of a set of egomotion sensor poses, our input is a set of linear

acceleration and angular velocity measurements. We subtract the estimated biases from

these measurements, and update the IMU state according to Equation (6.1). We update

the position, velocity, and rotation angles from their time derivatives using the Runge-

Kutta 45 integration scheme, at the update rate of the sensor (100 Hz in our case). Once

we have propogated the measurements forward to obtain the set of IMU poses,we proceed



Chapter 6. Extension to IMU-Lidar Calibration 58

(a)

(b)

Figure 6.1: a) Effect of level of IMU bias on the estimated IMU trajectory. Note that,
even in the absence of bias (b), the estimated trajectory still has some small error as a
result of the finite IMU update rate used for integrating velocities and accelerations.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.2: Macro scale behaviour of entropy for each IMU to planar lidar spatial cal-
ibration parameter. In each plot, all 11 other parameters are held constant at ground
truth values. a) xL b) yL c) zL d) φL e) θL f) ψL

just as before.

6.2 Calibration

As in Section 4.3, we would first like to confirm that our cost function will converge to

the correct calibration parameters. We conduct a line search on each of the 12 calibration

parameters (six spatial, six IMU biases) to see their effect on point cloud entropy. For

each line search, we hold the 11 other calibration parameters at their ground truth values,

in an attempt to isolate the effect of each calibration parameter on its own. The results

are plotted in Figure 6.2 (spatial calibration parameters) and Figure 6.3 (IMU biases).

The cost is roughly convex for most of the parameters, and demonstrates a minimum
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(a) (b)

(c) (d)

(e) (f)

Figure 6.3: Macro scale behaviour of entropy for each IMU bias parameter. In each plot,
all 11 other parameters are held constant at ground truth values. a) bx b) by c) bz d) bφ
e) bθ f) bψ
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at ground truth. The exception is the translational parameters, tx, ty, and tz. These ex-

hibit a larger basin of convergence, and it is hard to tell where the minima occur, though

they are at least close to ground truth. This is further reflected in the calibration results.

Using the same Bayesian Optimization method as for the camera-lidar case, we opti-

mized the 12 IMU-lidar calibration parameters for a dataset simulated on the Plane City

environment. The results are given in Table 6.1. As might be expected from the plots,

we are able to estimate the rotational and bias parameters very accurately (sub-degree,

sub-mm/s2, and sub-mrad/s). However, the translational parameters demonstrate errors

of between 14 and 50 mm. This is much worse than the camera-lidar case.
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Table 6.1: Average absolute IMU-lidar calibration parameter error in simulation.

Average absolute error

Environment x [mm] y [mm] z [mm] φ [deg] θ [deg] ψ [deg]

Plane City 27.20 14.39 49.08 0.15 0.083 0.36

Environment bx [mm/s2] by [mm/s2] bz [mm/s2] bφ [mrad/s] bθ [mrad/s] bψ [mrad/s]

Plane City 0.24 2.84 0.10 0.028 0.25 0.034
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Ultimately, we are not able to accurately calibrate the translational parameters of

the IMU-lidar transform at this time. However, we are encouraged by the results for the

nine other parameters, and the somewhat convex behaviour of the entropy with respect

to the translational parameters.
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Conclusion

We have developed a full spatiotemporal calibration routine for a 2D lidar and egomotion

sensor platform, based on the prinicple of entropy minimization. We have demonstrated

that a cost function of point cloud entropy converges to highly accurate spatial, scale, and

time-delay parameters. Importantly, our method may be applied to platforms containing

a lidar and any sensor that can accurately measure its own egomotion. These include

monocular, stereo, and depth cameras, 3D lidars, IMUs, or even radar. The application

of this method to calibration of sensor clock time delays has important implications. The

analysis presented in Section 4.3.1 suggests that our method can likely be extended to

calibration of any parameter that would have an effect on the construction of a point

cloud. This may include lidar and camera intrinsics, stereo baseline distance, or IMU

inertial rate biases, though these may not all be observable strictly by analysing the

entropy.

We examined the suitability of this method to simultaneous IMU bias and spatial

transform calibration in Chapter 6. Therein, we found that much like the spatiotemporal

parameters, the point cloud entropy appears to be minimized at the true IMU inertial

rate bias values. This allowed for highly accurate calibration of the biases for a dataset

1-2 minutes in length. Unfortunately, the lidar-IMU problem formulation did not exhibit

accurate calibration of the translational calibration parameters. We believe that this

problem is open to future research including 1) a study of the gain in calibration accuracy

from adding more planar objects to the environment, and 2) a spline-based trajectory

representation to reduce the error associated with forward integration of inertial rates.

While we demonstrate highly accurate calibration both in simulation and on real

world datasets, this approach would benefit from a more in depth study of its behaviour

under different conditions (that is, how the shape of the cost function is affected). For

our part, we present figures for the accuracy of the calibration in environments of varying

64
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complexity. However, the difference between these environments is hard to quantify as

they contain varying numbers of different shapes. A more fundamental study of the gain

in accuracy as a function of the number of planar, cylindrical, or spherical targets would

help to provide insight into the environmental requirements of the calibration routine.

The effect of the sensor trajectory could also be studied in greater detail by quantifying

the effects of different trajectories of varying complexity. For example, in our simulation

we parameterize each of the 6 degrees of freedom of the trajectory by a single sinusoid. A

trajectory consisting of additional sinusoids, or a trajectory formulated entirely differently

might make the problem more observable.

Lastly, there a number of improvements that could be made to the problem to make

it more computationally tractable, and the end result more accurate. In Section 4.3.2,

we discussed in great detail the need for a simplification to problem, criterion 4.23. This

is necessary because for a dataset large enough to constrain the problem, computing the

full set of point-to-point entropy contributions is a computationally intractable O(N2)

operation. Adding criterion 4.23 greatly speeds up the computation, but results in jagged

behaviour of the cost function at the micro scale, meaning it does not have continuous

analytical derivatives. Theoretically, the full entropy computation could be performed

in parallel on a GPU, as the point-to-point distances are set once the point cloud has

been constructed. However, as can be seen from the cost function (Equation (4.22)), the

covariance matrix for the Gaussian kernel is not constant. In fact, it depends on both

indices i and j, so it is different for every set of point pairs. Therefore, implementation

on a GPU would require some manner of parallelizing an operation with a dynamic

kernel. Were this made possible, we believe the calibration could be even more precise,

as the cost function could account for the entropy of the entire point cloud. Moreover,

the runtime of the algorithm would be dramatically decreased by the parallelization of

the entropy calculation, and the additional ability to calculate analytical derivatives of

the cost function, allowing the use of Newton’s or other gradient-based optimization

methods.
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Appendix A

Matrices

A.1 Rotation Matrix

The roll-pitch-yaw euler angles rotation matrix, following a 1-2-3 convention, is given by:

Ck (φk, θk, ψk) =

[
cos(ψi) cos(θk) cos(ψk) sin(θk) sin(φk)−sin(ψk) cos(φk) cos(ψk) sin(θk) cos(φk)+sin(ψk) sin(φk)
sin(ψk) cos(θk) sin(ψk) sin(θk) sin(φk)+cos(ψk) cos(φk) sin(ψk) sin(θk) cos(φk)−cos(ψk) sin(φk)

sin(θk) cos(θk) sin(φk) cos(θk) cos(φk)

]
. (A.1)

A.2 SE(3) Jacobian

To develop the Jacobian for the sensor model in Section 3.1.1, let us consider what happens to a lidar point if we perturb the

camera pose by a small perturbation δε ∈ se(3),

p
(k)
G,n = exp(δε∧)TG,C(tn + td)TC,Lp

(k)
Ln
, (A.2)

= exp(δε∧)p̂
(k)
G,n, (A.3)
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where p
(k)
G,n and p

(k)
Ln

are the lidar point in the global and lidar frames respectively, TG,C(tn + td) is our estimated interpolated

camera pose, and TC,L is the lidar to camera transform. Aˆover a quantity denotes its nominal value, with no perturbation.

Since δε is a small perturbation, we can make the following approximation,

p
(k)
G,n = (I4 + δε∧)p̂

(k)
G,n. (A.4)

We can expand this as follows [44],

p
(k)
G,n = p̂

(k)
G,n + (p̂

(k)
G,n)�δε, (A.5)

(p̂
(k)
G,n)� =

[
I3 −(x̂

(k)
G,n)∧

0T 0T

]
, (A.6)

where p̂
(k)
G,n =

[
x̂
(k)
G,n

1

]
(i.e., x̂

(k)
G,n contains the top 3 entries of the vector p̂

(k)
G,n).

Equation (A.5) and A.6 contain a 4 × 6 matrix, but only the top 3 rows of the matrix are relevant to the perturbation’s

effect on the x-y-z coordinates of the lidar point. Ultimately, the Jacobian has the following form,

J(k)
n =

[
I3 −(x̂

(k)
G,n)∧

]
. (A.7)

A.3 Miscellaneous se(3) and SE(3) Operators

The f operator is used in the construction of adjoint matrices. Its form is as follows [44],[
ρ

φ

]f
=

[
φ∧ ρ∧

0 φ∧

]
, (A.8)
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φ∧ =

 0 −φ3 φ2

φ3 0 −φ1

−φ2 φ1 0

 ,
where ρ,φ ∈ R3.

J () is the left Jacobian operator.

J (

[
ρ

φ

]
) =

[
J Q

0 J

]
, (A.9)

J(φ) =
sin(‖φ‖)
‖φ‖

I + (1− sin(‖φ‖)
‖φ‖

)
φ

‖φ‖
φT

‖φ‖
+

1− cos(‖φ‖)
‖φ‖

φ∧

‖φ‖
,

Q(

[
ρ

φ

]
) =

1

2
ρ∧ +

‖φ‖ − sin ‖φ‖
‖φ‖3

(φ∧ρ∧ + ρ∧φ∧ + φ∧ρ∧φ∧)− 1− 0.5 ‖φ‖2 − cos(‖φ‖)
‖φ‖4

(φ∧φ∧ρ∧ + ρ∧φ∧φ∧ − 3φ∧ρ∧φ∧)

− 0.5(
1− 0.5 ‖φ‖2 − cos(‖φ‖)

‖φ‖4
− 3
‖φ‖ − sin ‖φ‖ − 1

6
‖φ‖3

‖φ‖5
)(φ∧ρ∧φ∧φ∧ + φ∧φ∧ρ∧φ∧).

The adjoint operator Ad () maps from SE(3) to R6×6, and is constructed as follows,

Ad

([
C r

0 1

])
=

[
C r∧C

0 C

]
. (A.10)
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