
UNIVERSITY OF ZAGREB
FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

MASTER THESIS num. 1527

From Global to Local: Maintaining
Accurate Mobile Manipulator State
Estimates Over Long Trajectories

Filip Marić

Zagreb, September 2017.

Umjesto ove stranice umetnite izvornik Vašeg rada.

Kako biste uklonili ovu stranicu, obrišite naredbu \izvornik.

Mojoj obitelji, za njihovu beskonačnu podršku i strpljenje.

iii

CONTENTS

1. Introduction 1

2. Thing mobile manipulator 2
2.1. Ridgeback . 3

2.2. UR10 . 4

3. State estimation 5
3.1. State . 6

3.2. Kinematic model . 7

3.2.1. Forward kinematics . 7

3.2.2. Differential forward kinematics 8

3.3. Localization . 10

3.3.1. Wheel odometry . 10

3.3.2. LIDAR odometry . 11

3.3.3. Extended Kalman filter . 12

4. Motion planning 13
4.1. Inverse kinematics . 13

4.1.1. Differential inverse kinematics . 14

4.1.2. The Jacobian pseudoinverse and numerical filtering 14

4.2. Redundancy resolution . 15

4.3. Task-prioity kinematics . 16

4.3.1. Motion planning scheme . 16

4.3.2. Drawbacks . 17

4.4. Sequential convex optimization . 17

4.4.1. Modeling objective and constraint functions 18

4.4.2. Motion planning scheme . 20

4.4.3. The SQP algorithm . 20

iv

5. Software architecture 22
5.1. Overview . 22

5.1.1. Architecture . 23

5.2. State estimation . 25

5.3. Motion planning . 25

5.3.1. Task-priority . 25

5.3.2. Sequential convex optimization 26

5.4. Control . 26

6. Experimental results 28
6.1. Localization . 29

6.2. Dual trajectory . 31

6.3. Trajectory optimization . 32

7. Conclusion 33

Bibliography 34

A. 37
A.1. Hokuyo LIDAR . 37

A.2. FT300 . 38

A.3. Robotiq Gripper . 38

B. DH parameters 39

C. Robot operating system 40

v

1. Introduction

In applications ranging from military operations to extraterrestrial exploration, mobile ma-

nipulators present themselves as the ideal answer to many challenges being addressed by

robots. The mobile platform increases the workspace of a conventional manipulator. The

increased workspace provides the capability of performing tasks that would otherwise re-

quire multiple manipulators. A comprehensive survey on mobile manipulator systems can

be found in (Bloch et al., 2003).

The mobile manipulator can be described as a robotic system composed of a manipu-

lator arm mounted on top of a mobile platform. A variety of problems related to mobile

manipulators have been explored in the past two decades. These include dynamic and static

stability, force development and application, maximum payload determination, etc. (Pa-

padopoulos and Gonthier, 1999; Korayem and Ghariblu, 2004). However, a majority of the

research concerning mobile manipulators deals with motion planning and state estimation

(Yamamoto and Yun, 1992; Korayem et al., 2012).

This thesis explores the problems of state estimation and motion planning in the context

of an omni-directional mobile manipulator. Chapter 2 introduces the "Thing" mobile manip-

ulator used in this thesis. Each major component is described in appropriate detail, keeping

in mind the context of research presented.

Chapter 3 deals with the challenge of state estimation for a mobile manipulator. Assum-

ing accurate mobile base pose data, it is possible to estimate the state of the manipulator to

a reasonable degree of accuracy using only a forward kinematics model described in Sec-

tion 3.2. The primary interest thus lies in obtaining the end effector pose estimate, as other

estimates can be derived from it if necessary. The probabilistic framework used for finding

the base pose relative to the starting pose is explored in section Section 3.3.

Finally, two approaches to motion planning are described in chapter Chapter 4. A classi-

cal approach enables defining priorities for kinematics tasks assigned to the robot, which are

then applied in a classical optimization scheme. The more contemporary sequential convex

optimization is also explored, which enables defining non-linear inequality and equality con-

straints. These two approaches offer a powerful framework for local motion planning and

trajectory optimization.

1

2. Thing mobile manipulator

The Thing mobile manipulator (Figure 2.1) is composed of a Ridgeback omni-directional

platform and a UR10 manipulator arm with a Robotiq 3-Finger Adaptive Robot Gripper in

place of the end-effector. The three systems are essentially separate on the lower level: the

Ridgeback, UR10 and Robotiq gripper local hardware interfaces are electronically indepen-

dent self-contained systems. These local interfaces are unified by the Ridgeback’s computer,

which operates as a server under the Robot Operating System (ROS). This interfacing strat-

egy provides all the advantages of distributed computing, such as networked control or infor-

mation sharing. This platform is also equipped with a vast array of sensors, making it ideal

Figure 2.1: The Thing mobile manipulator

for autonomous robotics research. The Ridgeback platform is outfitted with a Hokuyo laser

range finder (LIDAR) and Kinect2 camera , extending both planar and spatial perception

capabilities. The omni-directional drive enables field-of-view (FOV) control independent of

both end-effector pose and base position, making it an interesting platform for active percep-

tion research. The UR10 manipulator is equipped with the FT300 force-torque sensor and an

Intel Realsense camera mounted on the gripper, further increasing perception capabilities.

2

2.1. Ridgeback

The Ridgeback (Figure 2.2) is a midsize indoor robot platform that uses an omni-drive to

move manipulators and heavy payloads with minimal constraints. The omnidirectional base

provides precision positioning in constrained environments and comes fully integrated with

on-board computer, front laser range finder and an IMU. Ridgeback offers native ROS and

Gazebo integration and is compatible with a wide range of robot accessories. It is primarily

Figure 2.2: The Ridgeback mobile base

Weight 135 kg

Payload 100 kg

Dimensions Width: 793 mm

Length: 960 mm

Height: 296 mm

Max Speed 1.1 m/s

Power average 800 W

Table 2.1: Ridgeback specifications

designed for warehousing applications as it is highly flexible in a controlled flat environment.

The built in wheel odometry provides accurate local position estimates, with pose drift ac-

cumulating very slowly. For improved localization and obstacle avoidance, the navigation

stack ROS package provides SLAM capability using the on-board LIDAR and IMU.

In a controlled laboratory setting, this platform enables a high degree of flexibility in

research. The high load bearing capability enables the platform to carry manipulators (such

as the UR10) and large sensor arrays. Other modifications to the structure are also possible

as there is a large amount of space available on the platform.

3

2.2. UR10

The UR10 is Universal Robotics largest collaborative industrial manipulator. It is a full

6DOF robotic arm capable of mimicking human arm movements. During operation it can

handle weights up to 10 kg, making it viable for a wide range of tasks. The provided drivers

enable performing collaborative tasks alongside human operators, allowing for easy posi-

tioning of the arm through compliant movement and preventing use of excessive force on

impact.

Figure 2.3: The UR10 manipulator

Weight 28.9 kg

Payload 10 kg

Speed Large joints: Max 120◦/s

Wrist joints: Max 180◦/s

Tool: approx 1 m/s

Repeatability ±0.01 mm

Power average 350 W

Table 2.2: UR10 specifications

The data in table Table 2.2 clearly shows that the UR10 manipulator is meant for tasks

involving high precision and light payloads. The repeatability value of 0.01 mm shows that

the UR10 can reach the same pose multiple times with a high degree of accuracy, which

is important in industrial applications. Additionally, it’s light weight and high end-effector

modularity make it ideal for research purposes.

Additional descriptions of components can be found in Appendix A.

4

3. State estimation

State estimation is an often encountered challenge when working with autonomous systems.

Most autonomy schemes require accurate information on the current state of the system in

order properly modify the system behaviour. This type of system can be generalized as a

non-linear system described by a difference equation and observation model with additive

noise 1

xk = f (xk−1) + wk−1, x ∈ Rn (3.1a)

zk = h (xk) + vk, z ∈ Rk (3.1b)

Finding the state estimate x̂k given the measurements z0 . . . zk subject to measurement noise

v and past states x0 . . . xk−1 subject to process noise w is the state estimation problem. Var-

ious algorithms have been developed using different mathematical frameworks to find the

best estimate according to some optimality criterion (Thrun et al. (2005)).

Figure 3.1: The Thing mobile manipulator and the frames subject to estimation

The problem of state estimation for a mobile manipulator is twofold: it is necessary

to estimate the state of the end-effector in the local workspace while also placing it in the
1we leave out separate expressions for input variables as they can be integrated within the functions f and

h

5

global context of a map or starting position. The local state of the end-effector is successfully

estimated using a deterministic kinematic model. Joint position values are used to provide

a state estimate, ignoring various dynamic and environment effects. Estimating the base

state (localization) is a more complex problem; the dynamic and environment effects on

base movement significantly affect the steady-state. Consequently, in addition to kinematic

models we have to rely on movement estimates from sensor data which is inherently noisy.

The imperfect model and sensor data are fused in a single estimate using a probabilistic

framework.

In this chapter, we first define our state of interest (as seen in Figure 3.1) in Section 3.1.

Section Section 3.2 contains details on the derivation of the kinematic model used in end-

effector state estimation assuming sufficient knowledge of the base pose. The probabilistic

framework used for estimating the base state is described in Section 3.3, where wheel and

LIDAR odometry are fused to provide an accurate estimate.

3.1. State

Control and task algorithms frequently require information on the pose of the mobile ma-

nipulator frames in Cartesian space. A frame pose represents complete information about a

frames position and orientation in a given reference frame. The pose is often represented by

a homogenous transformation matrix

T kk−1 =

[
R p

0 1

]
. (3.2)

The rotation matrix R ∈ R3x3 represents the orientation of the frame k relative to the frame

k − 1, while translation is represented by the vector p ∈ R3. Estimating the matrix T for the

end-effector is a 9-dimensional problem which can be further reduced. It is possible to fully

define it the vector r consisting of the translation vector p and a quaternion q

rEE
(
TEE0

)
=
[
x y z qw qx qy qz

]T
. (3.3)

The number of dimensions can also be reduced for the base, as it moves on a 2D plane and

thus only rotates alongside one axis and has a constant z coordinate

rB
(
TB0
)

=
[
x̂ ŷ θ̂

]T
. (3.4)

The estimated state consists of end-effector and base poses comes in the form of a 10-

dimensional task vector s

s =
[
rEE rB

]T
(3.5)

6

Using this representation, the state estimation problem has been reduced from 24 down to

10 dimensions. Reducing the dimensionality of the problem makes it computationally less

expensive, which is vital for real-time operation. Considering that the global state estimate in

this work is derived exclusively from base odometry data, it is possible to infer the base pose

knowing the end-effector pose. However, to maintain generality the formulation in (3.3) and

(3.4) is kept.

3.2. Kinematic model

Disregarding the various dynamic and environment effects, the Thing can be modelled as

manipulator. The Ridgeback platform is system with holonomic constraints and it’s global

position and the orientation can be viewed as a chain of two prismatic and a rotational joint.

These three joints make up the base upon which we add the kinematic model of the UR10

manipulator. This results in a system kinematically indistinguishable from a redundant ma-

nipulator.

The UR10 joint position measurements are reasonably accurate and thus this model can

be used to produce a valid local end-effector state estimate. Assuming valid estimates for

the base position and orientation, this model will accurately represent the global state of the

mobile manipulator.

3.2.1. Forward kinematics

Forward kinematics are defined as a set of equations that express the pose of a certain frame

on a kinematic chain as a function of configuration-space values

q =
[
q0 q1 q2 q3 q4 q5 x̂ ŷ θ̂

]T
. (3.6)

The first six elements qi represent UR10 joint angles, while the last three values represent

the base pose estimate. The equations are commonly derived using the transforms defined in

(3.2). The transform between two frames can be defined as a function of only four parameters

using the Denavit-Hartenberg notation (Uicker et al., 1964).

T kk−1(d, θ, a, α) =

cos θk − cosαk sin θk sinαk sin θk ak cos θk

sin θk cosαk cos θk − sinαk cos θk ak sin θk

0 sinαk cosαk dk

0 0 0 1

 . (3.7)

The parameters a, α are usually constant and represent the structure, while d, θ represent

the prismatic and rotational joint values and biases. Using the DH parameters as defined in

Table B.1, we derive all the transforms (3.7) from global frame to the end effector frame.

7

Multiplying these transforms gives us the transform from the global frame to any frame of

the mobile manipulator

TEE0 =

NEE∏
k=1

T kk−1 . (3.8)

The forward kinematics model is subject to various joint angle and link length biases, as it

is possible the given DH parameters do not exactly correspond to the physical manipulator.

However, the estimate provided has a significantly lower error than that of base localization

and thus can be disregarded in the current analysis.

It is also interesting to note that the forward kinematics equations are non-injective sur-

jective functions: every q corresponds to a single pose T , even though a given T might

correspond to multiple or infinite values of q. The analytic formulation of the transform

from the global frame to the end-effector can be found in the appendix.

3.2.2. Differential forward kinematics

Equations defined in Section 3.2.1 provide an estimate of the mobile manipulator state (3.5)

using the configuration vector q. However, algorithms used in motion planning and trajec-

tory optimization require an estimate on how configuration change affects the state. This

information is contained within the manipulator Jacobian J . We define the Jacobian J as the

derivative of the function f (x) : Rn → Rk with respect to the vector x.

J =

∂f1
∂x1

∂f1
∂x2

. . .
∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

. . .
∂f2
∂xn...

∂fk
∂x1

∂fk
∂x2

. . .
∂fk
∂xn

. (3.9)

Now ḟ can be calculated by multiplying the matrix with ẋ

ḟ = Jẋ . (3.10)

For a sufficiently small ∆, (3.10) can be extended to produce a first order approximation f̂k

f̂k = fk−1 + J (xk − xk−1) . (3.11)

This framework can be employed in various state estimation and motion planning algorithms.

8

End-effector Jacobian

For motion planning applications, an estimate on how configuration change affects the end-

effector pose ∆rEE is vital. The end-effector Jacobian is defined as the derivative of the

end-effector pose (3.3) with respect to the configuration vector q. While it can be derived

analytically, it is often advantageous to derive it using the geometry of the chain. Here the

Jacobian takes the form

J =

[
Jv

Jω

]
, (3.12)

where the matrix Jv is the position Jacobian and Jω matrix is the orientation Jacobian. In

this case, the components representing orientation change are equal to the rotation axes of

the joint qj

Jωj
=

∂o

∂qj
= zj . (3.13)

The components representing position difference for rotational joints are

Jvj =
∂p

∂qj
= zj × (w − pj) . (3.14)

For prismatic joints the orientation component is Jωj
= 0, while the translational component

lies on the z axis

Jvj =
∂p

∂qj
= zj . (3.15)

As seen in Algorithm 1, the geometric derivation is suitable for software implementation as it

does not require symbolic calculations and relies only on matrix operations. The twist vector

w is defined as the composition of translational and rotational velocities. For a sufficiently

small pose difference ∆r, the vectors are approximately equal

w =

[
v

ω

]
≈

[
∆p

∆o

]
= ∆r . (3.16)

Calculating the position difference is straightforward and comes down to subtracting the goal

and current positions

∆p = p− pgoal . (3.17)

The orientation difference is calculated as follows (Sciavicco and Siciliano, 2012)

∆o = 0.5L−1 (nc × nd + sc × sd + ac × ad) , (3.18a)

L = −0.5
(
[nc]× [nd]× + [sc]× [sd]× + [ac]× [ad]×

)
. (3.18b)

Plainly stated, this is the equivalent of angular velocity defined by two different orientations.

9

Algorithm 1: Geometric Jacobian calculation
Data: Kinematic chain transforms Ti and joint type flags revi
Result: End-effector Jacobian matrix J

1 T = I;

2 for i = 1, 2, ..., N do
3 T = TTi; /* get next transform */

4 Ri = R(T);

5 Oi = O(T);

6 if i = 1 then /* element corresponding to the base joint */

7 zi = (revi)1;

8 vi = (revi)zi × w + (1− revi)zi;
9 else /* all subsequent joints */

10 zi = (revi)Ri−1

[
0 0 1

]T
;

11 vi = (revi)zi × (r −Oi−1) + (1− revi)zi;
12 end

13 end

14 J =
[
v z

]T
; /* compose the Jacobian */

3.3. Localization

When using the kinematic model in Section 3.2 sufficiently accurate base pose estimates

x̂, ŷ, θ̂ are assumed. In reality, obtaining accurate pose estimates is non-trivial and often re-

quires fusing sensor data while taking in to account the probabilistic nature of measurements.

Localization of the Thing mobile manipulator employs a motion model of the omni-

directional drive on the Ridgeback and data provided by the LIDAR. The wheel and LIDAR

odometry provide Cartesian velocity estimates with covariance data. This data is fused using

an extended Kalman filter and the resulting estimate is more accurate (in theory) than simply

integrating wheel odometry data.

3.3.1. Wheel odometry

In classical mechanics a system may be defined as holonomic if all constraints of the system

are holonomic. For a constraint to be holonomic it must be expressible as a function:

f(x1, x2, x3, . . . , xN , t) = 0 (3.19)

i.e. a holonomic constraint depends only on the coordinates xj and time t. It does not depend

on the velocities or any higher order derivative with respect to time t. Decoupled translational

10

and angular velocities make the estimation process less prone to error, as angular velocities

are usually much more difficult to estimate. Odometry methods for a ground-based mobile

base estimate the twist vector

ξ̂ =
[
ˆ̇x ˆ̇y ˆ̇θ

]T
. (3.20)

Having wheel encoder velocity readings w0, w1, w2, w3, a base twist estimate ξ̂ can be calcu-

lated

ξ̂ =
R

4

1 1 1 1

−1 1 −1 1

− 1
k
− 1
k

1
k

1
k

w0

w1

w2

w3

 . (3.21)

Integrating the velocities from (3.21) makes it possible to localize the base relative to the

starting position. Odometry estimates are assumed to have a normal distribution, accounting

for measurement noise and kinematic nature of the model that ignores dynamic effects.

ξ ∼ N (µξ, Σ) . (3.22)

The covariance matrix Σ in (3.22) is set to a constant value empirically found to sufficiently

represent estimate uncertainty

Σ = diag (0.001, 0.001, 0.001, 100000, 100000, 0.03) . (3.23)

3.3.2. LIDAR odometry

A velocity estimate can also be obtained using The Hokuyo LIDAR presents itself as a

rich source of information on the environment which can be used to estimate base velocity.

Various algorithms exist that implement LIDAR odometry, they are mostly based on Iterative

Closest Point matching (ICP) (Besl et al., 1992). In this work we use the a range flow-based

approach available in the form of the rf2o_laser_odometry ROS package.

While this work does not cover the details of this algorithm, the formulation is relatively

straightforward. Given a base twist ξ, for every point sensed by the LIDAR a geometric

residual ρ (ξ) is defined

ρ (ξ) = Rt + (x sin θ − y cos θ −Rαkα)ω +

(
cos θ +

Rαkα sinα

r

)
vx

+

(
sin θ +

Rαkα cosα

r

)
vy .

(3.24)

To obtain an accurate estimate, the sensor motion is computed by minimizing all geometric

11

residuals within the cost function F :

F (ρ) =
k2

2
ln

(
1 +

(ρ
k

)2)
, (3.25)

ξ̂ = min
ξ

N∑
i=1

F (ρi (ξ)) . (3.26)

Details on parameters and minimization procedure can be found in (Jaimez et al., 2016).

3.3.3. Extended Kalman filter

The wheel and LIDAR odometry data is fused using an Extended Kalman Filter 2 (Fujii,

2013). A process and observation model is used to represent the movement of the Thing

mobile manipulator:

xk = f (xk−1) + wk−1, x ∈ Rn , (3.27a)

zk = h (xk) + vk, z ∈ Rk . (3.27b)

Without going in to detail on the derivation of the EKF algorithm, it can be described as

having two steps. the model forecast step uses the motion model and last estimated state x̂+k
to produce an a priori estimate of the next state x̂−k and covariance P−k

x̂−k = f
(
x̂+k−1

)
(3.28a)

P−k = Jf
(
x̂+k−1

)
P+
k−1J

T
f

(
x̂+k−1

)
+Qk−1 (3.28b)

The correction step makes use of local sensor odometry to calculate the Kalman gainKk and

produce a posteriori estimates x̂+k and P+
k

x̂+k = x̂−k +Kk

(
zk − h

(
x̂−k
))

(3.29a)

P+
k =

(
I −KkJh

(
x̂−k
))
P−k (3.29b)

Kk = P−k J
T
h

(
x̂−k
) (
Jh
(
x̂−k
)
P−k J

T
h

(
x̂−k
)

+Rk

)−1
(3.29c)

The Jf and Jh matrices in (3.28) (3.29) represent the process and measurement model Jaco-

bians, while the process and measurement noise covariance is represented by the Q and R

matrices. Estimates provided by (3.28) (3.29) are first-order estimates, higher order estima-

tors of this type exist but are computationally infeasible for real-time applications.

It is also important to note that the EKF assumes white Gaussian noise and thus can only

be successfully applied when the actual process and measurement noise have a near-Gaussian

distribution.

2EKF in rest of text

12

4. Motion planning

As mentioned in Chapter 3, the primary motion planning objective consists of reaching the

desired pose with the end-effector and mobile base. However, moving the mobile manip-

ulator safely and efficiently in the workspace is more involved and significantly constrains

the primary objective. For instance, it is important to maintain distance from obstacles both

with the platform and the manipulator. Additionally, various other performance metrics exist

which may need to be maximized or maintained above a certain value. These objectives and

constraints can be formalized in a way that fits the motion planning problem.

In Section 4.1 the inverse kinematics problem is considered for mobile manipulator. This

involves finding an configuration q that corresponds to a given end-effector pose r. Section

4.2 explores the problem of utilizing the extra degrees of freedom of the system to opti-

mize movement, also referred to as redundancy resolution. The remaining sections explore

two different approaches to redundancy resolution: task-priority and sequential convex op-

timization. The classic task-priority algorithm is computationally efficient extension to the

optimization approach for inverse kinematics, but also highlights the drawbacks of a purely

linear optimization algorithm. A more contemporary approach of sequential convex opti-

mization provides a more general and powerful optimization infrastructure that is highly

modular, at the cost of computational efficiency.

4.1. Inverse kinematics

Regulating kinematic tasks that are configuration dependent reduces to the problem

f (q) = 0 . (4.1)

where q ∈ Rn is the configuration vector. The classical approach to inverse kinematics would

have us find the inverse of the function f

q = f−1 (0) . (4.2)

However, this inverse can only exist in non-redundant configurations, otherwise the num-

ber of solutions is infinite. Even in cases where the configuration is non-redundant , the

13

inverse function is still occasionally impossible to derive. In order to solve this problem,

an optimization approach which avoids dealing with complicated analytical expressions is

employed.

4.1.1. Differential inverse kinematics

In an inverse differential kinematics scheme used for redundant kinematic chains, f (q) is

regulated to the target value using

∂

∂q
f = −λff (q) , λf > 0 . (4.3)

The solution to (4.3) is often rank-deficient, so a least squares formulation is employed

min
q̇

1

2

∥∥∥∥∂f∂q q̇ + λff (q)

∥∥∥∥2 , λf > 0 . (4.4)

Letting J = ∂f
∂q

and a = −λff (q), the solution to (4.4) that minimizes the L2 norm is given

by finding the pseudoinverse of the A matrix

q̇ = J†a . (4.5)

4.1.2. The Jacobian pseudoinverse and numerical filtering

In (4.3)-(4.17), the pseudoinverse operation denoted by † is defined as

J† = JT
(
JJT

)−1
. (4.6)

While more numerically stable than the classic inverse operator in (4.2), this method is also

subject to kinematic singularities in the manipulator. These are configurations where the

linear system requires a large configuration change in order to accomplish a given task space

change. The components of the task Jacobian ∂f
∂q

then approach 0, resulting in loss of rank.

Implementing the pseudo-inverse in a numerically stable way is very important for robust-

ness and non-trivial.

Damped psudoinverse

We often use the more numerically stable damped pseudoinverse (Chan and Lawrence, 1988)

J# = JT
(
JJT + λI

)−1
, λ ∈ R . (4.7)

There are also various contemporary approaches to implementing the pseudoinverse (Chi-

averini et al., 1994). In this work we use the selectively damped pseudoinverse (Buss and

Kim, 2005), alongside with singular value filtering described in (Colomé and Torras, 2015).

14

Selectively damped pseudoinverse

The matrix pseudoinverse operation can be performed using an SVD decomposition of the

Jacobian

J =
∑
i

σiuiv
T
i , (4.8)

JT
(
JJT

)−1
=
∑
i

1

σi
viu

T
i . (4.9)

The pseudoinverse would in this case have the form

JT
(
JJT + λI

)−1
=
∑
i

σi
σ2
i + λ

viu
T
i , (4.10)

this selectively damped pseudoinverse (Buss and Kim, 2005) equates to choosing a specific

value λi for each singular value σi

J# =
∑
i

σi
σ2
i + λi

viu
T
i . (4.11)

Singular value filtering

The singular values of a Jacobian determine it’s stability with respect to inversion. Lower

singular values indicate that the matrix is closer to being singular. A proposed approach to

solving this problem prior to using a specific inversion technique is singular value filtering

(Colomé and Torras, 2012). This technique sets the lowest singular value of a given jacobian

matrix J to σ0

hv,σ0 (σ) =
σ3 + vσ2 + 2σ + 2σ0

σ2 + vσ + 2
. (4.12)

In (4.12) the shape factor v determines the difference between modified and original singular

values hv,σ0(σ) − σ, a higher v results in lower differences. This results in a new Jacobian

matrix

Ĵ =
∑
i

hv,σ0(σi)uiv
T
i . (4.13)

Authors report that combining this filtering method with any of the above pseudoinverse

approaches results in higher stability.

4.2. Redundancy resolution

Given that the valid set of solutions to (4.4) is in an affine subspaceF ∈ Rn, the minimization

scheme for solving a lower priority set of tasks would be

min
q̇∈F

1

2

∥∥∥∥∂g∂q q̇ + λgf (q)

∥∥∥∥2 , λg > 0 . (4.14)

15

The process of defining additional constraints for a redundant system, thus reducing the

affine subspace F is called redundancy resolution. The general solution to (4.14), which

minimizes the L2 norm of the primary task while making redundant DOFs available to other

inputs z has the form

q̇ = J#a+
(
I − J#J

)
z, z ∈ Rn . (4.15)

The operator
(
I − J#J

)
is an orthogonal projector, thus the effect of the control z will not

affect the outcome in a way that cancels out the first term.

4.3. Task-prioity kinematics

In (Nakamura et al., 1987; Nakamura, 1990), null-space optimization is utilized to achieve

execution of a secondary task B given a primary task A

q̇ = A†a+
(
I − A†A

)
B̃†
(
b−BA†a

)
+
(
I − A†A

) (
I − B̃†B̃

)
z , (4.16a)

B̃ = B
(
I − A†A

)
. (4.16b)

This task-priority approach to inverse kinematics can be extended to any number of tasks

(Slotine, 1991). The main weakness of task-priority lies in the fact that lower-priority tasks

will often become infeasible, causing the occurrence of an algorithmic singularity (Bail-

lieul, 1985). In (Chiaverini, 1997), a modified approach is introduced , which guarantees

robustness

q̇ = A†a+
(
I − A†A

)
B†b+

(
I −

(
A

B

)†(
A

B

))
z . (4.17)

Here the trade-off is lower accuracy and slower convergence because the expression is only

an approximation of (4.16a).

4.3.1. Motion planning scheme

The motion planning scheme implemented using the task priority formulation is focused on

simplicity and robustness rather than optimal movement. The primary task is reaching a goal

pose with the end effector, which is vital for most mobile manipulator applications. The

secondary task handles mobile base trajectory following. As mentioned in Section 4.3, this

framework can be extended to any number of tasks, but the increasing numerical instability

results in diminishing returns.

∆q ≈ J†EE∆rEE +
(
I − J†EEJEE

)
J†B∆rB . (4.18)

16

4.3.2. Drawbacks

The main drawback to task-priority kinematics in (4.16a) and (4.17) is that they cannot na-

tively handle nonlinear inequality constraints (Moe et al., 2016) and equality constraints.

Having the ability to define this type of constraint in motion planning is important for more

complex systems such as mobile manipulators.

There are currently no open-source implementations for task-priority schemes , as the pa-

rameters and structure of the scheme vary greatly depending on the tasks and kinematic chain

structure. A more general definition of the problem as a non-linear constrained optimization

problem would allow us to utilize the vast array of open-source solvers, implementations and

solution schemes developed for a wider range of problems.

4.4. Sequential convex optimization

Performing tasks with a kinematic chain can also be formulated as a bounded non-linear

optimization problem P . The non-linear objective function f is minimized subject to non-

linear inequality and equality constraints g, h, while keeping the parameter vector x within

bounds.

min
x

f(x)

s.t. x ∈ [xmin, xmax]

g(x) ≤ Cg

h(x) = Ch

(4.19)

We can solve this problem iteratively, by repeatedly constructing and minimizing a convex

approximation of the problem P̃ until constraints are satisfied. With f̃ being the quadratic

approximation of the objective function f ,

f̃ (x) = f
(
xk
)

+∇f
(
xk
) (
x− xk

)
+

1

2

(
x− xk

)T
Hf

(
xk
) (
x− xk

)
. (4.20)

and g̃, h̃ being local affine approximations of constraint functions

g̃ (x) = g
(
xk
)

+∇g
(
xk
) (
x− xk

)
,

h̃ (x) = h
(
xk
)

+∇h
(
xk
) (
x− xk

)
.

(4.21)

Using quadratic programming (QP) techniques, we solve P̃

min
x
L (x, µ)

s.t. x ∈ [xmin, xmax] .
(4.22)

Where L (x, µ) represents the problem Lagrangian

L(x, µ) = f̃ (x) + µ
imax∑
i=1

g̃i (x) + µ

jmax∑
j=1

h̃j (x) . (4.23)

17

The Lagrange multiplier µ > 0 ∈ R is a large positive value that regulates the priority

of constraints over the objective function. Setting a sufficiently large value for µ turns the

problem into a constraint satisfaction problem

L(x, µ) ≈
imax∑
i=1

g̃i (x) +

jmax∑
j=1

h̃j (x) , (4.24)

ignoring main objective function minimization in lieu of satisfying constraints.

4.4.1. Modeling objective and constraint functions

The objective function f (x) can include various terms relating to kinematic and dynamic

behaviour of the kinematic chain. An important thing to keep in mind is that these constraints

Minimizing state change

In kinematic planning f (x) is often employed to keep the chain in a configuration close to

the seed configuration xseed

f (x) = (x− xseed)W (x− xseed)T . (4.25)

This results in more predictable solutions to the problem, often avoiding non-modelled dy-

namic constraints resulting from large changes in configuration.

Pose control

We regulate the execution of a pose goal r using equality constraint functions of the type

∆r = 0 . (4.26)

Convexifying (4.26) results in the familiar linear equation

h (x) = |J (x− xk)−∆r| = 0 . (4.27)

In the case of a Cartesian task-space, the error between target pose and current pose in (4.27)

can be represented in the form of a 6D vector

∆r = log
(
T−1target (a)Tcurrent (x)

)
. (4.28)

The log operator here is the matrix log operator. This vector can also be obtained using

identities (3.18).

18

Obstacle avoidance

Obstacle avoidance can be handled as an inequality constraint in the NL optimization prob-

lem. The simplest way of implementing this is using the constraint function

g (x) = |pbase − pobstacle| ≤ Rq, . (4.29)

This can in turn be extended to any number of obstacles. Collision checking libraries are

often used to find a set of closest points for which to optimize.

Manipulability maximization

Having a metric M that describes the distance from singularity of the system Jacobian, we

could use the scheme in (4.19) to optimize task execution. The manipulability metric of a

kinematic chain has a couple of different definitions, the one used here is

M =
√

det (JJT) . (4.30)

Here J is the kinematic chains Jacobian with respect to the Cartesian (although not nec-

essarily) task-space. Through matrix manipulation it is possible to obtain a closed-form

expression for the manipulability Jacobian

∂M

∂x
=

1

2
√

det (JJT)
Tr

((
JJT

)−1 ∂ (JJT)
∂x

)
. (4.31)

It might be possible to get this expression in symbolic form, but can be inefficient for real-

time applications. Even though maximizing the manipulability measures increases the prod-

uct of singular values, it does not mean that the smallest singular value will be sufficiently

large. Another metric which minimizes size difference between singular values is the condi-

tion number κ

κ =
σ

σ0
. (4.32)

This value will ideally be close to 1, which means all the singular values are roughly the

same magnitude. However this does not maximize the magnitude of singular values itself.

The objective function to maximize a combination of these two metrics

f (x) =

√
κ

M
. (4.33)

In the context of the mobile manipulator following both an end effector and base trajec-

tory, this means that the optimization will utilize the mobile base orientation θ to maximize

manipulability while ensuring that all the singular values are roughly the same magnitude.

19

4.4.2. Motion planning scheme

The full motion planning scheme can now be presented as an non-linear optimization prob-

lem. The parameter vector is in the case the configuration vector of the mobile manipulator

as defined in (3.6)

min
q

√
κ
M

s.t. ∆rEE = 0,

(qx − xgoal)2 + (qy − ygoal)2 ≤ R2,

qarm ∈ [qmin, qmax] ,

qθ ∈ [−θ,+θ] .

(4.34)

The objective function is the modified manipulability metric from (4.33), minimizing this

function drives the manipulator away from singular configuration. The end-effector pose

trajectory is introduced as a convex constraint function, alongside with the base position

and orientation tolerances used for optimization. Additionally, we limit the search space to

within the joint limits [qmin, qmax].

4.4.3. The SQP algorithm

Sequential convex optimization optimization can be tackled using sequential quadratic pro-

gramming (SQP) (Schulman et al., 2013; Xu et al., 2010), a powerful algorithm which repeat-

edly constructs and minimizes a convex approximation of the problem P̃ until constraints are

satisfied.

Initialize The cost and constraint functions can be picked at runtime or compile time.

An advantage of picking the functions at runtime lies in having the ability to parametrized

generic versions of commonly used constraints such as collision avoidance or field of view

maintenance.

Convexify For each point in the desired trajectory and the penalty value µ, we form convex

cost and constraint functions at the operating point. The cost function is convexified to a

second-order approximation while the constraints are linearized at the current configuration.

Minimize The convexified problems are minimized, where the parameter values being

considered are subject to the trust region δ. This prevents the minimization process from

taking large steps when the changes in the convex cost and constraint models do not reflect

the changes in the non-linear models to a sufficient degree.

20

Trust Region At each iteration of the innermost for loop, a trust region δ for the QP prob-

lem is updated depending on how well the change proposed by the minimization algorithm

translates to the change in non-linear models of the cost and constraint functions. If the

change is deemed sufficient, the step size for the next iteration is increased by modifying the

parameter search area of the optimization algorithm.

Check constraints Once the convexify loop converges (the changes in q become suffi-

ciently small) or reaches a maximum number of iterations, the result is checked against

constraints. If the constraints are satisfied, the algorithm concludes. Otherwise, the penalty

µ is increased (usually by a degree of magnitude) and the algorithm is repeated.

Algorithm 2: The SQP algorithm
Data: qinit
Result: Configuration q satisfying f, g, h

1 f, g, h← Initialize(); /* Initialize problem */

2 for PenaltyIteration = 1,2, . . . do
3 for ConvexifyIteration = 1,2, . . . do
4 f̃ , g̃, h̃← Convexify(f, g, h); /* convexify problem */

5 for TrustRegionIteration = 1,2, . . . do

6
min
q

G(f̃ , g̃, h̃)

s.t. q ∈ [q − δ, q + δ]
; /* minimize */

7 if TrueImprove / ModelImprove ≥ c then
8 δ ← τ+δ; /* expand trust region and proceed */

9 break;

10 end
11 δ ← τ−δ; /* shrink trust region and repeat */

12 end
13 if Converged() then
14 break;

15 end

16 end
17 if SatisfiesConstraints then /* Check nonlinear constraints */

18 return q;
19 else
20 µ = k ∗ µ;

21 end

22 end

21

5. Software architecture

With the theoretical framework for state estimation and motion planning established in Chap-

ter 3 and Chapter 4, this chapter describes the software implementation of these concepts.

Developing code that is intuitively structured is key in a research context, where it is often

maintained and expanded by multiple parties. Maintaining a heavily tested core code-base

which allows modular drop-in components for high level functions can be considered a good

development strategy for such cases. Such a structure expedites testing and data gathering

procedures, as it enables quick start-up, user safety and damage prevention.

In Section 5.1 development considerations are explained in more detail and a high-level

overview of the software architecture is presented. Next, in Section 5.2 and Section 5.3

state estimation and motion planning pipelines are detailed.Lastly, Section 5.4 describes the

control pipeline that relays user commands to the API and internal control loops.

5.1. Overview

Developing software for a complex system such as the Thing mobile manipulator is a time-

consuming process, as each change requires extensive testing before it can be applied safely.

Aside from following strict version control methodologies using tools such as git, the de-

veloper needs to have an idea of what interaction a given change can have with the rest of

the architecture. It is often inefficient to test every change on the real robot. Structuring the

code in a way that decouples most of the heavily tested core functionalities from specific

user tasks is of great importance since it helps the developer maintain an idea of what certain

changes can affect.

The testing procedure on the real robot suffers from a high set-up cost, which can be re-

duced by having start-up procedures stored in the form of ROS1 launch files. Having a sim-

ulation that reasonably models the robots behaviour also expedites testing, as some concepts

remain largely unaffected by dynamic effects occurring in reality. Furthermore, platform-

agnostic code is maintained, meaning that the software does not differentiate between the

simulated and real systems, drastically reducing implementation time.

1Robot Operating System - www.ros.org

22

thing control.cc
Command relay

Data acquistion

Motion planning

Safety

task priority solver.h

ceres solver.cc thing kinematics.cc
Forward kinematics

Utility functions

Conversions

ros control
Interpolate trajectory

ridgeback node

Execute

ur10 node

Execute

robot state publisher

Publish tf transforms

robot localization

EKF

task
User task

thing control

Figure 5.1: Overview of the software architecture. White rounded rectangles represent ROS pack-

ages, while cross-hatched rectangles represent individual libraries/headers/executables. The dashed

rectangles represent the server and client machines.

5.1.1. Architecture

The network-based nature of ROS systems allows a distributed software architecture (de-

tailed description in Appendix C). This enables keeping real-time dependent functionalities

on the robot while running high level algorithms on a separate machine. Specifically, the

control algorithms implemented in the ros_control interface with the local UR10 and

Ridgeback drivers and are ran on the robot’s local machine which acts as a server. Task-

specific programs are ran on a separate client machine which connects to the Thing’s ROS

core via WiFi or ethernet.

23

Client

Figure 5.1 shows how the thing_control package forms a robust core of the code-base.

It acts as a central node which processes trajectories and commands sent by the user, which

includes:

– Receiving and processing data streams from the server

– Sending joint angle or position commands to the server

– Interacting with motion planning libraries

– Monitoring status and implementing security procedures

Receiving and sending data is done through the ROS topic interface; subscribers fetch struc-

tured data from network locations called topics, which are populated using data publishers.

At compile time, the user can choose a motion planner developed specifically for the

Thing mobile manipulator. These planners inherit from a core part of the codebase, the

thing_kinematics library. This library contains the common mathematical framework

for the motion planners as well as various useful kinematics functions:

– Forward kinematics and Jacobian functions

– Pose error calculations

– Angle representation conversions

– Various matrix operations

Keeping this part of code in library form allows for easy transfer of these useful functional-

ities to other packages. The motion planners (also referred to as solvers) represent different

approaches to the problem of solving a given Cartesian trajectory or task. Both the methods

presented in Section 4.3, Section 4.4 are implemented as motion planning libraries.

Server

The server maintains the control and estimation pipelines on the robot and takes care of

publishing the current state and status to the network.

Direct communication with the base and manipulator is achieved through their respec-

tive APIs, but in order to connect these libraries to our networked software structure the

ros_control package is used. It provides a valuable set of tools that abstract the notion

of a robot interface and enable quick and easy integration of APIs into ROS-based system

architectures.

The transforms representing all of the chains located in the robots URDF2 file result-

ing from state estimation are published through the robot_state_publisher pack-

age. The package publishes the transforms in the form of standardized \tf ROS messages.
2Unified Robot Description Format - Standard file format used for semantic robot descriptions.

24

The package is launched on the robot’s local machine since the standardized structure of the

control pipeline relies on the transforms published by this package.

5.2. State estimation

The EKF algorithm described in Section 3.3 is available in the robot_localization

package (Moore and Stouch, 2014). This package fuses odometry estimates provided by

various sources, ideally resulting in a higher-accuracy estimate. The estimates need to be

published to a ROS topic in the form of a nav_msgs/odometry message. Each state

estimation node in robot_localization begins estimating the vehicle’s state as soon

as it receives a single measurement. If there is a holiday in the sensor data (i.e., a long

period in which no data is received), the filter will continue to estimate the robot’s state via

an internal motion model.

5.3. Motion planning

Two motion planning algorithm have been developed, one implementing the task-priority

(Section 4.3) scheme and the other implementing the scheme in (4.34) via the SQP (Sec-

tion 4.4) algorithm.

Unifying the implementations is a common linear algebra framework, the Eigen33 li-

brary. The Eigen3 library is a powerful linear algebra toolbox capable of handling a vast

array of dense and sparse matrix calculations. It is also templated and heavily optimized for

reducing redundant value copying and memory management, making it the basis of many

algorithm implementations across a range of fields.

5.3.1. Task-priority

Unlike the SQP implementations, task-priority is implemented using only the Eigen3 and

C++ standard libraries. It relies on singular value filtering (4.12) and the selectively damped

least squares (4.11) formulation to maintain numeric stability in the pseudoinverse operation.

These functions have been developed from scratch in highly abstracted template form for the

purposes of this work.

3http://eigen.tuxfamily.org/index.php?title=Main_ Page

25

Figure 5.2: Scheme of ros_ control functionalities

5.3.2. Sequential convex optimization

Implementation of the sequential convex optimization algorithm is done using Google Ceres4

solver for the underlying convex optimization subprogram. The objective and convexified

constraint functions are implemented as classes in order to be compatible with the solver.

Ceres is configured to run using the Levenberg-Marquardt trust-region strategy with the

Broyden–Fletcher–Goldfarb–Shanno algorithm being used to perform line search.

5.4. Control

The low level control loops of the Thing mobile manipulator rely on the proprietary APIs

of both the UR10 and Ridgeback. Thus, the main challenge of control architecture imple-

mentation lies in interfacing with the control inputs and outputs rather than parametrization

of a control loop. The ros_control package functions as an integration tool for robot

APIs into the networked structure of ROS-based systems. The hardware_interface

(Figure 5.2) class is used to wrap the read and write methods of the respective APIs in to

function handles. These handles can then be used by a selection of controllers within the

package to either forward commands or implement a control loop. A ros controller has

4http://ceres-solver.org/

26

many types and is configured using a YAML5 file. Depending on the interface, this con-

troller will forward commands or actually control the signal using tunable PID parameters.

Additionally, we use joint trajectory controllers which can handle and interpolate multiple

timed trajectory points.

5YAML Ain’t Markup Language - http://yaml.org

27

6. Experimental results

This chapter covers the results of the presented state estimation and motion planning ap-

proaches. Since motion planning was considered on a purely kinematic level, it can be

extensively tested in both simulation and on the real robot. State estimation testing proved

more difficult as dynamic effects such as slip are not easily simulated. For this reason state

estimation was only explored in data sets collected from the real robot. Localization tests

(a) Tests in the VICON laboratory (b) Simulation testing setup

Figure 6.1: Example of some real and simulated test setups.

were performed in the autonomous robotics laboratory at the University of Toronto Institute

for Aerospace Studies (UTIAS).

Two cases of real robot tests are presented. The first test focuses on localization, record-

ing the Thing movement under arbitrary user inputs. The second test consists of performing

a set of Cartesian trajectories where the UR10 maintains a straight line while the Ridgeback

moves in a sinusoidal fashion.

The Thing mobile manipulator is simulated using the open-source Gazebo simulator.

The main advantage of this simulator is that it is fully integrated within the ROS ecosystem.

Furthermore, the ros_control controllers used on the actual robot are also used in the

Gazebo simulation, making interfacing identical to the real robots. Other sensors such as

LIDAR can also be simulated with a configurable amount and characteristic of noise.

28

6.1. Localization

Figure 6.2 shows the results of base localization on a dataset consisting of manual Ridgeback

movement inputs. Two variants are compared: the first variant uses an EKF to achieve fusion

of both the wheel and LIDAR odometry, the second variant integrates wheel odometry alone

using the EKF only to account for measurement noise. Ground truth was established using

the VICON motion capture system, which provides sub-millimetre level accuracy. VICON1

is a commercial motion capture system often used for the purpose of setting ground-truth

values for state estimation tests.

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

x [m]

y
[m

]

GT
W+L
W

Figure 6.2: Localization using a fusion of wheel and LIDAR odometry (W+L) to the wheel odometry

alone (W). The ground truth (GT) is established using the VICON motion capture system.

The expected result would show that fusing two odometry sources provides a better mo-

tion estimate than using wheel odometry alone. However, this might not always be the case

as the LIDAR odometry algorithm from Section 3.3.2 relies heavily on the number of data

points. Additionally, the LIDAR odometry algorithm provides a covariance matrix that is

associated with the coarse-to-fine scheme of the solver and not the uncertainty of the pose

estimate itself. This is seen in Figure 6.3, where the mean squared error (MSE) of the base

pose estimates is shown. The position MSE of the fused odometry is a slight improvement

over the wheel odometry alone, however this depends on the orientation of the vehicle and
1https://www.vicon.com/

29

the number of obstacles the LIDAR is facing. Looking at the orientation MSE, it is visi-

ble that the fused estimate actually becomes worse than the alternative, which should never

happen with an EKF if proper covariances are provided.

In absolute terms , both methods have an increasing MSE that is reasonably low. After

120 seconds of fast erratic movement, the position MSE of 0.05 [m]2 equates to about 20

[cm] of error. It is the authors opinion that this shows advantages of an holonomic omni-

drive over the standard wheeled drives, as a high degree of robustness is shown both in angle

and position estimates. A global position estimate source such as a GPS could periodically

improve the base position estimate, compensating for the odometry error.

0 20 40 60 80 100 120 140
0

2

4

6

8
·10−2

Time [s]

M
SE

[m
2]

W+L
W

0 20 40 60 80 100 120 140
0

1

2

3

4
·10−2

Time [s]

M
SE

[r
a
d
]

Figure 6.3: The mean quared error of the position (top) and orientation (bottom) estimates.

The conclusion drawn is that further tuning of the covariance matrix for the LDIAR

odometry is necessary. Another option would be using an algorithm based on ICP, where

a closed-form formulation for covariance is available (Censi, 2007). Further improvements

to localization could also be obtained by using more sensors. The Ridgebacks IMU sensor

was not available for this work due to hardware problems. It stands to reason that it would

improve the estimate, especially since the wheel odometry + IMU pairing is ubiquitous in

mobile robot state estimation problem

30

6.2. Dual trajectory

To test the control and motion planning, the mobile manipulator performed a 2 metre long

trajectory in the laboratory. The goal trajectory involves the Ridgeback following a sinu-

soidal reference while the arm draws a straight line with constant orientation. The choice of

trajectory was made based on prospective mobile manipulator tasks such as welding or spray

painting. This task involves a fully defined trajectory which leaves no room for optimization,

therefore the task priority motion planner from 4.3 is used.

0 0.5 1 1.5 2
1

1.5

2

2.5

x [m]

y
[m

]

Estimate
GT

1 1.5 2 2.5
1.03

1.04

1.04

1.04

y [m]

z
[m

]

0 0.5 1 1.5 2
1.03

1.04

1.04

1.04

x [m]

z
[m

]

0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

x [m]

y
[m

]

Figure 6.4: The positions of mobile manipulator frames during trajectory execution, comparison of

ground truth and estimate. The lower right corner shows the Ridgeback trajectory, while the other

three plots shows the end-effector trajectory from different viewpoints.

From Figure 6.4 it can be concluded that the end-effector and base estimate deviation

from the ground truth is heavily correlated. Moreover, both frames significantly deviate in

the x-y (ground) plane. The estimation error in the bottom left and top right plots showing the

y-z and x-z planes is negligible. From this, the assumption made in Chapter 3 is confirmed.

More precisely, this means that the majority of the end-effector state estimation error stems

from localization.

The trajectory joint solution is driven to an arbitrary error using the motion planning

scheme. Errors still emerge from the fact that the control is purely kinematic and thus ignores

dynamic effects, thus the scheme is vulnerable to non-controlled environments.

31

6.3. Trajectory optimization

Trajectory optimization defined with the motion planning scheme in Section 4.4 is tested

in this section. The chosen performance metric is the manipulability measure defined in

(4.33), a configuration resulting in a higher value is deemed better. Testing is done in simu-

lation as the optimization is purely kinematic and testing on the real robot will not produce

significantly differing results.

1 2 3

−6

−4

−2

0
·10−2

x [m]

y
[m

]

baseline
optimized

0 500 1,000

2.6

2.8

3

3.2

3.4

samples

m
an

ip
ul

ab
ili

ty

0 500 1,000
−0.1

0

0.1

0.2

samples

θ
[r

ad
]

0 0.5 1 1.5 2
−0.4

−0.2

0

0.2

0.4

x [m]

y
[m

]

Figure 6.5: Comparison of optimized trajectory to non-optimized. The lower left corner shows the

Ridgeback orientation θ, while the lower right shows the position. End-effector position is in the

upper left corner, while manipulability is in the upper right.

The tested trajectory is the same as in Section 6.2, sinusoidal base movement with a

linear end-effector trajectory. As defined in 4.4, we add constraints to the motion planning

scheme for solving this trajectory. Keeping the base in the ±1 cm range of any goal position

and ±0.1 rad away from a goal orientation, manipulability optimization is performed.

In Figure 6.5 (top right) a consistent manipulability increase is visible for the optimized

solution, keeping the configuration values within constraints up to a tolerance of approxi-

mately 10 %. Some extra oscillations can be seen in the end effector trajectory, but these are

the result of imperfect simulated controller parametrization rather than the algorithm itself.

32

7. Conclusion

In this thesis an analysis of a full motion planning and state estimation solution for a mobile

manipulator was presented. It has been found that the majority of state estimation errors stem

from base localization. The state estimation solution utilizes the wheel and laser range finder

odometry fused using an extended Kalman filter to provide a reasonable base pose estimate.

Two motion planing methods which solve for a base and end-effector trajectory are

successfully implemented. A classical task priority approach is used as a tried-and-true

approach, while sequential convex optimization is presented as a contemporary approach

which enables advanced trajectory optimization. Trajectory optimization methods have been

explored which leverage the omni-directional nature of the base, opening up the possibility

of various kinematic and active perception solutions.

A software architecture is developed for interfacing with user defined Cartesian trajec-

tories. An approach is taken which defines an robust and highly tested core for interfacing

with the local controllers, taking motion planning solutions as modules which can in turn

be developed separately. Individual software components are ran in ROS scheme, enabling

networked interfacing which is in itself highly tested and modular.

The results show satisfactory performance of long Cartesian trajectories, subject to a

decrease of position estimate accuracy with time. A manipulability optimization scheme

is tested in simulation, showing promising results. Future work can be done on several

different aspects. The motion planning scheme could be modified in an intelligent manner

using AI methods, changing trajectory optimization criteria depending on the environment.

Other avenues would include improving the state estimates using SLAM or more odometry

sources, utilizing the gripper for tasks, or performing sensor calibration autonomously.

33

BIBLIOGRAPHY

John Baillieul. Kinematic programming alternatives for redundant manipulators. In Robotics

and Automation. Proceedings. 1985 IEEE International Conference on, volume 2, pages

722–728. IEEE, 1985.

Paul J Besl, Neil D McKay, et al. A method for registration of 3-d shapes. IEEE Transactions

on pattern analysis and machine intelligence, 14(2):239–256, 1992.

Anthony Bloch, John Baillieul, Peter Crouch, Jerrold E Marsden, Dmitry Zenkov, Perinku-

lam Sambamurthy Krishnaprasad, and Richard M Murray. Nonholonomic mechanics and

control, volume 24. Springer, 2003.

Samuel R Buss and Jin-Su Kim. Selectively damped least squares for inverse kinematics.

Journal of Graphics tools, 10(3):37–49, 2005.

Andrea Censi. An accurate closed-form estimate of icp’s covariance. In Robotics and Au-

tomation, 2007 IEEE International Conference on, pages 3167–3172. IEEE, 2007.

Stephen K Chan and Peter D Lawrence. General inverse kinematics with the error damped

pseudoinverse. In Robotics and Automation, 1988. Proceedings., 1988 IEEE International

Conference on, pages 834–839. IEEE, 1988.

Stefano Chiaverini. Singularity-robust task-priority redundancy resolution for real-time kine-

matic control of robot manipulators. IEEE Transactions on Robotics and Automation, 13

(3):398–410, 1997.

Stefano Chiaverini, Bruno Siciliano, and Olav Egeland. Review of the damped least-squares

inverse kinematics with experiments on an industrial robot manipulator. IEEE Transac-

tions on control systems technology, 2(2):123–134, 1994.

Adria Colomé and Carme Torras. Redundant inverse kinematics: Experimental comparative

review and two enhancements. In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ

International Conference on, pages 5333–5340. IEEE, 2012.

34

Adria Colomé and Carme Torras. Closed-loop inverse kinematics for redundant robots:

Comparative assessment and two enhancements. IEEE/ASME Transactions on Mecha-

tronics, 20(2):944–955, 2015.

Keisuke Fujii. Extended kalman filter. Refernce Manual, 2013.

Mariano Jaimez, Javier G Monroy, and Javier Gonzalez-Jimenez. Planar odometry from a

radial laser scanner. a range flow-based approach. In Robotics and Automation (ICRA),

2016 IEEE International Conference on, pages 4479–4485. IEEE, 2016.

Moharam Habibnejad Korayem and H Ghariblu. Analysis of wheeled mobile flexible ma-

nipulator dynamic motions with maximum load carrying capacities. Robotics and Au-

tonomous Systems, 48(2):63–76, 2004.

Moharam Habibnejad Korayem, HN Rahimi, and A Nikoobin. Mathematical modeling and

trajectory planning of mobile manipulators with flexible links and joints. Applied Mathe-

matical Modelling, 36(7):3229–3244, 2012.

Signe Moe, Gianluca Antonelli, Andrew R Teel, Kristin Y Pettersen, and Johannes Schrimpf.

Set-based tasks within the singularity-robust multiple task-priority inverse kinematics

framework: General formulation, stability analysis, and experimental results. Frontiers

in Robotics and AI, 3:16, 2016.

T. Moore and D. Stouch. A generalized extended kalman filter implementation for the robot

operating system. In Proceedings of the 13th International Conference on Intelligent Au-

tonomous Systems (IAS-13). Springer, July 2014.

Yoshihiko Nakamura. Advanced robotics: redundancy and optimization. Addison-Wesley

Longman Publishing Co., Inc., 1990.

Yoshihiko Nakamura, Hideo Hanafusa, and Tsuneo Yoshikawa. Task-priority based redun-

dancy control of robot manipulators. The International Journal of Robotics Research, 6

(2):3–15, 1987.

Evangelos Papadopoulos and Yves Gonthier. A framework for large-force task planning of

mobile and redundant manipulators. Journal of Robotic Systems, 16(3):151–162, 1999.

John Schulman, Jonathan Ho, Alex X Lee, Ibrahim Awwal, Henry Bradlow, and Pieter

Abbeel. Finding locally optimal, collision-free trajectories with sequential convex op-

timization. In Robotics: science and systems, volume 9, pages 1–10, 2013.

Lorenzo Sciavicco and Bruno Siciliano. Modelling and control of robot manipulators.

Springer Science & Business Media, 2012.

35

Siciliano B Slotine. A general framework for managing multiple tasks in highly redundant

robotic systems. In proceeding of 5th International Conference on Advanced Robotics,

volume 2, pages 1211–1216, 1991.

Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic robotics. 2005. CUR-

RICULUM VITAE, 2005.

JJ Uicker, J Denavit, and RS Hartenberg. An iterative method for the displacement analysis

of spatial mechanisms. Journal of Applied Mechanics, 31(2):309–314, 1964.

Jianxin Xu, Wei Wang, and Yuanguang Sun. Two optimization algorithms for solving

robotics inverse kinematics with redundancy. Journal of Control Theory and Applications,

8(2):166–175, 2010.

Yoshio Yamamoto and Xiaoping Yun. Coordinating locomotion and manipulation of a mo-

bile manipulator. In Decision and Control, 1992., Proceedings of the 31st IEEE Confer-

ence on, pages 2643–2648. IEEE, 1992.

36

Appendix A
Components

A.1. Hokuyo LIDAR

Figure A.1: The Hokuyo UST-10LX LIDAR

The Hokuyo UST-10LX Scanning Laser Rangefinder is a small, accurate, high-speed

device for obstacle detection and localization of autonomous robots and automated material

handling systems. This model uses Ethernet interface for communication and can obtain

measurement data in a wide field of view up to a distance of 10 meters with millimeter

resolution. This sensor uses a laser source to scan 270◦ field of view. Positions of objects

in the range are calculated with step angle and distance. Sensor outputs these data through

communication channel.

37

A.2. FT300

(a) Front (b) Side

Figure A.2: The FT300 force-torque sensor

The UR10 on the Thing mobile manipulator has a variety of sensors built-in for use in

various tasks. One such sensor is the FT300 force-torque sensor by Robotiq. In terms of

mechanical fit, the Sensor has an embedded coupling to fit directly on the UR wrist. The

tool side of the Sensor matches the UR bolt pattern. It’s application range from impedance

control to perception and contact calibration of the manipulator.

A.3. Robotiq Gripper

Figure A.3: The Robotiq gripper

The Robotiq gripper is a three-fingered adaptive gripper used as the end effector on the UR10

manipulator. It is created for applications in advanced manufacturing and robotics research.

All the fingers can be independently position,velocity and force controlled and can exert

forces from 50 to 60 N at the finger tips.

38

Appendix B
DH parameters

Link di θi ai αi

1 0 π
2

0 π
2

2 qx
π
2

0 π
2

3 qy
π
2

0 π
2

4 0 qθ 0 0

5 0.653 0 0.27 0

6 0 π
2

0.01 0

7 0.1273 q0 0 π
2

8 0 q1 -0.612 0

9 0 q2 -0.5723 0

10 0.163941 q3 0 π
2

11 0.1157 q4 0 −π
2

12 0.0922 q5 0 0

Table B.1: Thing’s DH parameters

39

Appendix C
Robot operating system

ROS is an open source software development tool for implementing robotics software. It

provides the opportunity of hardware abstraction, low level device control, implementation

of commonly used functionalities, messages between different processes and package man-

agement. It provide tools and libraries which utilize the the opportunity of communicating

between disturbed computers, obtaining, writing and running code.

ROS has three different levels of concepts

– The file system level

Handles the main unit for a ROS system which is packages. A package may include

data sets, ROS dependent libraries, configure files etc. to define a ROS process. In

ROS a process is denoted as a node.

– The computation graph level

Handles the communication of the peer to peer network of the system in which data

is processed. Through the computation graph level, the different nodes can commu-

nicate with each other by messages. When a node is sending data it is said to be

publishing a topic. The different nodes can then subscribe to this topic to get the

information that is published.

– The Community level

ROS has a huge community which contain distribution of software installations,

repositories and documentation of ROS. It also has a question and answer section

with ROS related topics.

This community makes the process of learning the system considerably easier.

40

From Global to Local: Maintaining Accurate Mobile Manipulator State Estimates
Over Long Trajectories

Abstract

In this thesis the problem of performing a long trajectory while maintaining an accu-

rate state estimate is explored in the case of a mobile manipulator. The mobile manipulator

used consists of a 6 degree-of-freedom manipulator and a omni-directional platform. State

estimation is performed using a probabilistic framework, fusing multiple velocity and posi-

tion estimates. Two approaches are explored for motion planning, the classical task priority

approach and the more contemporary sequential convex optimization. Software implemen-

tation details are presented and tests are performed on both the simulation and real robot.

The results show satisfactory trajectory following performance using local state estimates

and motion planning.

Keywords: Mobile manipulator, motion planning, state estimation, trajectory, arm, ROS

Naslov

Sažetak

U ovom diplomskom radu proučava se problem estimacije stanja i praćenja trajektorije u

slučaju mobilnog manipulatora. Korišteni mobilni manipulator sastoji se od manipulatora sa

šest stupnjeva slobode i svesmjerne mobilne platforme. Estimacija stanja vrši se ujedinjujući

više različitih izvora estimacija brzina i pozicija. Proučeni su klasičan i suvremen pristup

planiranju kretanja i njihovi rezultati su prikazani. Programska implementacija je objašnjena

i eksperimenti su izvršeni u simulaciji i na stvarnom robotu. Rezultati pokazuju uspješno

izvršavanje trajektorija koristeći prikazane metode planiranja kretanja i estimacije stanja.

Ključne riječi: Mobilni manipulator, planiranje kretanja, estimacija stanja, trajektorija,

robotska ruka, ROS.

