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Abstract—In this paper we present a prototype system that
aids the operator of a Personal Air Vehicle (PAV) by actively
monitoring vehicle surroundings and providing autonomous
control inputs for obstacle avoidance. The prototype is devel-
oped for a Personal Air Transportation System (PATS) that will
enable human operators with low level of technical knowledge
to use aerial vehicles for a day-to-day commute. While most
collision avoidance systems used on human controlled vehicles
override operator input, our proposed system allows the
operator to be in control of the vehicle at all times. Our
approach uses a dynamic potential field to generate pseudo
repulsive forces that, when converted into control inputs, force
the vehicle on a trajectory around the obstacle. By allowing
the vehicle control input to be the sum of operator controls
and collision avoidance controls, the system ensures that the
operator is in control of the vehicle at all times. We first present
a dynamic repulsive potential function and then provide a
generic control architecture required to implement the collision
avoidance system on a mobile platform. Further, extensive
computer simulations of the proposed algorithm are performed
on a quadcopter model, followed by hardware experiments on
a stereo vision sensor. The proposed collision avoidance system
is computationally inexpensive and can be used with any sensor
that can produce a point cloud for obstacle detection.

Keywords-collision avoidance; potential fields; personal aerial
vehicles; stereo vision; mobile robots

I. INTRODUCTION

Road traffic congestion is a growing concern for all major
cities in the world [1]. While there has been a continu-
ous increase in the number of vehicles, limited expansion
of the road infrastructure has pushed the system to its
saturation point. According to the Federation of Canadian
Municipalities, city traffic costs 32 days worth of productive
work time annually, adding up to losses of around $10
billion for the Canadian economy [2]. To address this issue,
active research is being done in the area of Intelligent
Transportation Systems (ITS) and self-driving cars. While
substantial improvements in traffic congestion are expected
from these systems, the solutions are temporary as they
will not be able to cope up with the increasing demand
for personal mobility. The development of a Personal Air
Transportation System (PATS) is a promising solution to this
problem.

A vast amount of research has been done on the develop-
ment of a Personal Air Vehicle (PAV) [3], [4], [5], however
the research on Personal Air Transportation Systems (PATS)
has been very limited. The current aerial transportation
system depends on Air Traffic Controllers (ATC) for navi-
gation and skilled pilots for aircraft control. In contrast, a
successful PATS will enable human operators with a low
level of technical knowledge to control a vehicle without
any navigational directions from an ATC [1], [6]. Similar
to roadways, PATS will have predefined three-dimensional
airways used for navigation. As a PAV is expected to be
controlled by people with limited technical knowledge, it
is critical to develop a fail-safe navigation and collision
avoidance system. If the collision avoidance problem is not
addressed, the catastrophic results of aerial collisions will
limit the use of PAVs in civil airspace [7].

The focus of this research is to develop a collision
avoidance system for PATS. In this research, a stereo vision
sensor is used to provide a point cloud representation of the
world [8], [9], [10], while a Virtual Potential Field (VPF)
is used for collision avoidance [11], [12]. A VPF utilizes
potential field theory to calculate a virtual repulsive force
that is used to direct the vehicle away from the identified
obstacle. The virtual force vector is mapped onto vehicle
control inputs to provide the desired collision avoidance
trajectory. The framework developed in this research is
universal as it can be implemented on a variety of mobile
platforms including Micro Air Vehicles (MAVs), Unmanned
Aerial Vehicles (UAVs), self-driving cars, and rovers.

II. RELATED WORK

A. Personal Air Transportation System

Extensive work on PATS has been done under a European
commission funded project called myCopter [1]. The project,
which started in 2011 and ended in 2014, was aimed at
providing a concept of operations for PATS infrastructure.
A similar study was conducted by the National Aeronautics
and Space Administration (NASA) in 2006 [6]. The study
highlighted how the existing Federal Aviation Administra-
tion (FAA) aerial transportation infrastructure is incapable



of handling the air traffic volume generated by PATS. The
study from [6] identifies the key requirements for a PAV and
the PATS infrastructure. Among the identified requirements
for PATS, active collision avoidance on a human controlled
PAV is the most critical.

B. Collision Avoidance

1) Optic Flow Based Collision Avoidance: Optic flow
is a predominant collision avoidance technique used with
monocular camera systems. The principle of optic flow
makes use of motion parallax to determine the flow vector
field. The Lucas-Kanade algorithm, which uses intensity
gradients to estimate the flow vectors, was employed by
Gosiewski and Cieśluk in [13]. Robust optic flow com-
putation techniques were developed by Alireza and Suter
in [14] and Beauchemin and Barron in [15]. A Lukas-
Kanade gradient based optic flow method was also used
by Zufferey and Beyeler in [16]. In the paper, the authors
developed a control strategy based on a series of optic flow
detectors pointing in different viewing directions around an
aircraft. The resulting optic flow vector field was mapped
onto control inputs for collision avoidance.

Optic flow techniques work well with a single obstacle
and for flights in canyon-style streets. The flow method has
difficulty dealing with large numbers of obstacles that have
uniform texture such as, for example, tall buildings of a
similar colour. This issue eliminates the possibility of using
optic flow as means of performing collision avoidance for
PAVs in the PATS infrastructure.

2) Potential Field Based Collision Avoidance: An ap-
proach for path planning using potential functions was first
introduced by Khatib [17]. Chuang and Ahuja [18] extended
the idea from a point-based potential function to one that
involving structured obstacle geometries. The concept was
then extended further to multiagent systems by Dimarogonas
[19]. Other applications of potential fields include [12], [20],
[21].

An extension to the concept of static potential fields was
made by Ge and Cui [22], [23]. They introduced a dynamic
potential function which varies with the relative velocity be-
tween the vehicle and obstacle. Potential functions presented
in [22] and [23] form the basis for the collision avoidance
strategy proposed in this research.

III. DYNAMIC POTENTIAL AND FORCE FIELDS

The proposed collision avoidance algorithm uses an ar-
tificial Repulsive Potential Field (RPF) to determine con-
trol inputs required for obstacle avoidance. Potential fields
provide a promising solution to the collision avoidance
problem for PAVs. The basic concept is to fill the space
around a vehicle with an artificial repulsive potential field.
A Repulsive Potential Field (RPF) centered on the vehicle
establishes a safety zone; the presence of an obstacle inside
this safety zone activates the collision avoidance controller.

The magnitude and direction of force generated by the
repulsive potential is mapped onto control inputs in order
to drive the vehicle away from the detected obstacle. The
repulsive potential field used in this research is adopted from
[22] and [23].

A. Assumptions

Following assumptions were made while developing a
RPF for dynamic systems:

1) The vehicle is equipped with a sensor that can detect
an obstacle as a point or clouds of points.

2) Obstacles are defined by a set of points U =
{u1, u2, u3...un} within a Sphere of Influence (SOI).

3) The relative positions and velocities between the ve-
hicle and all points in the set U can be determined.

B. Sphere of Influence

A SOI is defined by the horizontal angle θh and the
vertical angle ψv of the Field of View (FOV) of the vision
sensor(s). The radius of the SOI, given by rsoi defines
the boundary between activation and deactivation of the
collision avoidance system. A critical radius rm, which
is the distance traveled by the vehicle under maximum
deceleration, specifies the distance at which the repulsive
potential goes to infinity.

The defined sphere of influence provides a safety zone in
which the collision avoidance system is active. The sphere
of influence is shown graphically in Figure 1.
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Figure 1. The SOI is defined by the horizontal angle θh and vertical angle
ψv of the FOV of the vision sensor. The radius of sphere of influence rsoi
is defined by the characteristics of the vehicle.

C. Single Point Repulsive Potential Field

The proposed repulsive potential field is analogous to the
electric potential field. The magnitude is inversely propor-
tional to the distance between the vehicle and the obstacle
and is also dependent on the relative velocity between them.
By Assumption 3, the relative velocity between the vehicle



and any point u in the set U can be determined and is given
by

vvo(t) = [ ~vv(t)− ~vo(t)]
ᵀ ~nvo (1)

where ~nvo is a unit vector pointing from vehicle to the
obstacle, ~vv is the velocity of the vehicle and ~vo is the
velocity of the obstacle.

To include the effect of vehicle limitations into the repul-
sive potential function, the distance traveled by the vehicle
under maximum deceleration is defined by

rm =
v2vo

2amax
(2)

where rm is the distance traveled and amax is the maximum
deceleration that can be achieved.

If rsoi is the radius of the sphere of influence, rm is the
distance traveled by the vehicle under maximum declaration,
and r is the shortest distance between the vehicle and a point
u, then the function defining the repulsive potential for a
single point in the set U is given by

Urep (~p, ~v)=



0, if r − rm ≥ rsoi or vvo ≤ 0

µ

(
1

r( ~pv, ~po)− rm
− 1

rsoi

)
,

if 0 < r − rm < rsoi and vvo > 0

∞, if r < rm and vvo > 0

(3)

where µ is the constant of proportionality, ~po is the vector
defining the position of the obstacle and ~pv is the vector
defining the position of the vehicle.
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Figure 2. Plot of the potential function defined in Equation 3. The potential
function is undefined for r < rm and goes to 0 for r - rm ≥ rsoi. The
following parameters are used to define the potential function; rsoi = 30,
rm = 5, µ = 200.

The potential function defined in Equation 3 is plotted
in Figure 2. The magnitude of the potential goes to 0 at
rsoi and approaches ∞ as the distance between the vehicle
and the obstacle approaches rm. Between rsoi and rm the

repulsive potential is inversely proportional to the distance
between the vehicle and the obstacle.

Equation 3 assumes that obstacles can be detected over
the entire 360◦ range around the vehicle. It is known that
due to a limited sensor FOV, the vehicle can only detect
obstacles within the SOI limited by the FOV. A modified
repulsive potential function Urepa

that incorporates detection
limitations is defined by

Urepa (~p, ~v)

=

Urep, if
(
−θh

2
≤ θ ≤ θh

2

)
or
(
−ψv

2
≤ ψ ≤ ψv

2

)
0, otherwise

(4)

where θ is the polar angle and ψ is the azimuthal angle.
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Figure 3. Plot of the modified potential function defined in Equation 4.
The potential function is undefined for r < rm and goes to 0 for r - rm
≥ rsoi. The potential function is limited by the SOI. Following parameters
are used to define the potential function; rsoi = 30, rm = 5, µ = 200, θh
= 98◦. Since the potential function is plotted on a 2-D meshgrid ψv is not
included.

The potential function defined in Equation 4 is plotted in
Figure 3. The potential function is similar to the one defined
in Equation 3 and Figure 2 but is bounded by the FOV of
the sensor.

D. Single Point Repulsive Force Field

While the repulsive potential field defines the energy of
the system, a repulsive force field is required to determine
the direction that the vehicle should follow to avoid an
obstacle. When the obstacle is inside the sphere of influence,
a force vector is generated which is defined by the negative
of the gradient of the potential function given in Equation 3
and Equation 4.

Vectors defining the repulsive force field provide the
magnitude/intensity of the signal for avoidance control ma-
neuvers, while the direction of the force vector defines the
direction that the vehicle should follow to avoid obstacles.



The repulsive force field is given by

(5)Frep(~p, ~v) = −∇Urep(~p, ~v)

= −∇pUrep(~p, ~v)−∇vUrep(~p, ~v)

where ~p is the position vector and ~v is the velocity vector.
The magnitude of velocity between the vehicle and the

obstacle is given by
(6)vvo(t) = [ ~vv(t)− ~vo(t)]

ᵀ ~nvo

where ~nvo is defined by

~nvo =
~po(t)− ~pv(t)

‖ ~po(t)− ~pv(t)‖
, (7)

that is, ~nvo is the vector pointing from the vehicle to the
obstacle which provides the direction of the obstacle in the
body frame.

The gradient of vvo(t) with respect to ~v is given by

∇vvvo(t) = ~nvo (8)

and that with respect to ~p is given by

∇pvvo(t) = −
1

‖ ~po(t)− ~pv(t)‖
[vvo(t) ~nvo−( ~vv(t)− ~vo(t))]

(9)
Taking rm from Equation 2, substituting it in Equation 3

and calculating the gradient of the potential function, we get
the following force field

~Frep (~p, ~v) =


0, if r − rm ≥ rsoi or vvo ≤ 0
~Frep1

+ ~Frep2
,

if 0 < r − rm < rsoi and vvo > 0

∞, if r < rm and vvo > 0
(10)

where

~Frep1
=

−µ
(r( ~pv, ~po)− rm)2

(
1 +

vvo
amax

)
~nvo (11)

~Frep2
=
µvvo( ~vv(t)− ~vo(t)− vvo(t) ~nvo)

r( ~pv, ~po)amax(r( ~pv, ~po)− rm)2
(12)

The repulsive force field in Equation 10, Equation 11 and
Equation 12 is defined using a unit vector ~nvo pointing from
the vehicle to the obstacle. Components of ~nvo resolve the
force vector into its components in the body frame.

E. Repulsive Force Field from a Point Cloud
The repulsive potential and force field due to a single

point can be extended to a point cloud. If the point cloud
generated around the object is defined by points in the
set U , then the force exerted by every point in U can be
added to determine the maneuver direction. An average force
is calculated to determine the maneuver magnitude. The
equation for normalized total force is give by

F̂reptot =

n∑
i=1

~Frepi

n
(13)

where n is the total number of detected points, i.e., all
points in the set U . As the point cloud enters the sphere
of influence, the vehicle responds to force F̂reptot specified
in Equation 13.

IV. CONTROL ARCHITECTURE

When used on a PAV, the collision avoidance system will
work in conjunction with the primary Guidance, Navigation
and Control (GNC) system (which may include a human
controller) while actively monitoring the presence of obsta-
cles in its surroundings. A generic control architecture for
the proposed Collision Avoidance System (CAS) is shown
in Figure 4.
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Figure 4. Generic control architecture for the proposed collision avoidance
system.

The following four blocks are required for implementation
of the collision avoidance system:

1) Sensor
2) Dynamic Potential and Force Field (DPFF)
3) Converter
4) Vehicle Control

A. Sensor
The sensor provides a 3 Dimensional (3D) point cloud

which is used to calculate the distance to a detected obstacle.

B. Dynamic Potential and Force Field
The dynamic potential and force field block uses the point

cloud generated from the sensor and determines the relative
distance and velocity between the vehicle and obstacle. This
information is then used to calculate the virtual repulsive
force using equations provided in Section III.

C. Converter
The converter block translates repulsive forces from the

dynamic potential and force field block into control inputs.
The calculated forces are first capped at the maximum
allowable force Fmax. The saturated force is then converted
into control inputs using gains defined by

K =
θmax

Fmax
(14)



where θmax is the maximum value of the control variable1

and Fmax represents the force at which the vehicle applies
maximum control input.

Conversion of Repulsive Force into Control Inputs

Distance to obstacle

R
ep

u
ls
iv

e
fo

rc
e

an
d

sc
al

ed
co

n
tr

ol
in

p
u
t

 

 
Repulsive Force

Scaled Control Input

Sphere of
Influence

Max Control Input

Figure 5. Mapping between calculated repulsive force and control input.
Maximum control input corresponds to the value that saturates the actuator.
While the force can go to infinity, control input is capped at the saturation
point. The control input curve follows a trend similar to that of the
calculated repulsive force.

Values for θmax and Fmax are platform dependent. These
parameters can be tuned to achieve the desired vehicle
response. Figure 5 shows the relationship between the re-
pulsive force and the mapped control inputs.

D. Vehicle Control

The vehicle control block accepts inputs from the global
navigation system through primary control commands as
well as collision avoidance inputs from the converter block.
Global navigation can either be through a human controlled
system (where a pilot provides navigation inputs) or it can be
autonomous. The vehicle control loop block actively accepts
command inputs from both streams and provides the vehicle
controller with the sum of the two. When an obstacle is
outside the sphere of influence, commands from the collision
avoidance system are 0. Once an obstacle is detected inside
the sphere of influence, collision avoidance commands are
added to the primary navigation commands to enable the
vehicle to avoid the obstacle.

V. SIMULATION

This section presents a Simulink model developed to
simulate the collision avoidance system. A cube shaped
obstacle with 500 randomly distributed points is gener-
ated while the entire control architecture for the collision
avoidance system discussed in Section IV is modeled on
a quadcopter Unmanned Aerial Vehicle (UAV). An open

1Since we simulate this system on a quadcopter UAV, the maximum
control input in the z direction is the maximum available thrust while
the maximum control input in the x and y directions corresponds to the
maximum allowable roll and pitch angles, respectively.

source quadcopter dynamics controller is used to simulate
vehicle dynamics. The simulation reference frame is shown
in Figure 6.

Figure 6. Quadcopter reference frame used for simulation [24]

A. Simulation Parameters

The following values are used for the various parameter
of the system:

1) A maximum deceleration (amax) of 5m/s2 is chosen
for this simulation. This corresponds to a maximum
lateral g-force of 0.5g.

2) The radius of sphere of influence (rsoi) is set to 5m.
3) The constant of proportionality (µ) is set to 20.

This corresponds to an increase or decrease in the
magnitude of the potential field which corresponds to
aggressiveness in the vehicle response.

4) The maximum force in the x, y, and z directions is set
at 10. A higher maximum force at the same maximum
control input would correspond to a lower gain and
will thus lead to less aggressive maneuvers and closer
approach distance.

5) The maximum roll and pitch angles for the vehicle are
set at 45◦ while the maximum thrust is set at 500.

6) The mass of the quadcopter is 4 kg.
7) The radius of the quadcopter is 0.165m.
8) The moment of inertia I matrix of the quadcopter is

given by

I =

0.082 0 0

0 0.082 0

0 0 0.1490

 (15)

B. Simulation Results and Discussion

The system was tested for various different approach
cases. In each simulation run, the location of the robot,
the repulsive forces, the control inputs, and the minimum
separation distance were recorded. Results are presented for
a head-on constant velocity approach in +x direction. The



vehicle trajectory is shown in Figure 7, the repulsive forces
are shown in Figure 8, and the control inputs are shown in
Figure 9
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Figure 7. Vehicle trajectory for head-on approach in +x direction.
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Figure 8. Repulsive forces in x, y, and z directions during collision
avoidance.

As observed in Figure 7, the quadcopter starts moving
towards the obstacle (head-on) at a constant velocity. It slows
down once the obstacle enters the sphere of influence and
then stops at a distance of 1.07m. At that point, asymmetry
in the vertical direction caused by the uneven distribution
of points together with asymmetry in the quadcopter thrust
response allows the vehicle to rise above the obstacle.

The control response curves shown in Figure 9 provide a
picture of the control inputs seen by the vehicle during the
collision avoidance maneuver. Figure 8 shows the forces in
the x, y, and z directions. As observed, the force in the
x direction is 0 initially and then sharply increases at a
distance of 5m from the obstacle, i.e., the location where
the vehicle’s sphere of influence begins. Repulsive force in
x direction pitches the quadcopter up, slowing its velocity.
At this point, forces accumulate in the z direction leading
to an increase in vehicle thrust. The vehicle regains forward
velocity once it has climbed over the obstacle. When safely
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Figure 9. Roll, pitch, and thrust control inputs during collision avoidance.

past the obstacle, the vehicle starts to catch up with the x-
direction command input and no force and hence no collision
avoidance control input is observed. During this maneuver,
minor roll oscillations are seen. These are small enough to
have no significant impact on the vehicle motion.

VI. EXPERIMENTATION

To test the effectiveness of the proposed collision avoid-
ance system, indoor experiments were performed with a
VI-Sensor stereo visual-inertial sensor from Skybotix [25].
The experiments involved a human test subject approaching
the sensor from different directions. The collision avoidance
system was implemented using the Robot Operating System
(ROS). Our experimental setup is shown in Figure 10. The
left and right camera image streams from the VI-Sensor
were initially passed through an open source block-matching
stereo pipeline to generate a 3D point cloud. The resulting
cloud was then down sampled using a voxel grid filter before
being passed to the collision avoidance algorithm.

A. System Parameters

The following values were used for the various system
parameters:

1) A maximum deceleration (amax) of 5m/s2.
2) A sphere of influence radius (rsoi) of 2.5m.
3) A constant of proportionality (µ) of 20.
4) Maximum force in the x, y, and z directions of 10.
5) Maximum roll, pitch, and thrust values for the vehicle

of 1.



To ensure that the vehicle was not affected by sensor
noise, a lower bound for collision avoidance control input
was set at 0.1. Point clouds and resulting forces and control
inputs are presented in the optical frame of the left camera
(X Right, Y Down, Z out). In these experiments the relative
velocity between the vehicle and obstacle was not included,
thus the potential function and the force field values de-
pended on the distance only.

Figure 10. Experimental Setup for the collision avoidance system. The
VI-Sensor is kept stationary on a tripod. A gigabit Ethernet cable is used
for communication to the laptop computer while the sensor is powered
through a USB port

B. Forward-Backward Maneuver
A forward-backward approach towards an obstacle is the

most critical case for a collision avoidance system. While
the sensor was fixed on a stationary platform, a human test
subject walked towards the sensor. As observed in Figure
11, repulsive forces and control inputs were generated once
the (human) obstacle entered the sphere of influence. In
the forward-backward case, the majority of control input is
in the -z direction. If mounted on a quadcopter UAV, this
would result in a pitch up maneuver, slowing the vehicle
down. Due to an asymmetric point cloud distribution, a small
amount of roll and pitch control input is also calculated.
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Figure 11. Repulsive forces and control inputs during a forward-backward
maneuver. Control inputs less than 0.1 are filtered. It can be seen that a
major part of the control input comes from the force in the -z direction.

C. Left-Right Maneuver

In the case of a left-right maneuver, the thrust input
remains at 0 since the point cloud is vertically symmetric.
As observed in Figure 12, once an obstacle enters the sphere
of influence from the left, positive roll and a positive pitch
values are calculated. When mapped onto the vehicle control
inputs, this pushes the vehicle away from the obstacle. Sim-
ilar control inputs are observed when an object approaches
the sphere of influence from the right.
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Figure 12. Repulsive forces and control inputs during a left-right maneuver
in front of the sensor.

D. Up-Down Maneuver

In case of an up-down maneuver, the pitch input remains
constant while the roll input is approximately 0 throughout.
A roll input is calculated when the test subject enters and
exits the sphere of influence (from the left). When the
obstacle in under the camera, a force in the negative y
direction is observed; this will push the vehicle up, away
from the obstacle.
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Figure 13. Repulsive forces and control inputs during a up-down maneuver
in front of the sensor.



VII. CONCLUSION AND FUTURE WORK

In this paper a potential field-based collision avoidance
system was presented for personal aerial vehicles. A dy-
namic potential field was used to repel the vehicle away
from an obstacle. On a human-controlled PAV, the resulting
repulsive control forces would not only move the vehicle
away from the obstacle but would also provide inputs to a
haptic feedback system.

The collision avoidance implementation is computation-
ally inexpensive and can be used with any sensor that can
provide a point or a cloud of points for obstacle detection.
It can potentially be implemented for indoor and outdoor
environments and can be used with primary navigation
systems on a Micro Aerial Vehicle (MAV), an UAV, or
a rover. Further experiments are being conducted to asses
the effectiveness of the system with a range of sensor and
vehicle platforms.

Extensive human-factors research on the system imple-
mented with haptic feedback control would further validate
the effectiveness of the proposed collision avoidance system.
Tests in outdoor environments at higher altitude would
expose the algorithm to harsher condition. On a real PAV,
a multi-sensor system, using probabilistic estimates of the
point cloud, could be implemented to further improve the
robustness of the proposed algorithm.
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