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Abstract— Navigation in unknown, chaotic environments con-
tinues to present a significant challenge for the robotics commu-
nity. Lighting changes, self-similar textures, motion blur, and
moving objects are all considerable stumbling blocks for state-
of-the-art vision-based navigation algorithms. In this paper we
present a novel technique for improving localization accuracy
within a visual-inertial navigation system (VINS). We make
use of training data to learn a model for the quality of
visual features with respect to localization error in a given
environment. This model maps each visual observation from
a predefined prediction space of visual-inertial predictors onto
a scalar weight, which is then used to scale the observation
covariance matrix. In this way, our model can adjust the
influence of each observation according to its quality. We discuss
our choice of predictors and report substantial reductions in
localization error on 4 km of data from the KITTI dataset, as
well as on experimental datasets consisting of 700 m of indoor
and outdoor driving on a small ground rover equipped with a
Skybotix VI-Sensor.

I. INTRODUCTION

Robot navigation relies on an accurate quantification of
sensor noise or uncertainty in order to produce reliable
state estimates. In practice, this uncertainty is often fixed
for a given sensor and experiment, whether by automatic
calibration or by manual tuning. Although a fixed measure of
uncertainty may be reasonable in certain static environments,
dynamic scenes frequently exhibit many effects that corrupt
a portion of the available observations. For visual sensors,
these effects include, for example, self-similar textures, vari-
ations in lighting, moving objects, and motion blur. We
assert that there may be useful information available in these
observations that would normally be rejected by a fixed-
threshold outlier rejection scheme. Ideally, we would like
to retain some of these observations in our estimator, while
still placing more trust in observations that do not suffer from
such effects.

In this paper we present PROBE, a Predictive ROBust
Estimation technique that improves localization accuracy in
the presence of such effects by building a model of the
uncertainty in the affected visual observations. We learn
the model in an offline training procedure and then use it
online to predict the uncertainty of incoming observations
as a function of their location in a predefined prediction
space. Our model can be learned in completely unknown
environments with frequent or infrequent ground truth data.

The primary contributions of this research are a flexible
framework for learning the quality of visual features with
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Fig. 1. PROBE maps image features into a prediction space to predict
feature quality (α). Feature quality is a function of the nearest neighbours
from training data.

respect to navigation estimates, and a straightforward way
to incorporate this information into a navigation pipeline.
On its own, PROBE can produce more accurate estimates
than a binary outlier rejection scheme like Random Sample
Consensus (RANSAC) [1] because it can simultaneously
reduce the influence of outliers while intelligently weighting
inliers. PROBE reduces the need to develop finely-tuned
uncertainty models for complex sensors such as cameras,
and better accounts for the effects observed in complex,
dynamic scenes than typical fixed-uncertainty models. While
we present PROBE in the context of visual feature-based
navigation, we stress that it is not limited to visual measure-
ments and could also be applied to other sensor modalities.

II. RELATED WORK

Two important tasks must be performed to obtain accurate
estimates from navigation systems: sensor noise characteriza-
tion and outlier rejection. Standard calibration techniques can
provide some insight into sensor noise, but in practice, noise
parameters are often manually tuned to optimize estimator
performance for a given environment. Outlier rejection typi-
cally relies on front-end procedures such as Random Sample
Consensus (RANSAC) [1], [2], which attempts to remove
outliers before the estimator can process them, or back-end
procedures such as M-estimation, which uses robust cost
functions to limit the influence of large errors [3].

For visual systems, a large body of literature has also
focused on compensating for specific effects such as moving
objects [4], lighting variations [5], and motion blur [6] using
carefully crafted models.

More general approaches for attempting to select an opti-
mal set of features has also been investigated in the literature.
In [7], visual features are parametrized in an attribute space
that is used both to establish feature correspondences and



to learn a model of feature reliability for pose estimation.
Sufficiently reliable features are stored for use as land-
marks during pose estimation, while unreliable features are
discarded. Likewise, our method maps each feature in a
prediction space to a corresponding scalar weight, but we
use this weight in our estimator rather than as a criterion to
discard data. In more recent work [8], the authors forgo the
concept of outliers in favour of finding the largest subset of
coherent measurements. Once again, our method differs in
that it reduces the influence of deleterious features without
explicitly discarding them.

Our work on predicting the general quality of visual
features is inspired by recent research on predictive co-
variance estimation [9], which estimates full measurement
covariances by collecting empirical errors and storing them
in a prediction space. For cameras, learning measurement
covariances requires ground truth for the observed quantities,
which is difficult to obtain for sparse visual landmarks.
To relax this requirement, the authors of [10] describe an
expectation-maximization technique that can serve as a proxy
for ground truth, but it is unclear whether this technique is
applicable to sparse vision-based navigation. In contrast, our
method requires ground truth for only a subset of position
states and can be straightforwardly applied to standard sparse
visual navigation systems.

Finally, adaptive techniques exist that learn scalar weights
to intelligently modify the influence of particular measure-
ments within a Kalman filter estimator [11]. We adopt a
similar approach for a visual-inertial navigation pipeline, but
do so predictively rather than reactively to respond to new
measurements with minimal delay.

III. VISUAL-INERTIAL NAVIGATION SYSTEM

In this work, we evaluate PROBE as a way to improve
navigation estimates from visual-inertial navigation systems
(VINS). VINS have been used onboard many different
robotic platforms including micro aerial vehicles (MAVs),
ground vehicles, smartphones, and even wearable devices
such as Google Glass [12]. Stereo cameras [13] and monoc-
ular cameras [14], [15] are common sensor choices for
acquiring visual data in such systems.

We choose to implement a stereo VINS adapted from
a common stereo visual odometry (VO) framework used
in numerous successful mobile robotics applications [16]–
[18]. Unlike other VINS [13], [14], we choose not to use
the linear accelerations reported by the IMU to drive a
motion model. Instead, we opt to use only angular veloc-
ities to extract rotation estimates between successive poses.
Although this choice reduces the potential accuracy of the
method, it also confers several advantages that make our
pipeline a solid foundation from which to evaluate PROBE.
Specifically, we do not need to keep track of a linear
velocity state, accelerometer biases, or orientation relative
to gravity. Although seemingly minor, this simplification
greatly reduces the complexity of the pipeline, obviates the
need for a special starting state that is typically required

to make gravity observable, and eliminates several sensitive
tuning parameters.

We use the relatively stable rotational rates reported by
commercial IMUs to extract accurate relative rotation esti-
mates over short time periods. Similar to [19], we bootstrap
a crude transformation estimate with the rotation estimate
before carrying out a full non-linear point cloud alignment.

Finally, because we assume a stereo camera, the metric
scale of our solution is directly observable from the visual
measurements, whereas monocular VINS must rely on noisy
linear accelerations to determine metric scale [20].

A. Observation Model

To begin, we outline our point feature observation model.
We define two coordinate frames, F−→a and F−→b, which
represent the stereo camera pose at times ta and tb (where
tb > ta), respectively. The coordinates pa of a landmark
observed in F−→a can be transformed into its coordinates pb
in F−→b as follows:

pb = Cba(pa − rbaa ). (1)

rbaa is a vector from the origin of F−→a to the origin of F−→b

expressed in F−→a, and Cba is the rotation matrix from F−→a

to F−→b.
Assuming rectified stereo images, point p is projected

from the camera frame (with its origin in the centre of the
left camera) into image coordinates y in the left and right
cameras according to the camera model
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Here, (x, y, z) are the components of p, (ul, ur, vl, vr) are
the horizontal and vertical pixel coordinates in each camera
respectively, b is the baseline of the stereo pair, (cu, cv) is
the principal point, and f is the focal length.

B. Direct Motion Solution

Assuming all landmarks are tracked correctly, our goal is
to calculate the transformation from F−→a to F−→b, parametrized
by Cba and rbaa . We obtain an estimate for Cba, (denoted by
Cba) by integrating angular velocities, ωj , from the IMU
that are recorded between ta and tb. Defining ψj := ωj∆t,
ψj :=

∣∣ψj∣∣, and ψ̂j := ψj/ψj , we have

Ψj = cosψj1 + (1− cosψj)ψ̂jψ̂
T

j − sinψjψ̂
×
j , (3)

Cba = CcvΨJ · · ·Ψ2Ψ1CTcv (4)

where J is the number of IMU measurements between ta
and tb, Ccv is the rotation from the IMU frame to the
camera frame, 1 is the identity matrix, and (·)× is the
skew-symmetric cross-product operator. Given our rotation
estimate, we can compute an estimate for translation as

rbaa = −CTbaub + ua, (5)



where ua,ub are the point cloud centroids given by

ua =
1

N

N∑
i=1

pia and ub =
1

N

N∑
i=1

pib. (6)

C. Non-linear Motion Solution

The direct motion solution forms an initial guess {Cba,
rbaa } for a non-linear optimization procedure. Given N
tracked points, we wish to minimize a 3D point cloud
alignment error
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are the Jacobians of the inverse camera model g := f−1, and
Ria, Rib are the covariance matrices of the ith point in image
space.

We proceed by perturbing the initial guess by a vector
ξ =

[
εT φT

]T
, where ε is a translational perturbation and

φ is a rotational perturbation:

rbaa = rbaa + ε, (10)

Cba = e−φ×
Cba ≈ (1− φ×)Cba. (11)

Inserting (10) and (11) into (7), we arrive at a cost function
that is quadratic in the perturbations:

L ≈ 1

2

N∑
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(
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)T
Γ
i
(
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)
, (12)

where

ei = pib − Cba(pia − rbaa ),

Ei =
[
Cba −

(
Cba(pia − rbaa )

)×]
,

and Γ
i

indicates that Cba has replaced Cba in (8). Setting the
derivative of (12) with respect to ξ to zero yields a system
of linear equations in the optimal update step ξ∗:
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T
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iei. (13)

Once ξ∗ is determined, the state estimate can be repeatedly
updated using:

Cba ← exp((−φ∗)×)Cba, (14)

rbaa ← rbaa + ε∗. (15)

In practice, (13) is also modified with Levenberg-Marquardt
damping to improve convergence.

IV. PROBE: PREDICTIVE ROBUST ESTIMATION

The aim of PROBE is to learn a model for the quality
of visual features, with the goal of reducing the impact of
deleterious visual effects such as moving objects, motion
blur, and shadows on navigation estimates. Feature quality is
characterized by a scalar weight, βi, for each visual feature
in an environment. To compute βi we define a prediction
space (similar to [9]) that consists of a set of visual-inertial
predictors computed from the local image region around the
feature and the inertial state of the vehicle (Section IV-C
details our choice of predictors). We then scale the image
covariance of each feature (Ria, Rib in (8)) by βi during the
non-linear optimization.

In a similar manner to M-estimation, PROBE achieves
robustness by varying the influence of certain measurements.
However, in contrast to robust cost functions that weight
measurements based purely on estimation error, PROBE
weights measurements based on their assessed quality.

To learn the model, we require training data that consists
of a traversal through a typical environment with some
measure of ground truth for the path, but not for the visual
features themselves. Like many machine learning techniques,
we assume that the training data is representative of the test
environments in which the learned model will be used.

We learn the quality of visual features indirectly through
their effect on navigation estimates. We define high quality
features as those that result in estimates that are close to
ground truth. Our framework is flexible enough that we do
not require ground truth at every image and we can learn the
model based on even a single loop closure error.

A. Training

Training proceeds by traversing the training path, selecting
a subset of visual features at each step, and using them to
compute an incremental position estimate. By comparing the
estimated position to the ground truth position, we compute
the translational Root Mean Squared Error (RMSE), denoted
by αl,s for iteration l and step s, and store it at each
feature’s position in the prediction space (we denote the set
of predictors and associated RMSE value by Θl,s). The full
algorithm is summarized in Figure 2. Note that αl,s can be
computed at each step, at intermittent steps, or for an entire
path, depending on the availability of ground truth data.

B. Evaluation

To use the PROBE model in a test environment, we
compute the location of each observed visual feature in our
prediction space, and then compute its relative weight βi as
a function of its K nearest neighbours in the training set.
For efficiency, the K nearest neighbours are found using a
k-d tree. The final scaling factor βi is a function of the mean
of the α values corresponding to the K nearest neighbours,
normalized by α, the mean α value of the entire training set.

The value of K can be determined through cross-
validation, and in practice depends on the size of the training
set and the environment. The computation of βi is designed
to map small differences in learned α values to scalar weights



1: procedure TRAINPROBEMODEL
2: for l← 1, totalLearningIterations do
3: for s← 1, totalPathSteps do
4: f1, . . . , fJ ← visualFeatureSubset(l)
5: π1

l , . . . ,π
J
l ← predictors(f1, . . . , fJ)

6: C̄ba, r̄baa ← poseChange(f1, . . . , fJ)
7: αl,s ← computeRMSE(r̄baa , rbaa GT )

8: Θl,s ←
{
π1
l,s, . . . ,π

J
l,s, αl,s

}
9: end for

10: end for
11: return Θ = {Θl,s}
12: end procedure

Fig. 2. The PROBE training procedure.

1: procedure USEPROBEMODEL(Θ)
2: for i← 1, totalFeatures do
3: πi ← predictors(fi)
4: α1, ..., αK ← findKNN(πi,K,Θ)

5: βi ←
(

1
αK

∑K
k=1 αk

)γ
6: end for
7: return β = {βi}
8: end procedure

Fig. 3. The PROBE evaluation procedure.

that span several orders of magnitude. An appropriate value
of γ can be found by searching through a set range of
candidate values and choosing the value that minimizes the
average RMSE (ARMSE) on the training set.

C. Prediction Space

A crucial component of our technique is the choice of
prediction space. In practice, feature tracking quality is
often degraded by a variety of effects such as motion blur,
moving objects, and textureless or self-similar image regions.
The challenge is in determining predictors that account for
such effects without requiring excessive computation. In our
implementation, we use the following predictors, but stress
that the choice of predictors can be tailored to suit particular
applications and environments:

• Angular velocity and linear acceleration magnitudes
• Local image entropy
• Blur (quantified by the blur metric of [21])
• Optical flow variance score
• Image frequency composition

We discuss each of these predictors in turn.
1) Angular velocity and linear acceleration: While most

of the predictors in our system are computed directly from
image data, the magnitudes of the angular velocities and
linear accelerations reported by the IMU are in themselves
good predictors of image degradation (e.g., image blur) and
hence poor feature tracking.

2) Local image entropy: Entropy is a statistical measure
of randomness that can be used to characterize the texture
in an image or patch. Since the quality of feature detection
is strongly influenced by the strength of the texture in the

Fig. 4. The Skybotix VI-Sensor, Point Grey Flea3, and checkerboard target
used in our motion blur experiments.

vicinity of the feature point, we expect the entropy of a patch
centered on the feature to be a good predictor of its quality.
We evaluate the entropy S in an image patch by sorting pixel
intensities into N bins and computing

S = −
N∑
i=1

ci log2(ci), (16)

where ci is the number of pixels counted in the ith bin.
3) Blur: Blur can arise from a number of sources includ-

ing motion, dirty lenses, and sensor defects. All of these have
deleterious effects on feature tracking quality. To assess the
effect of blur in detail, we performed a separate experiment.
We recorded images of 32 interior corners of a standard
checkerboard calibration target using a low frame-rate (20
FPS) Skybotix VI-Sensor stereo camera and a high frame-
rate (125 FPS) Point Grey Flea3 monocular camera rigidly
connected by a bar (Figure 4). Prior to the experiment, we
determined the intrinsic and extrinsic calibration parameters
of our rig using the Kalibr package [22]. The apparatus
underwent both slow and fast translational and rotational
motion, which induced different levels of motion blur as
quantified by the blur metric proposed by [21].

We detected checkerboard corners in each camera at syn-
chronized time steps, computed their 3D coordinates in the
VI-Sensor frame, then reprojected these 3D coordinates into
the Flea3 frame. We then computed the reprojection error
as the distance between the reprojected image coordinates
and the true image coordinates in the Flea3 frame. Since
the Flea3 operated at a much higher frame rate than the VI-
Sensor, it was less susceptible to motion blur and so we
treated its observations as ground truth. We also computed
a tracking error by comparing the image coordinates of
checkerboard corners in the left camera of the VI-Sensor
computed from both KLT tracking [23] and re-detection.

Figure 5 shows histograms and fitted normal distributions
for both reprojection error and tracking error. From these
distributions we can see that the errors remain approximately
zero-mean, but that their variance increases with blur. This
result is compelling evidence that the effect of blur on feature
tracking quality can be accounted for by scaling the feature
covariance matrix by a function of the blur metric.
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(a) Reprojection error of checkerboard corners triangulated from the VI-
Sensor and reprojected into the Flea3.
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(b) Tracking error of KLT-tracked checkerboard corners in the left VI-
Sensor camera compared to directly re-detected corners.

Fig. 5. Effect of blur on reprojection and tracking error for the slow-then-fast checkerboard dataset. We distinguish between high and low blur by
thresholding the blur metric [21]. The variance in both errors increases with blur.

Fig. 6. The optical flow variance predictor can help in detecting moving
objects. Red circles correspond to higher values of the optical flow variance
score (i.e., features more likely to belong to a moving object).

4) Optical flow variance score: To detect moving objects,
we compute a score for each feature based on the ratio of
the variance in optical flow vectors in a small region around
the feature to the variance in flow vectors of a larger region.
Intuitively, if the flow variance in the small region differs
significantly from that in the larger region, we might expect
the feature in question to belong to a moving object, and
we would therefore like to trust the feature less. Since we
consider only the variance in optical flow vectors, we expect
this predictor to be reasonably invariant to scene geometry.

We compute this optical flow variance score according to

log

(
σ̄2
s

σ̄2
l

)
, (17)

where σ̄2
s , σ̄

2
l are the means of the variance of the vertical

and horizontal optical flow vector components in the small
and large regions respectively. Figure 6 shows sample results
of this scoring procedure for two images in the KITTI
dataset [24]. Our optical flow variance score generally picks
out moving objects such as vehicles and cyclists in diverse
scenes.

5) Image frequency composition: Reliable feature track-
ing is often difficult in textureless or self-similar environ-
ments due to low feature counts and false matches. We detect
textureless and self-similar image regions by computing the
Fast Fourier Transform (FFT) of each image and analyzing
its frequency composition. For each feature, we compute a
coefficient for the low- and high-frequency regimes of the
FFT. Figure 7 shows the result of the high-frequency version
of this predictor on a sample image from the KITTI dataset
[24]. Our high-frequency predictor effectively distinguishes
between textureless regions (e.g., shadows and roads) and
texture-rich regions (e.g., foliage).

Fig. 7. A high-frequency predictor can distinguish between regions of high
and low texture such as foliage and shadows. Green indicates higher values.

Fig. 9. Our four-wheeled skid-steered Clearpath Husky rover equipped
with Skybotix VI-Sensor and Ashtech DGPS antenna used to collect the
outdoor UTIAS dataset.

V. EXPERIMENTAL RESULTS

A. Datasets

We trained and evaluated PROBE in two sets of exper-
iments. The first set of experiments made use of 4.5 km
of data from the City, Residential, and Road categories of
the KITTI dataset [24]. In the second set of experiments,
we collected indoor and outdoor datasets at the University
of Toronto Institute for Aerospace Studies (UTIAS) using
a Skybotix VI-Sensor mounted on an Adept MobileRobots
Pioneer 3-AT rover and a Clearpath Husky rover, respec-
tively. In both cases, the camera recorded stereo images at 10
Hz while the IMU operated at 200 Hz. The outdoor dataset
consisted of a 264 m training run followed by a 302 m
evaluation run, with ground truth provided by RTK-corrected
GPS. The indoor dataset consisted of a 32 m training run and
a 33 m evaluation run through a room with varying lighting
and shadows. For the indoor dataset, no ground truth was
available, so we trained PROBE using only the knowledge



TABLE I
COMPARISON OF TRANSLATIONAL AVERAGE ROOT MEAN SQUARE ERROR (ARMSE) AND FINAL TRANSLATIONAL ERROR ON THE KITTI DATASET.

Nominal RANSAC Aggressive RANSAC
(99% outlier rejection) (99.99% outlier rejection) PROBE

Trial Type Path Length ARMSE Final Error ARMSE Final Error ARMSE Final Error

26 drive 0051 City 1 251.1 m 4.84 m 12.6 m 3.30 m 8.62 m 3.48 m 8.07 m
26 drive 0104 City 1 245.1 m 0.977 m 4.43 m 0.850 m 3.46 m 1.19 m 3.61 m
29 drive 0071 City 1 234.0 m 5.44 m 30.3 m 5.44 m 30.4 m 3.03 m 12.8 m
26 drive 0117 City 1 322.5 m 2.29 m 9.07 m 2.29 m 9.07 m 2.76 m 9.08 m
30 drive 0027 Residential 1, † 667.8 m 4.22 m 12.2 m 4.30 m 10.6 m 3.64 m 4.57 m
26 drive 0022 Residential 2 515.3 m 2.21 m 3.99 m 2.66 m 6.09 m 3.06 m 4.99 m
26 drive 0023 Residential 2 410.8 m 1.64 m 8.20 m 1.77 m 8.27 m 1.71 m 8.13 m
26 drive 0027 Road 3 339.9 m 1.63 m 8.75 m 1.63 m 8.65 m 1.40 m 7.57 m
26 drive 0028 Road 3 777.5 m 4.31 m 16.9 m 3.72 m 13.1 m 3.92 m 13.2 m
30 drive 0016 Road 3 405.0 m 4.56 m 19.5 m 3.33 m 14.6 m 2.76 m 13.9 m
UTIAS Outdoor Snowy parking lot 302.0 m 7.24 m 10.1 m 7.02 m 10.6 m 6.85 m 6.09 m
UTIAS Indoor Lab interior 32.83 m — 0.854 m — 0.738 m — 0.617 m

1 Trained using sequence 09 26 drive 0005. 2 Trained using sequence 09 26 drive 0046. 3 Trained using sequence 09 26 drive 0015.
† This residential trial was evaluated with a model trained on a sequence from the city category because of several moving vehicles that were better

represented in that training dataset.

Fig. 8. Three types of environments in the KITTI dataset, as well as 2 types of environments at the University of Toronto. We use one trial from each
category to train and then evaluate separate trials in the same category.

that the training path should form a closed loop.
We compare PROBE to what we call the nominal VINS,

as well as a VINS with an aggressive RANSAC routine.
In the nominal pipeline, we use RANSAC with enough
iterations to be 99% confident that we select only inliers
when as many as 50% of the features are outliers. In the
aggressive case, we increase the confidence level to 99.99%.
When PROBE is used, we apply a pre-processing step
that makes use of the rotational estimate from the IMU
to reject any egregious feature matches by thresholding the
cosine distance between pairs of matched feature vectors. We
assume small translations between frames and typically set
the threshold to reject feature vectors that are separated by
more than five degrees.

For feature extraction, matching, and sparse optical
flow calculations, we use the open source vision library
LIBVISO2 [18]. LIBVISO2 efficiently detects thousands
of feature correspondences by finding stable features using
blob and corner masks and matching them by comparing
Sobel filter responses. For all prediction space calculations,
we use features in the left image of the stereo pair.

B. Training

Sample results of the training procedure described in
Section IV are illustrated in Figure 10 for data from the
Residential category. As ground truth is available for each
image, we compute the RMSE at every frame, and only
iterate over the path 10 times. Note the large variance of
training run error in the sharp turn in Figure 10, caused by a
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Fig. 10. Training iterations for the Residential category, sequence
09 26 drive 0046. The left turn is particularly problematic due to a
moving car that comes into view. Although none of the training runs
completely remove all features from the car, the path differences are enough
for the learned PROBE model to adequately reduce the influence of the car
on the final motion estimate.

car that drives through the camera’s field of view. PROBE is
able to distinguish features on the car and adequately reduce
their influence with the final learned model.

C. Evaluation

To evaluate PROBE, we run the nominal VINS (cf. Section
III) on a given test trial, tune the RANSAC threshold to
achieve reasonable translation error (< 5% final drift), then
repeat the trial with the aggressive RANSAC procedure.
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Fig. 11. A 234 m KITTI test run in the City category, sequence
09 29 drive 0071 containing numerous pedestrians and dramatic light-
ing changes. PROBE is able to produce more accurate navigation estimates
than even an aggressive RANSAC routine.
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Fig. 12. A 667 m test run in the Residential category, sequence
09 30 drive 0027. PROBE is better able to deal with a static portion
when a large shadow and moving vehicle cross the field of view of the
camera.
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Fig. 13. A 440 m test run in the Road category, sequence
09 26 drive 0027. PROBE is able to better predict a large moving
vehicle, and extract higher quality features from dense foliage. Note the
difference in scale between the two axes.
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Fig. 14. Test and training trials in the outdoor UTIAS environment. The
rover traverses a snowy landscape and people walk though the field of view.
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Fig. 15. A 32.8 m test run in our indoor UTIAS dataset. The subplot
in the bottom-right corner of the figure shows that PROBE reduces drift
in the vertical (y) direction more than the nominal VINS and aggressive
RANSAC.

Finally, we run VINS again, this time disabling RANSAC
completely and applying our trained PROBE model (with
pre-processing) to each observed feature. Table I compares
the performance of each trained PROBE model to that of
the nominal and aggressive-RANSAC VINS. In the best
case, PROBE achieves a final translational error norm of
less than half that of both reference VINS. Figures 11, 12,
and 13 reveal problematic sections of the KITTI dataset
where PROBE is able to significantly improve upon the
performance of both reference VINS. Moving vehicles and
pedestrians are the most obvious sources of error that PROBE
is able to identify. The datasets also included more subtle
effects such as motion blur (notable at the edge of images),
slowly swaying vegetation, and shadows.

VI. DISCUSSION

In most of the datasets we evaluated, PROBE performed
as well as or better than a standard RANSAC routine in
reducing the influence of deleterious features. In particu-
lar, PROBE has proven to be more robust than aggressive
RANSAC in datasets that exhibit visual effects such as shad-
ows, large moving objects, and self-similar textures. Often,



PROBE can produce more accurate navigation estimates by
intelligently weighting measurements to reflect their quality
while still exploiting the information contained in low-quality
measurements. In this sense, PROBE can be thought of as
a soft outlier classification scheme, while RANSAC rejects
outliers based on binary classification.

Like with other machine learning approaches, a good
training dataset is essential to producing an accurate and
generalizable model. PROBE is flexible enough that it can
be taught with varying frequency of ground truth data. For
instance, in the outdoor dataset collected at UTIAS, GPS
measurements were available at only 1 Hz, and PROBE
was trained by evaluating the ARMSE over the entire path.
For the indoor dataset, no ground truth was available and
the model was learned by computing the loop closure error
between the start and end points of the training path.

VII. CONCLUSIONS

In this work, we presented PROBE, a novel method for
predicting the quality of visual features within complex,
dynamic environments. By using training data to learn a
mapping from a predefined space of visual-inertial predictors
to a scalar weight, we can adjust the influence of individual
visual features on the final navigation estimate. PROBE can
be used in place of traditional outlier rejection techniques
such as RANSAC, or combined with them to more intelli-
gently weight inlier measurements.

We explored a variety of potential predictors, and validated
our technique using a visual-inertial navigation system on
over 4 km of data from the KITTI dataset and 700 m
of indoor and outdoor data collected at the University of
Toronto Institute for Aerospace Studies. Our results show
that PROBE outperforms RANSAC-based binary outlier re-
jection in many environments, even with only sparse ground
truth available during the training step.

In future work, we plan to examine a broader set of predic-
tors, and extend the training procedure to incorporate online
learning using intermittent ground truth measurements or
loop closures detected by a place recognition thread. Further,
we are interested in analyzing the amount of training data
required for a given improvement in navigation accuracy, and
in investigating PROBE’s effect on estimator consistency.
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