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Abstract—Visual Odometry (VO) is an integral part of
many navigation techniques in mobile robotics. In this work,
we investigate how the orientation of the camera affects the
overall position estimates recovered from stereo VO. Through
simulations and experimental work, we demonstrate that this
error can be significantly reduced by changing the perspective
of the stereo camera in relation to the moving platform.
Specifically, we show that orienting the camera at an oblique
angle to the direction of travel can reduce VO error by up
to 82% in simulations and up to 59% in experimental data.
A variety of parameters are investigated for their effects on
this trend including frequency of captured images and camera
resolution.
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I. INTRODUCTION

The ability to navigate within novel environments is an
important part of many autonomous robotics applications. In
many terrestrial and extraterrestrial settings, this task is made
significantly more difficult by the lack of an external posi-
tioning system (such as GPS) to provide an accurate estimate
of a robot’s egomotion. Traditional odometry techniques that
use wheel encoders often provide poor approximations to
true motion over any substantial distance due to wheel slip.
In this paper, we study a technique called visual odometry
(VO) [1]–[3] that aims to provide accurate localization
estimates through the use of an imaging sensor. We focus
on a classic implementation of VO, first pioneered by Hans
Moravec [4], that uses a stereo camera. As with all dead-
reckoning techniques, stereo VO exhibits error that grows
without bound with the distance travelled. Unlike other
techniques, however, stereo VO can produce accurate pose
estimates over significant distances, with errors as low as a
few percent of the distance travelled on trajectories of several
hundred meters [5]. It is also particularly useful because,
unlike monocular implementations, the absolute scale of the
motion can be recovered without the use of any additional
sensors or prior knowledge of scene structure.

One aspect of stereo visual odometry has been seldom
investigated: the effect of the orientation of the stereo
camera on motion estimates. To the best of our knowledge,
nearly all implementations in the literature point the stereo
camera forwards, in line with the motion of the rover
[1]–[3]. The motivation behind this stems from the fact

Figure 1: The experimental platform: a stereo camera
mounted on a Pioneer 3-AT rover base.

that, with a forward-facing camera, collected images can
be used for other tasks such as collision avoidance and
path planning. Many modern robotics platforms, however,
incorporate multiple vision sensors, allowing one stereo
camera to be dedicated solely to visual odometry.

With this in mind, we seek to determine which camera
orientation minimizes error in stereo VO motion estimates.
Our work focuses on a simplified rover configuration in
which the camera can be rotated about a vertical axis with
respect to the chassis and fixed prior to the start of traversal.
We present both simulated and experimental data (from the
Pioneer rover depicted in Figure 1) which show that the
error in position estimates can be minimized by directing
the camera to one side of the moving vehicle.

To understand why a particular camera orientation may
result in improved motion estimates, consider a simplified
two-dimensional world presented in Figure 2. As first noted
by Matthies and Shafer [6], image discretization introduces
uncertainty in the positions of observed landmarks. This
uncertainty generally increases for landmarks that are further
away from the camera, creating ellipsoidal probability densi-
ties that elongate as landmarks become more distant. When
the stereo camera is directed perpendicular to the direction
of travel, the overlap between uncertainty ellipsoids corre-
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Figure 2: Effect of directing a stereo camera perpendicular
to rover motion. Two dimensional Gaussian distributions are
shown by red and blue sigma contours. Landmarks (shown
as black dots) can be better localized because their positional
uncertainty is reduced (i.e., overlapping area of uncertainty
distributions is minimized). Landmark 1 can be localized
better than landmark 2.

sponding to consecutive measurements of a given landmark
decreases. Thus, the combination of measurements should
improve landmark localization and, hence, VO accuracy.

II. RELATED WORK

Visual odometry was first pioneered by Moravec [4],
with applications motivated by the NASA Mars exploration
program [7]. Moravec outlined the basic 6 steps that have
remained the building blocks of many modern VO pipelines
[8]. Each of these steps (presented in Figure 3) has been
studied extensively, as discussed in [7] and [9].

In Moravec’s approach, observed landmarks are back-
projected into 3D space, and the motion between two poses
is solved for by aligning the corresponding point clouds
using a scalar weighted nonlinear optimization. Several
years later, Matthies [15] elaborated on this approach with
an analytical method (based on work by Horn [10]) that
uses singular value decomposition to efficiently solve the
scalar-weighted optimization problem. In a landmark paper,
Matthies and Shafer [6] presented a technique using matrix-
weighted minimization that models the landmark locations
with 3D Gaussian distributions to better account for error
from image discretization. The final transformation was then
equivalent to the maximum likelihood state estimate given
the observed landmark locations.

Modern visual odometry algorithms based on these two
early research efforts have been implemented on the NASA
Mars Exploration Rovers [2], and for long distance terres-
trial navigation [1]. Various attempts at improving position
estimates recovered from VO have been developed. Olson
et al. [3] noted that the super-linear error growth of visual

odometry estimates could be improved to grow linearly by
incorporating an orientation sensor. Konolige et al. [11] de-
veloped a sliding window bundle adjustment technique that
incorporates constraints from features tracked over multiple
robot poses to reduce drift.

Various parametric optimizations have also been inves-
tigated. Olson et al. [3] showed through simulations that
a field-of-view value of 35◦ provided an optimal balance
between angular resolution and landmark tracking. Howard
[12] found that VO RMS error decreased by nearly 90%
after increasing camera resolution from 160x120 pixels to
640x480 pixels.

To the best of our knowledge, the only work that has
examined the effect of camera orientation on stereo visual
odometry estimates is that of Kelly and Sukhatme [5]. The
authors presented an experimental study conducted using
a radio-controlled helicopter, with two different forward-
facing camera orientations. They concluded that orienting
the camera 66◦ below the horizon produced lower pose
estimation errors than orienting it at a direction close to
nadir, 85◦ below the horizon.

III. VISUAL ODOMETRY PIPELINE

To determine the effect of rotating the stereo camera with
respect to the rover frame, a 2D stereo visual odometry
simulation was built. Landmarks are taken to be points in
space projected onto a perfectly rectified pinhole stereo cam-
era. Stereo matching is assumed to be known. The detected
image coordinates are corrupted with zero-mean Gaussian
noise. The remainder of the visual odometry pipeline largely
resembles that presented by Maimone et al. [2]. Steps 4
through 6 (see Figure 3) of the pipeline are outlined here.

We first define two frames, F−→a and F−→b, that represent the
camera pose at two subsequent time steps. The coordinates
of a 3D point observed in F−→a, pa, can be transformed into
its coordinates in F−→b, pb, as follows:

pb = Cba(pa − rbaa ), (1)

where rbaa are the coordinates of the origin of F−→b expressed
in F−→a and Cba is the rotation matrix from F−→a to F−→b.

Our stereo camera model projects points from the 3D
camera frame (with an origin half way between the two
camera pinholes) into 2D image coordinates in the left and
right camera images:

y = f(p) =
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ur

vr

 =
1

p3


f(p1 +

1
2b)

fp2

f(p1 − 1
2b)

fp2

 , (2)

where pi are the components of p and ul, ur, vl, vr are
the left and right horizontal and vertical image coordinates,
respectively. The focal length of the camera is f and its
baseline is b.



1. Image Correction
& Rectification

2. Landmark
Detection

3. Stereo
Matching

4. Landmark
Tracking

5. Outlier
Rejection

6. Motion
Solution

Figure 3: Stereo Visual Odometry Pipeline.

Given a set of pixel coordinates, the 3D location of a point
in the stereo camera frame can be found using the inverse
of our camera model, g:

p = g(y) =


b
2
(ul+ur)
ul−ur

b
2
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 . (3)

A. Scalar Weighted Motion Solution

Assuming all landmarks are tracked correctly, our goal
is to calculate the transformation between F−→a and F−→b,
parametrized by Cba and rbaa . We proceed by minimizing a
sum of squared errors objective function, weighted by scalar
weights wj :

J =
1

2

N∑
j=1

wj
(
pj
b −Cba(p

j
a − rbaa )

)T
(
pj
b −Cba(p

j
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)
. (4)

This is done by defining

Wba =
1

w

N∑
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where
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, w =
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wj , (6)
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The covariance of each pixel measurement, Rl and Rr, is
taken to be 1.

Singular value decomposition of Wba leads to

Wba = VSUT . (9)

Based on [13], the rotation, Cba, and the translation rbaa
can then be extracted as follows:

Cba = V

1 0 0

0 1 0

0 0 det(U)det(V)

UT

rbaa = −CT
baub + ua.

(10)

This analytical solution is embedded within an outlier
rejection scheme, RANSAC (Random Sample Consensus)
[14], to eliminate tracked landmark pairs that do not agree
with the majority motion solution.

B. Matrix Weighted Motion Solution

The transformation calculated above is then used as an
initial guess, {Cba, rbaa }, in an iterative matrix weighted
approach. This method is adapted from [15], and uses the
rotation matrix perturbation scheme presented in [16].

The objective function we wish to minimize is

L =
1

2
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with
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where Rj
b and Rj

a are covariances of each point in image
space, taken to be 1 as before.

We proceed by perturbing the initial estimate with pertur-
bation vector ξ, composed of a translation vector ε and an
Euler angle parametrization φ:

ξ =

[
ε

φ

]
(15)

rbaa = rbaa + ε, (16)

Cba = e−φ×
C

ba ≈ (1− φ×)C
ba
. (17)

Here, (·)× is the skew-symmetric cross-product operator:u1u2
u3


×

:=

 0 −u3 u2

u3 0 −u1
−u2 u1 0

 .
Inserting this into (11), we arrive at a cost function that is
quadratic in the perturbations:

L ≈ 1

2

N∑
j=1

(
ej + Ejξ

)T
Γj
(
ej + Ejξ

)
, (18)
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Figure 4: Simulated visual odometry framework. Yellow dots
and shaded yellow areas represent the stereo camera and
its field of views. Black dots are distributed landmarks and
the dashed black line indicates rover motion. The camera
is rotated by an angle, θ, with respect to the front of the
rover. Our paper presents a parametric study of θ on the
performance of VO.

with

ej = pj
b −Cba(p

j
a − rbaa ),

Ej =
[
C

ba −
(
Cba(p

j
a − rbaa )

)×]
.

Note that here Γj is defined with Cba in place of Cba.
Taking the derivative of (18) with respect to ξ gives the

following set of linear equations for an update step, ξ∗:

N∑
j=1

(
EjT ΓjEj

)
ξ∗ = −

N∑
j=1

EjT Γjej . (19)

Once ξ∗ is determined, the state estimate is updated using:

C
ba ← e−φ∗×

C
ba
, (20)

rbaa ← rbaa + ε∗. (21)

The state is iteratively updated until convergence, which is
defined to occur when |ξ∗| < 10−4.

IV. RESULTS

Our simulation involved a rover moving with no wheel
slip through a two dimensional world presented in Figure
4, calculating its own egomotion using the VO pipeline
discussed in Section III. Zero-mean Gaussian noise was
added to the pixel coordinates of all projected landmarks to
simulate finite camera resolution. The rover’s stereo camera
was turned (incrementally) between 0 and 180 degrees
relative to the direction of motion.
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Figure 5: Mean VO estimation error of 500 paths at 40
different camera offset angles ranging from 0 to 180◦. The
field of view for both camera units was set to 90◦, the step
size was 1 m and the noise variance was set to 2.25 pixels2.
The mean error was reduced by 82% when the camera was
turned between 85 and 90◦ to one side. Owing to symmetry,
only the range 0◦ < θ < 180◦ is shown.

A. Simulation Results

To begin, we investigated a rover moving in a straight line
through a world that contained 400 landmarks distributed
on a Cartesian grid at 1 m intervals. VO calculations were
performed for two poses separated by 1 m. We repeated
the simulation 500 times for each discrete offset angle,
θ. Results consisting of the mean and standard deviation
of the Euclidian position error, as well as the individual
components of the error vector, are shown in Figure 5. At
an offset angle of 81◦, the mean Euclidian error decreased
by 82.2% relative to the forward orientation.

We studied a number of factors to determine their effects
on this trend. Here, we present two particularly salient ones:
(i) the distance between image captures and (ii) camera
resolution. The variance of the Gaussian noise added to
the pixel coordinates acts as a proxy for camera resolution.
Figures 6 and 7 show that the observed trend was most
prominent for larger step sizes and lower resolutions.

Further, we investigated the effects of changing the land-
mark distribution from a Cartesian grid to a randomly
distributed set. Figure 8 presents the mean Euclidian error
as a function of offset angle, θ, for a randomly distributed
landmark set. The error follows a similar trend as before,
though the symmetry about 90◦ is often lost. The effect
of changing the field-of-view is also illustrated, with larger
field-of-views leading to more significant error reductions in
transverse camera orientations.
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Figure 6: The effects of step size on simulated visual
odometry error estimates. Average Euclidian error is plotted.
Larger step sizes result in worse VO estimates but greater
error reduction at transverse angles.
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(a) Very High Resolution (Vari-
ance: 0.25 pixel2)

0 50 100 150
0

0.05

0.1

0.15

0.2

0.25

Theta (deg)

A
v
e
ra

g
e
 E

rr
o
r 

N
o
rm

 (
m

)

 

 

X−axis

Z−axis

(b) High Resolution (Variance: 1
pixel2)
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(c) Medium Resolution (Vari-
ance: 1.6 pixel2)
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(d) Low Resolution (Variance:
2.25 pixel2)

Figure 7: Simulated VO error for four different simulated
camera resolutions. Step size is set to 1 m and the field
of view to 90◦. Increasing the variance (i.e., reducing the
resolution) increased the benefit of rotating the camera.

B. Experimental Results

To validate the simulations, we conducted experimental
trials using a Pioneer 3-AT rover outfitted with a Point Grey
Bumblebee XB3 stereo camera mounted on a 3-way pan-
tilt tripod head. Mimicking the simulations, the camera was
oriented parallel to the ground and only its angle about
the vertical axis was changed. To establish ground truth,
a VICON motion capture system detected a constellation
of reflective markers attached directly to the stereo camera.
Debris was distributed throughout an indoor facility to
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(b) FOV of 85◦
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(c) FOV of 90◦
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Figure 8: Simulated VO error for a random landmark dis-
tribution and four different field-of-view (FOV) values. Step
size is set to 1.25 m and noise variance to 2.25 pixels2.
A FOV of 80◦ is required to see significant benefits from
rotating the camera.

add supplementary features to the observed environment.
Figure 9 illustrates the entire experimental design. In the
experiments, we drove the rover 10 meters forward while
recording its motion using the VICON system. Figure 10
shows the observed feature tracks for forward and sideways
facing camera orientations.

The visual odometry pipeline used Speeded Up Robust
Features (SURF) [17] for feature detection and description.
Stereo matching was performed by matching SURF descrip-
tors and aided by epipolar constraints. Finally the motion
solution was solved using a bundle adjustment technique
similar to the matrix weighted approach described in Section
IIIB, with a RANSAC procedure used to eliminate outliers.

Figure 11 and Table I show the results of the experiments.
Figure 12 shows the position estimates recovered from VO
for five different camera orientations. In our data, the mean
Euclidian error decreased by a maximum of 59.2% when
directing the camera 135◦ away from the forward direction.
The most significant reductions occurred in the regions
30◦ < θ ≤ 60◦ and 105◦ < θ ≤ 150◦. The overall
error trends were symmetrical about θ = 90◦, though the
backwards-facing orientation (i.e. θ = 180◦) exhibited sub-
stantially higher errors than directing the camera forwards.
VO was performed at 5 Hz, driving at an average speed
of 0.5 m/s. The speed resulted in an equivalent step size of
around 10 cm. The resolution of each camera within the pair
was set to 512x384 pixels.

V. DISCUSSION

The experimental data showed error reductions similar to
those from simulations. The optimal angle in the experi-
mental data differed from the simulated optimal (135◦ in



Table I: Visual odometry error in experiments. Five trials are averaged at each discrete offset angle.

Offset Angle (◦) Mean Path Length Mean Lateral Error (m) Mean Forward Error (m) Mean Euclidian Error (m) % Improvement

0 9.74 0.070 0.11 0.14 0

45 9.92 0.065 0.021 0.071 50.7

90 9.79 0.11 0.087 0.15 -4.52

135 9.86 0.049 0.027 0.058 59.2

180 9.86 0.14 0.13 0.21 -47.6

Figure 9: The experimental setup: Pioneer 3-AT rover with a
Bumblebee XB3 stereo camera mounted on a pan-tilt head.

Figure 10: Feature tracks as seen from two different camera
orientations (θ = 90◦ represents a camera facing to the left
of rover motion and θ = 0◦ is facing directly ahead).

experimental data, compared to 82◦ in simulations), though
as in the simulations, the region 30◦ < θ ≤ 150◦ exhibited
significant error reduction. The notable exception is the
perpendicular orientation, θ = 90◦. With the camera in this
orientation, the mean position error was similar to the front-
facing standard. In practice, an oblique offset angle was
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Figure 11: Mean experimental visual odometry error aver-
aged over 5 trials at different angular offsets.

−4 −2 0 2 4
Lateral X Distance (m)

0

2

4

6

8

10

Fo
rw

a
rd

 Z
 D

is
ta

n
ce

 (
m

)

Visual Odometry Position Estimates 
 Experimental Data

θ Values

0 ◦

45 ◦

90 ◦

135 ◦

180 ◦

Ground Truth

Figure 12: Characteristic experimental visual odometry po-
sition estimates for five different offset intervals. Overall
mean Euclidian error is significantly reduced at θ = 45◦

and θ = 135◦. Oblique angles show growth in lateral error
with an accompanied reduction in forward error.

required to minimize the error in position estimates.
The trends in the forward and lateral directions also gener-

ally agreed with simulations. As the camera rotated towards



the sideways orientation, lateral error increased slightly or
stayed at comparable levels to a forward-facing orientation.
Forward error decreased significantly for 30◦ < θ ≤ 150◦

with a local maximum at 90◦.
A number of different factors could have contributed to

the discrepancies between the simulated and experimental
data. These include the 3D geometry of our laboratory, the
fact that we only report translational differences, and the
numerous parameters that were difficult to set arbitrarily and
differed from those set in simulations (e.g., field of view, step
size, camera resolution, number of tracked landmarks).

Within both the simulations and our experience in the
lab, the most significant improvements to VO estimates were
observed when computational complexity was limited. The
greatest error reduction occurred with a reduced resolution
and slower frame rates. We hope that platforms with limited
computational resources will benefit from this insight.

VI. CONCLUSION

In this paper, we showed the effect of changing the
orientation of a stereo camera on visual odometry estimates.
By rotating the camera about the vertical axis, we reduced
visual odometry motion estimation error by as much as 82%
in simulations and 59% in real world tests.

Simulations showed that the error was minimized when
the camera was rotated approximately 80 degrees relative
to the forward direction. In experimental data, we found
the most significant error reductions at 45 and 135 degrees.
Relatively large step sizes and low resolutions had the largest
impact on the trends.

Applications that implement stereo visual odometry with a
constrained computational budget may benefit from directing
the camera in such a manner. We stress, however, that the
trends depend strongly on a number of parameters that
are difficult to investigate exhaustively. Nevertheless, in
appropriate circumstances, significant error reductions may
be achieved with a relatively simple configuration change.

In future work, we plan to explore other state dependent
variables that affect optimal stereo camera configuration.
This will, in principle, pave the way for an actuated stereo
camera that can minimize expected VO error by adapting
its orientation based on the rover state and the observed
environment.
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