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Abstract Fusion of data from multiple sensors can enable robust navigation in var-
ied environments. However, for optimal performance, the sensors must calibrated
relative to one another. Full sensor-to-sensor calibration is a spatiotemporal prob-
lem: we require an accurate estimate of the relative timing of measurements for
each pair of sensors, in addition to the 6-DOF sensor-to-sensor transform. In this
paper, we examine the problem of determining the time delays between multiple
proprioceptive and exteroceptive sensor data streams. The primary difficultly is that
the correspondences between measurements from different sensors are unknown,
and hence the delays cannot be computed directly. We instead formulate temporal
calibration as a registration task. Our algorithm operates by aligning curves in a
three-dimensional orientation space, and, as such, can be considered as a variant of
Iterative Closest Point (ICP). We present results from simulation studies and from
experiments with a PR2 robot, which demonstrate accurate calibration of the time
delays between measurements from multiple, heterogeneous sensors.

1 Introduction

In modern navigation systems, sensors with complimentary modalities and error
characteristics are frequently deployed together to improve navigation accuracy.
Fusing data from multiple sensors offers several potential advantages, such as en-
hanced precision and robustness. However, to properly combine measurements in
a single navigation frame, the individual sensors must be calibrated relative to one
another.
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Recent work has primarily addressed sensor-to-sensor spatial calibration [1–3],
i.e., the task of determining the six degrees-of-freedom (6-DOF) rigid body trans-
form between sensor reference frames. However, full sensor-to-sensor calibration
is a spatiotemporal problem: accurate estimates of the relative timing of measure-
ments from the sensors are also required. In multi-sensor systems, unknown delays
between data streams may be introduced by differences in transmission time, sig-
nal preprocessing, integration and filtering, etc. If the delay values are incorrectly
estimated (perhaps simply assumed to be zero), then any fusion algorithm will pro-
duce sub-optimal results. At best, this will degrade performance — in the worst case
(e.g., when measurements from one sensor are lost for a period of time), significant
navigation errors may result.

In this paper, we examine the problem of determining the relative time delays be-
tween measurements from multiple proprioceptive and exteroceptive sensors.1 Ex-
amples of proprioceptive sensors include inertial measurement units (IMUs), joint
encoders and odometers; examples exteroceptive sensors include cameras and laser
range finders. In some cases, it may be possible to directly synchronize the sen-
sor outputs using a hardware timing signal. Our interest here is in low-cost, “black
box” devices, where direct synchronization is not possible. We assume that the in-
dividual sensor clocks are accurate, but that there are constant but unknown time
shifts (delays) between the measurements, when they arrive and are timestamped at
a centralized receiver.

The classic problem of time delay estimation for, e.g., sonar signal processing,
has been treated as one of finding the delay value which maximizes the cross-
correlation between two signals [4]. In the framework of parameter estimation, it
is possible to determine the time delay by estimating the coefficients of a suitable
FIR filter [5], where the signal and its delayed version are assumed to have origi-
nally been generated by the same sensor. Our problem is different in several ways:
first, many proprioceptive sensors provide rate information, which cannot be im-
mediately compared with the position or orientation measurements from an extero-
ceptive sensor. Second, there is also, in general, an unknown rigid body transform
between between each pair of sensors. Third, the signals often have different tem-
poral resolutions — cameras, for example, usually capture images at 30 frames per
second or less, while IMU data is often available at 100 Hz or more.

These characteristics have led us to develop an alternative approach, in which
we consider time delay estimation as a registration problem. Our algorithm can be
regarded as a variant of iterative closest point (ICP) [6, 7]. ICP is normally used to
register spatial data from two or more range scans. The fundamental difficulty in
registration is that the correspondences between points in consecutive scans are un-
known. Given a coarse initial guess for the transform between the scans, ICP selects
nearest-neighbor correspondences, using a suitable distance metric. In a following
optimization step, the transform parameters which minimize sum of squared dis-
tances between the points are determined. This transform is then applied, and the

1 We use the terms ‘temporal calibration’ and ‘time delay estimation’ synonymously throughout
the paper.
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next cycle begins with a new set of correspondences. The steps are iterated until
convergence, bringing the scans into alignment.

Although typically applied to range or point cloud data, ICP can be adapted for
our problem. In our case the data have varied temporal resolutions. We note that
if two sensors are rigidly attached to the same moving platform, then both must
undergo the same orientation change over any period of time. For an exteroceptive
sensor, the change in orientation is measured with respect to an external reference
(e.g., several visual landmarks in the case of a camera). For proprioceptive rate sen-
sors (such as IMUs), the rate data must be integrated to determine the orientation
change. After carrying out the necessary preprocessing, we obtain two sets of orien-
tation measurements for each pair of sensors; these measurements trace out curves in
a three-dimensional orientation space.2 Every point on each curve has a correspond-
ing timestamp, defining the time at which the measurement arrived at the receiver.
By registering the orientation curves, we are able to use the timestamp values to
estimate the relative delay between the data streams.

Our algorithm, which we call Time Delay Iterative Closest Point (TD-ICP), uses
a total least squares cost function for registration. This allows us to incorporate in
a principled way the uncertainty in the individual sensor measurements. We use
orientation information only, instead of position information, to avoid any potential
ambiguities that may arise when dealing with, e.g., gravity. In addition to an estimate
of the time delay, TD-ICP produces an improved estimate of the relative orientation
of the sensors — this information can then be used to bootstrap a spatial calibration
algorithm.

The remainder of the paper is organized as follows. We discuss related work in
Section 2. In Section 3 we review the modified Rodrigues parameters, which we
employ as a convenient, minimal orientation parameterization. We then describe
our time delay model in Section 4. The TD-ICP algorithm is developed in Section
5. Results from simulation studies and from our laboratory calibration experiments
with a PR2 robot are presented in Sections 6 and 7, respectively. We conclude in
Section 8.

2 Related Work

Existing approaches for handling delayed measurements can be classified into three
broad categories, based on a statistical characterization of the type of delay: those
that handle random delays with either a known magnitude or known probability
distribution, random delays with an unknown distribution, and systematic delays
with an unknown magnitude. We review each in turn.

In [8], Thomopoulos and Zhang derive optimal methods for Kalman filtering
with delayed measurements. Their work assumes that the delay values are known a
priori, i.e, that the distributed sensor clocks are already synchronized. An alternative

2 Although the orientation measurements are discrete, for smooth motion the measurements ap-
proximate a smooth curve — hence our use of the term “orientation curve.”
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but inexact approach for incorporating delayed measurements in discrete-time filters
is to extrapolate the measurements forward in time, as described by Larsen et al.
in [9]. For random delays that follow a known probability distribution, Choi et al.
show in [10] how an augmented-state filter can be used to maintain an extended
history over the times at which each measurement could possibly have been made.
By discretizing the distribution, a measurement update can be weighted and applied
over all of the components of the augmented state. Finally, if the delays are known
and sufficient computational resources are available, it may be possible to simply
reprocess filter updates over the delay interval.

A review of control-theoretic methods for dealing with random time delays is
given by Ferreira in [11]. In [12], Julier and Uhlmann describe how the covariance
union algorithm, which was originally developed for multi-hypothesis tracking, can
be used to properly incorporate measurements with random (and unknown) delays
into an estimator. The result is guaranteed to be consistent with respect to possible
delay values — however, covariance union is a worst-case algorithm, which typi-
cally produces an estimate with an inflated covariance.

Beyond the development of early, correlation-based methods, there has been rel-
atively little research on systematic delay estimation for isolated, black box sensors.
While substantial work has been done on clock synchronization in sensor networks
(e.g., [13]), these algorithms depend on two-way communication between the sen-
sor nodes. The devices we consider in this paper communicate in essentially one
direction only (sensor-to-host), and thus the algorithms for sensor networks cannot
readily be applied. One approach that is similar to our own is described by Tungadi
and Kleeman in [14]. The authors determine the delay between laser range finder
and odometric measurements by minimizing the hysteresis in positioning data over
closed-loop trajectories. This technique does not account for noise in the laser or
odometric measurements, however, while our algorithm explicitly models sensor
measurement error.

3 The Modified Rodrigues Parameters

The modified Rodrigues parameters are most easily derived from an equivalent unit
quaternion. Let q̄ be a unit quaternion, consisting of scalar part q0 and vector part q,

q̄ = q0 +q = q0 +q1i+q2 j+q3k, (1)

where q0, q1, q2 and q3 are real numbers, i, j and k are the quaternion basis vectors,
and

∥∥ q̄
∥∥2

= q2
0+q2

1+q2
2+q2

3 = 1. Recall that we can interpret q̄ as a four-component
rotation operator, parameterized by an angle θ and a unit vector ū ∈ R3 [15],

q̄ ,

[
q0

q

]
=

[
cos(θ/2)

ūsin(θ/2)

]
, (2)
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where θ defines a rotation about the axis specified by ū. The corresponding 3× 1
MRP vector, ρ , is

ρ =
q

1+q0
. (3)

Substituting (2) into (3), we obtain

ρ =
ūsin(θ/2)

1+ cos(θ/2)
=

ūsin(θ/4)
cos(θ/4)

= ū tan(θ/4). (4)

From (4), it is clear that the MRP vector also represents a rotation about the axis
defined by ū. Further, ρ is singular only when θ = ±2π or ±360 degrees (i.e., the
singular points are as far from the origin as possible). For any rotation up to ±180
degrees, the norm of ρ is bounded by 1. Also, for small angles, ρ linearizes as

ρ ≈ ū
θ

4
. (5)

We require an expression for the composition of two MRP vectors, ρ and ζ , which
defines sequential rotations by ζ and then by ρ . In compact form, this is

ρ •ζ =

(
1−
∥∥ρ
∥∥2
)

ζ +
(

1−
∥∥ζ
∥∥2
)

ρ−2 [ζ ]×ρ

1+
∥∥ρ
∥∥2∥∥ζ

∥∥2−2ρT ζ

, (6)

such that C(ρ)C(ζ ) = C(ρ • ζ ), where C(ρ) and C(ζ ) are 3× 3 direction co-
sine (rotation) matrices parameterized by ρ and ζ , respectively. The term [ζ ]× is
the 3× 3 skew-symmetric cross product matrix formed from ζ . We refer to (6) as
the rotational composition of ρ and ζ , and introduce the symbol ‘•’ to denote the
composition operation. Finally, the MRPs have the useful property that

CT (ρ) = C(−ρ). (7)

4 System Modeling

We calibrate sensors in pairs — without loss of generality, our algorithm is devel-
oped below for one proprioceptive sensor (an IMU) and one exteroceptive sensor (a
camera). Extensions to other types of proprioceptive and exteroceptive are straight-
forward. We model the sensor platform as a rigid body moving through space, and
consider three separate reference frames at any point in time:

1. the (instantaneous) source frame {S}, which is typically associated with the sen-
sor that has the lower update rate (e.g., the camera),

2. the (instantaneous) target frame {D}, associated with the sensor that has the
higher update rate (e.g., the IMU), and
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3. the world frame {W}, which serves as a fixed reference for the exteroceptive
sensor.

For the experiments described herein, we define the world frame with respect to a
series of corner points on a planar camera calibration pattern (cf. Figure 2).

4.1 Time Delay Model

Several assumptions are necessary in order to make the calibration problem tractable.
We assume that the delay is constant, i.e., that measurements from one sensor always
lead or lag measurements from the other sensor by a fixed amount. We also assume
that any jitter in the measurement arrival times is small enough to be ignored.

In order to compare the data from different sensors, we require a common rep-
resentation – our choice here is to use orientation information. At any time t, the
following continuous-time relationship holds at the receiver,

ρ
W
D (t) = ρ

W
S (t + τ)•ρ

S
D, (8)

where ρW
D (t) is the MRP vector that defines the orientation of the target frame rela-

tive to the world frame, ρW
S (t + τ) is the MRP vector that defines the (time-shifted)

orientation of the source frame relative to the world frame, and ρS
D is the (constant

but unknown) MRP vector that defines the orientation of the target frame relative to
the source frame. If τ is positive, the source measurements lag the target measure-
ments; if τ is negative, the source measurements lead the target measurements.

For sensors such as IMUs, which supply rate data, orientation cannot be mea-
sured directly — however, we are able to measure the change in orientation over a
period of time, by integrating the rate values. It will be convenient to express the
orientation of the target (IMU) frame relative to its initial orientation, ρ

D0
D (t), and

the source (camera) frame orientation relative to the world frame. Rewriting (8), we
have

ρ
D0
D (t) = ρ

D0
W •ρ

W
S (t + τ)•ρ

S
D. (9)

Since we will be dealing with discrete sequences of poses, we will identify a
specific source MRP orientation vector as ρW

Si
, with instantaneous local frame {Si}

at time tSi (according to the local sensor clock), for i = 1, . . . ,n frames. Likewise,
we will identify a specific target MRP orientation vector as ρ

D0
D j

, with instantaneous
local frame {D j} at time tD j , for j = 1, . . . ,m frames. Usually, proprioceptive sensor
measurements are available more frequently and m� n. We call the vectors ρW

Si
, ρ

D0
D j

points in the MRP orientation space. Note that ρ
D0
D0

= 03×1.



A General Framework for Temporal Calibration of Multiple Sensors 7

4.2 Sensor Models

We briefly review our IMU, camera, odometric and pan-tilt (encoder) sensor models
below. These are the types of sensors that we calibrate on-board our PR2 robot, as
described in Section 7.

4.2.1 IMU Model

The gyroscopes in an IMU measure angular rotation rates about three orthogonal
axes. In general, IMU measurements have a bias component, i.e., the gyroscope
outputs will not be zero even when the device is stationary. Gyroscope measure-
ments are also corrupted by noise. Accounting for bias and for noise, we model the
measured IMU angular velocity at time t as

ωm(t) = ω
I(t)+bg +ng(t), (10)

where ω I(t) is the true (instantaneous) angular velocity of the IMU, resolved in the
IMU frame, bg is the 3× 1 gyroscope bias vector, and ng(t) is a white Gaussian
noise process with covariance matrix Qg(t) [16].

Note that the bias term above is treated as a constant. In reality, all IMUs suffer
from low-frequency drift in the bias values over time. We make the assumption that
the IMU biases are constant over the (short) calibration time interval, and obtain an
accurate initial estimate by averaging several seconds of IMU data at the start of
calibration (while the IMU is stationary).

To obtain an estimate of the IMU orientation at a time t > t0, we integrate each
IMU measurement forward according to the MRP kinematic differential equation
[17, 18],

ρ̇(t) =
1
4

((
1−
∥∥ρ(t)

∥∥2
)

I3 +2 [ρ(t)]×+2ρ(t)ρT(t)
)

ω
I(t), (11)

where I3 is the 3×3 identity matrix.
As we continue integrating, we incorporate inaccuracies due to noise and (possi-

bly) drift, and so become less certain about the true orientation of the IMU relative
to its initial orientation. We maintain an estimate of this uncertainty by propagating
the IMU orientation covariance forward in time via numerical integration.

4.2.2 Camera Model

We use an ideal projective (pinhole) camera model, and assume that the cam-
era intrinsic and lens distortion parameters are known. Each camera measure-
ment mik is the projection of corner point lk on the calibration pattern, at position
pCi

lk
=
[
xik yik zik

]T in camera frame {Ci}, onto the image plane,
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mik =

[
uik

vik

]
=

[
x′ik
y′ik

]
+η ik,

x′ik
y′ik
1

= K

xik/zik

yik/zik

1

 , (12)

where
[
uik vik

]T is the vector of observed image coordinates, K is the 3× 3 cam-
era intrinsic calibration matrix [19], and η ik is a zero-mean Gaussian measurement
noise vector with covariance matrix Rik = σ2

ik I2.
From the observations of several known corner points on the calibration pattern,

we obtain an estimate of the camera orientation in the world frame (and the associ-
ated covariance matrix) using a nonlinear least squares computation. The computa-
tion requires an initial approximate orientation for the camera, which we determine
using Ansar’s algorithm [20].

4.2.3 Odometric and Pan-Tilt Sensor Models

Odometric and pan-tilt sensors provide orientation information directly, in the form
of wheel encoder and joint encoder measurements, respectively. Note that a pan-tilt
unit has only two degrees of rotational freedom, while a mobile base has only one
degree of rotational freedom (i.e., yaw). To compare these measurements with the
three degrees-of-freedom camera or IMU data, we set the “extra” components of the
MRP orientation vectors (corresponding to the non-actuated degrees of freedom) to
zero.

5 Time Delay Calibration

In this section, we present the TD-ICP algorithm; pseudo-code is listed in Algorithm
1. The algorithm initially generates n source MRP orientation vectors (cf. Section
4.2.2) from, for example, captured images of a calibration pattern. It then computes
a set of m target MRP orientation vectors (cf. Section 4.2.1) by, for example, inte-
grating IMU data forward in time.

To estimate the source-target relative orientation and the time delay, the algo-
rithm iteratively chooses n point correspondences (assuming n < m) and computes
the spatial and temporal transforms between the orientation curves. As the curves
converge, the time range over which the correspondence search is carried out (for
each source point) is adjusted. These steps are described in more detail below.

5.1 A Registration Metric

TD-ICP operates by iteratively selecting, for each point on the source orientation
curve, the closest neighboring point on the target curve. The notion of “closeness‘’
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Algorithm 1 Time Delay Iterative Closest Point (TD-ICP)
1: for each exteroceptive sensor measurement, compute ρW

Si
at time tSi

2: for each proprioceptive sensor measurement, compute ρ
D0
D j

at time tDi , possibly using ρ
D0
D j−1

3: initialize ρ̂
D0
W and ρ̂

S
D with coarse relative orientation estimates

4: initialize τ̂ = 0
5: repeat
6: for each point ρ̂

D0
W •ρW

Si
• ρ̂

S
D, find closest point ρ

D0
D j

in timestamp range
[tSi − τ̂−δ t, tSi − τ̂ +δ t]

7: compute new estimates of ρ̂
D0
W and ρ̂

S
D using iterated nonlinear total least squares

8: compute new τ̂ = ∑

(
tSi − tD j

)
/n from n {i, j} pairs

9: until ρ̂
D0
W , ρ̂

S
D and τ̂ have converged

requires a suitable distance metric – our metric is based on arc length on the unit
sphere. For each source point ρW

Si
, we determine the distance to a nearby target point

ρ
D0
D j

by computing the incremental MRP vector that takes ρW
Si

to the same orientation

as ρ
D0
D j

, after applying the current best estimate of the spatial transform3,

σ i j =
(
−
(

ρ̂
D0
W •ρ

W
Si
• ρ̂

S
D

))
•ρ

D0
D j
. (13)

The closest point is the target point that has the smallest value for the distance func-
tion

di j = 4arctan
(√

σT
i j σ i j

)
, (14)

which is the arc length, in radians, of the incremental rotation that takes ρW
Si

(with
the transform applied) to ρ

D0
D j

(see (4) in Section 3). This function satisfies the four
required properties of a metric [21].

For each source point, the search range on the target curve is bounded by the
maximum anticipated time delay. This range is, explicitly, [tSi− τ̂−δ t, tSi− τ̂ +δ t],
where ±δ t is the maximum delay value.

5.2 Iterative Nonlinear Registration

After finding the closest target point for each source point, we have a set of n cor-
respondences between the orientation curves. Let these n {i, j} pairs identify the
matching source and target reference frames, {Si} and {D j}, respectively. We de-
fine a mapping function f (i) which returns the corresponding target frame {D j} for
source frame {Si}. The curves are aligned using a generalized nonlinear total least
squares computation, in which we minimize the following cost function,

3 We use the ‘ˆ’ (hat) notation throughout the paper to denote an estimated quantity.
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U(ρ̂
D0
W , ρ̂S

D) =
n

∑
i=1

sT
i P−1

Si
si +

n

∑
i=1

tT
i P−1

D f (i)
ti, (15)

over the transform parameters, ρ̂
D0
W and ρ̂

S
D. On the right-hand side of (15),

si = ρ
W
Si
− ρ̂

W
Si
, (16)

ti = ρ
D0
D f (i)
− ρ̂

D0
D f (i)

, (17)

are the residuals in ρ̂
W
Si

and ρ̂
D0
D f (i)

, respectively, while PSi and PD f (i)
are the associ-

ated covariance matrices, and ρ̂
D0
D f (i)

= ρ̂
D0
W • ρ̂

W
Si
• ρ̂

S
D. Note that (15) is the sum of

squared Mahalanobis distances of the computed and measured points on the source
and target curves; we consider the uncertainty in both sets of measurements. The
residuals are subject to the n constraints

ρ
D0
D f (i)
− ρ̂

D0
W •ρ

W
Si
• ρ̂

S
D = 0, i = 1, . . . ,n. (18)

It is possible to minimize (15), subject to the constraints of the form defined
by (18), with the use of Lagrange multipliers [22]. Incorporating the constraints,
differentiating and rearranging, we obtain[

∆ρ
D0
W

∆ρS
D

]
=

n

∑
i=1

(
JT

i M−1
i Ji

)−1 JT
i M−1

i ∆yi (19)

where ∆ρ
D0
W and ∆ρS

D are the incremental updates to ρ̂
D0
W and ρ̂

S
D, respectively, for the

current iteration, Mi = PD f (i)
+JSiPSiJ

T
Si

, ∆yi = ρ
D0
D f (i)
− ρ̂

D0
D f (i)

, and Ji is the Jacobian
with respect to the transform parameters,

Ji(ρ̂
D0
W , ρ̂S

D) =

[
∂

(
ρ

D0
W •ρ

W
Si
•ρS

D

)
∂ρ

D0
W

∣∣∣∣∣
ρ̂

D0
W , ρ̂S

D

∂

(
ρ

D0
W •ρ

W
Si
•ρS

D

)
∂ρS

D

∣∣∣∣∣
ρ̂

D0
W , ρ̂S

D

]
. (20)

We omit the full Jacobian expression for brevity (the Jacobian is complicated but
straightforward to evaluate numerically). From the correspondences, we can also
immediately update the estimate of τ as

τ̂ =
∑

n
i=1

(
tSi − tD f (i)

)
n

(21)

for the n pairs. The closest point selection and nonlinear alignment steps are iterated
to convergence. This yields values for the time delay and the source-target relative
orientation.

The alignment computation requires an initial estimate of the relative orientation
of the sensors. This estimate can be fairly coarse, and we use simple hand measure-
ment of the relative orientation for our work here.
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6 Simulation Studies

We initially evaluated the performance of the TD-ICP algorithm through a series
of Monte Carlo simulations of camera-IMU calibration. The characteristics of the
simulated camera and IMU were the same as those of hardware available in our
laboratory.

We chose a set of three different sensor platform trajectories, with the camera and
the IMU rotating and translating in front of a simulated planar calibration pattern.
For each trajectory, we ran 100 simulations, with a different time delay and a differ-
ent orientation perturbation at the start of each trial. The random time delay values
were drawn from a zero-mean Gaussian distribution with a standard deviation of 25
ms; the initial orientation perturbations were drawn from a zero-mean multivariate
Gaussian distribution with a standard deviation of 5◦ in roll, pitch and yaw. In all
cases, the true relative orientation of the IMU with respect to the camera was the
same, ρS

D =−
[
0.33 0.33 0.33

]T .
The motion durations for the trajectories were 5, 6, and 8 seconds (Trajectory 1 to

Trajectory 3, respectively). Simulated camera images were captured at 15 Hz, while
IMU updates occurred at 100 Hz. For each image, we projected the corner points of
the calibration pattern onto the camera image plane, and added independent, zero-
mean Gaussian noise to the u (horizontal) and v (vertical) pixel coordinates. The
noise had a standard deviation of 0.5 pixels in u and v. When generating the IMU
measurements, we also added zero-mean Gaussian noise to the angular rate values.

Simulation results are presented in Table 1. We note that the mean delay error for
all three trajectories is approximately zero, indicating that the estimation process is
unbiased. Further, the mean absolute error in the estimate of τ ranges from less than
1 ms for Trajectory 2, to 1.4 ms for Trajectory 1. The maximum absolute delay error
is 5.7 ms, which is less than the time between IMU updates.

An example of the initial and final alignment of the orientation curves for one of
the trials from Set 3 is shown in Figures 1. In this case, the error in the value of τ is
0.591 ms. The final rotation error is just 0.04◦.

To verify that the final delay errors were not correlated with the initial delay val-
ues, we computed the correlation coefficients between the initial delay and the final
delay error, for each trajectory. The correlation coefficients were -0.1503, 0.1889

Table 1: Monte Carlo simulation results. Each set includes 100 simulation trials,
with a different time delay and a different orientation perturbation for each trial.

τ Error (ms) ρS
D Error (◦)

Set Avg. Iters. Mean Stdev. Mean Abs. Max. Abs Mean Abs. Stdev.

1 20.4 -0.04 1.86 1.40 5.67 0.44 0.21

2 20.4 0.29 0.99 0.84 3.23 0.37 0.18

3 18.7 0.44 1.38 1.15 3.67 0.29 0.12
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Fig. 1: Simulation results for Trajectory 3. The left column shows the estimated ori-
entation of the IMU (red line) and camera (blue dots) over time, prior to calibration.
The right column shows the time-shifted camera curve after the TD-ICP algorithm
has converged. Green lines indicate initial point correspondences, selected accord-
ing to our distance metric. The true time delay was 150 ms in this case; the error in
the final delay estimate is just 0.59 ms.

and -0.0008 for Sets 1 to 3, respectively. None of these correlations were statisti-
cally significant (for significance level α = 0.05).

7 Experiments with the PR2 Robot

In order to determine the performance of the TD-ICP algorithm using data from
real hardware, we calibrated four of the sensors on-board USC’s PR2 robot. These
included the left wide-angle stereo camera, head pan-tilt unit, base odometer and the
torso IMU. The locations of the individual sensors (relative to the body of the PR2)
are shown in Figure 2. All of the proprioceptive sensors (pan-tilt, odometer, IMU)
were calibrated with respect to the exteroceptive sensor (the left stereo camera, in
this case).

The calibration procedure involved first locking the head pan-tilt unit in place
and rotating the entire PR2 slowly to the left and to the right. This provided data
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Fig. 2: Left: to demonstrate the TD-ICP algorithm, we cross-calibrated the left wide-
angle stereo camera, head pan-tilt encoders, base odometry encoders and the torso
IMU. Right: PR2’s-eye view of the planar calibration pattern used as a reference for
the camera.

for camera-IMU and camera-odometry calibration. We then moved the head with
the pan-tilt motors, while keeping the base stationary and ensuring that the planar
calibration pattern remained within the camera’s field of view. When calculating
the time delays using TD-ICP, we rejected any source-target matches with distances
greater than three times the standard deviation of all distance values [23].

Calibration results are shown in Table 2. These results are for single trials only,
however in all cases we obtained delay values that were within 2 ms of the values in
the table, over at least three trials.

Table 2: Calibration results for multiple sensors on the PR2 robot. The time delay
and orientation values for the three proprioceptive sensors (head pan-tilt unit, base
odometer and torso IMU) are specified relative to the single exteroceptive sensor
(left wide-angle stereo camera).

Camera-Relative Calibration Parameters

Sensor Motion Dur. (s) TD-ICP Iters. τ (ms) Roll (◦) Pitch (◦) Yaw (◦)

Pan-Tilt 7.1 102 -28.0 -90.31 -0.09 -89.13

Odometry 8.1 76 -10.0 -98.59 -3.94 -87.28

IMU 8.0 31 1.5 80.83 -2.75 -86.67
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8 Conclusions and Ongoing Work

This paper presented an algorithm, TD-ICP, for accurate temporal calibration of
multiple proprioceptive and exteroceptive sensors. We have shown that it is possible
to treat temporal calibration as a registration problem. The ICP-based approach re-
quires only a small amount of data and demonstrates fast and reliable convergence.
Our results indicate that it is possible to calibrate the relative time delay between
sensor data streams with accuracies on the order of 1 to 2 ms.

As ongoing work, we are exploring the use of TD-ICP to calibrate the time delays
in other multi-sensor systems. For example, we are investigating the use of this
method to determine the relative time delay between measurements from inertial
and LIDAR sensors.
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