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Abstract—Stereo vision is useful for a variety of robotics tasks,
such as navigation and obstacle avoidance. However, recovery of
valid range data from stereo depends on accurate calibration
of the extrinsic parameters of the stereo rig, i.e., the 6-DOF
transform between the left and right cameras. Stereo self-
calibration is possible, but, without additional information, the
absolute scale of the stereo baseline cannot be determined. In
this paper, we formulate stereo extrinsic parameter calibration
as a batch maximum likelihood estimation problem, and use
GPS measurements to establish the scale of both the scene and
the stereo baseline. Our approach is similar to photogrammetric
bundle adjustment, and closely related to many structure from
motion algorithms. We present results from simulation experi-
ments using a range of GPS accuracy levels; these accuracies are
achievable by varying grades of commercially-available receivers.
We then validate the algorithm using stereo and GPS data
acquired from a moving vehicle. Our results indicate that the
approach is promising.

I. INTRODUCTION

Stereo vision is a rich sensing modality that is able provide
dense bearing, range and appearance information. However,
recovery of accurate range data from stereo, which is required
for metric mapping and in some cases for path planning
and obstacle avoidance, depends on careful calibration of the
extrinsic parameters that define the transform between the
stereo cameras. Calibration is typically carried out offline,
using a specialized calibration target with known geometry.

The need for precision calibration limits our ability to
build power-on-and-go robotic systems in which stereo is the
primary sensor. Further, although stereo self-calibration (auto-
calibration) is possible, it is well known that information about
the absolute scale of the translation between the cameras
cannot be obtained without external measurements, i.e., the
length of the stereo baseline is a free parameter [1].

In contrast to stereo, which is primarily useful for short-
range navigation, wide-area navigation systems such as GPS
can supply positioning information over the entire globe. Com-
modity GPS receivers have become cheap and ubiquitous, and
with the removal of selective availability, the accuracy of these
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receivers has improved dramatically. It should be possible
to leverage GPS for a variety of tasks beyond positioning.
In this paper we ask the following question: can we use
GPS and image feature measurements alone to calibrate the
extrinsic parameters of a robot-mounted stereo camera rig,
while the robot is operating? We seek a metric calibration
of the parameters, with a known scale factor.

To answer this question, we present a theoretical approach
and simulation studies and experiments which characterize
the feasibility of using GPS for calibration. We formulate
the calibration problem using a batch maximum likelihood
framework, in which point landmarks are viewed from mul-
tiple camera poses. Information about the absolute scale of
the scene and the stereo baseline is derived entirely from
GPS measurements. The calibration algorithm also produces
a map of the landmarks in the environment — this allows
calibration to be performed as part of a larger mapping task.
Our simulation results are based on trajectory data acquired
from a Pioneer 2-AT robot with an on-board GPS receiver.
Although we focus on the use of GPS here, the algorithm
we describe can be adapted for use with any sensor that is
able to provide coarse, wide-area three-dimensional position
measurements.

The remainder of the paper is organized as follows. We
review related work in Section II below. In Section III, we
formally define the calibration problem and motivate our
approach. Section IV discusses our methods for landmark
position and robot pose initialization, while Section V details
the maximum likelihood calibration algorithm. We describe
our simulation studies and vehicle experiments in Sections
VI and VII, respectively, and present results in Section VIII.
Finally, we offer some conclusions and directions for future
work in Section IX.

II. RELATED WORK

The problem of camera calibration has been studied exten-
sively in the photogrammetry community, with work dating
to the 1940s [2]. Much of the early research focused on
calibration for, e.g., aerial mapping, where the necessary level
of precision demands the use of sophisticated calibration
equipment. The algorithmic techniques, such as bundle ad-
justment [3], developed for these applications have now been
adopted by computer vision researchers.

Close-range self-calibration of both the intrinsic and extrin-
sic parameters of a stereo rig is demonstrated by Zhang, Luong



Fig. 1. Relationships between the world {W}, GPS {G}, left camera {L},
and right camera {R} reference frames and a landmark point (red circle). The
transform from the left camera frame to the world frame is ( tW

L,
W
L Θ). The

(unknown) transform from the right camera frame to the left camera frame
is ( tL

R,
L
R Θ). The translation of the GPS frame relative to the left camera

frame is tL
G.

and Faugeras in [4], [5]. Their method involves nonlinear op-
timization over the parameter space, where the cost function is
based on epipolar constraints between point landmarks viewed
in multiple camera frames. Using the calibration result, metric
information about the landmark positions can be recovered, but
distances in the scene and the length of the stereo baseline are
only specified up to scale. Our work is primarily concerned
with determining the scale factor; we also use landmarks that
lie at greater distances from the cameras.

Basic 2D stereo self-calibration for robot navigation is
described in [6], where distances to obstacles are reported in a
velocity-dependent coordinate system. This is appropriate for
the task of obstacle avoidance only; the technique also depends
on continuous motion of the robot platform.

In [7], Martinelli, Scaramuzza and Siegwart present online
calibration of the extrinsic parameters of an omnidirectional
camera, using an extended Kalman filter (EKF) to fuse obser-
vations of a stationary LED light. Instead of an artificial light
source, we use salient point landmarks in the environment,
and depend on an image feature descriptor, such as SIFT [8]
or SURF [9], that is invariant to changes in feature scale and
at least partially invariant to changes in feature orientation.

Our calibration algorithm borrows from recent work on
structure from motion (SFM, e.g., [10]) and simultaneous
localization and mapping (SLAM, e.g., [11]). The same es-
timation machinery used to solve many SFM and SLAM
problems can be used for calibration. Although we have GPS
data, we must still determine the camera orientation at each
camera position (for both the left and right cameras), and
estimate the positions of the landmarks. In [12], Solà suggests
that accurate stereo self-calibration can be performed by fusing
the output from two independent monocular SLAM estimators
running in parallel, although, again, absolute scale information
is missing.

III. PROBLEM FORMULATION

The standard method for calibrating the extrinsic parameters
of a stereo rig involves measuring the projections of known
3D landmarks (e.g., points on a calibration target) in both the
left and right camera images. An optimization procedure then
minimizes the image reprojection error with respect to the
translation and rotation between the camera reference frames.

In our case, the problem is more difficult because the
positions of the landmarks, and of the GPS antenna relative
to the cameras, are initially unknown and therefore must also
be estimated. We formulate this task in a batch maximum
likelihood framework, where m point landmarks are observed
(in both the left and right cameras) from a set of n left camera
poses. This procedure is essentially an augmented form of
bundle adjustment [3], in which there are constraints between
the poses of the left and the right cameras, and the position
of the GPS antenna, due to the rigid body transforms between
the sensors. To begin, we define four reference frames:

1. the world frame {W}, which is an Earth-centered, Earth-
fixed northing-easting-down (NED) frame,

2. the GPS frame {G}, with its origin at the center of the
GPS receiver antenna and with the same orientation as
the world frame,

3. the left camera frame {L}, with its origin at the optical
center of the left camera, and

4. the right camera frame {R}, with its origin at the optical
center of the right camera.

The relationship between the reference frames is shown in
Figure 1. We use the computer vision convention for the
orientation of the camera frames, in which the z axis is aligned
with the optical axis of the lens. The origin of the world frame
is selected arbitrarily, based on, e.g., the UTM zone in which
the robot or vehicle is operating.

In the sections below, we denote vectors and matrices in
boldface. We indicate that a vector is expressed in a particular
reference frame by prefixing the vector with a left superscript
that identifies the frame, e.g., pW for the vector p expressed
in the world frame.

A. System Parameterization

Our task is to jointly determine the positions of m land-
marks in the world frame, the n poses of the left camera in
the world frame, the transform from the right camera frame to
the left camera frame, and the translation of the GPS receiver
antenna relative to the left camera frame. The position of the
ith landmark in the world frame is represented by a 3×1 vector

pW
li

, i = {1, . . . ,m}. Similarly, the jth pose of the left camera
in the world frame is represented by a 6× 1 vector

uj =
[

tW T
Lj

W
Lj

ΘT
]T
, j = {1, . . . , n}, (1)

where the first term, tW

Lj
, is a 3× 1 vector that defines the

translation of the camera optical center relative to the origin of
the world frame, and the second term, W

Lj
Θ, is a 3×1 vector of

roll, pitch and yaw Euler angles that defines the orientation of



the camera frame relative to the world frame. The transform
from the right camera to the left camera is represented by the
6× 1 vector

vR =
[

tL T
R

L
RΘT

]T
, (2)

where the 3×1 vector tL

R defines the translation of the right
camera optical center relative to the left camera optical center,
and the vector L

RΘ defines the orientation of the right camera
frame relative to the left camera frame.

We concatenate the landmark positions and left camera
poses together with the right-to-left camera transform and the
GPS-to-left camera translation to build the complete parameter
vector

X =
[

tL T
G vT

R uT
1 . . . uT

n pW T
l1

. . . pW T
lm

]T
, (3)

where tL

G is the 3 × 1 vector that defines the translation of
the GPS antenna in the left camera frame. The size of the
complete parameter vector is 9+6n+3m. Note that all of the
entries in the vector are static quantities which do not depend
on time.

We parameterize orientations using a minimal set of three
Euler angles. Although there are singularities in this repre-
sentation, constraints on the motion of the platform prevent
us from reaching any of the singular configurations (e.g., the
pitch and roll of a land vehicle are typically limited to ±15
degrees).

B. Camera Sensor Model

We use an ideal projective (pinhole) model for both the
left and right cameras, and assume that the intrinsic and lens
distortion parameters are known.1 To compute the predicted
image measurements, we begin by expressing the position of
the ith landmark, at position pW

li
in the world frame, in the

left and right camera frames

p
Lj

li
= CT (WLj

Θ)( pW

li
− tW

Lj
), (4)

p
Rj

li
= CT (LRΘ)

(
CT (WLj

Θ)( pW

li
− tW

Lj
)− tL

R

)
. (5)

Here, C(Θ) is a direction cosine (rotation) matrix, parame-
terized by the vector Θ of Euler angles.

Measurements z
Lj

li
and z

Rj
li

are the projections of the
ith landmark onto the left and right camera image planes,
respectively, from the jth left camera pose:

z
Lj

li
=

[
uL
ij

vL
ij

]
=

[
xL
ij/ zL

ij

yL
ij/ zL

ij

]
+ ηij ,

 xL
ij

yL
ij

zL
ij

 = (KL) p
Lj

li
,

(6)

z
Rj

li
=

[
uR

lij

vR
lij

]
=

[
xR
ij/ zR

ij

yR
ij/ zR

ij

]
+ ηij ,

 xR
ij

yR
ij

zR
ij

 = (KR) p
Rj

li
,

(7)

1We plan to explore full calibration of the both the intrinsic and extrinsic
stereo parameters in future work.

where
[
uij , vij

]T
is the vector of observed left (resp. right)

horizontal and vertical image coordinates, K is the 3 × 3
camera intrinsic parameter matrix, and ηij is a 2 × 1 white
Gaussian measurement noise vector with covariance matrix
Wij .

C. GPS Sensor Model

Each GPS measurement gives the position of the receiver in
the world frame. Accounting for the moment arm of the GPS
antenna relative to the left camera optical center, we have

zGj = tW

Lj
+ C(WLj

Θ) tL

G + nj (8)

where nj is a 3 × 1 white Gaussian noise vector with
covariance matrix Sj .

This model neglects gross systematic errors due to multipath
interference. The occurrence of these types of errors is largely
dependent on the operating environment. To avoid incorporat-
ing pose measurements that include systematic errors, a chi-
squared distribution test can be used to reject GPS fixes that
lie outside of a specific confidence ellipsoid, based on the
measurement covariance [13]. Also, for non-holonomic vehi-
cles such as the Pioneer 2-AT robot, constraints on plausible
motions may be used as an additional validation gate for the
GPS data — e.g., we typically drive slowly and we know
a priori that the robot cannot move significantly in a lateral
direction over a short time interval.

IV. LANDMARK POSITION AND ROBOT POSE
INITIALIZATION

The batch calibration approach described in Section V is
only valid for small-residual problems, in which the initial
parameter values are reasonably close to their true values. In
particular, if there are large errors in the estimates of one
or more landmark positions, the calibration algorithm can
converge to the wrong solution, or diverge and fail to provide
an answer. The success of the algorithm therefore depends on
acquiring good initial landmark and camera pose estimates.
We use triangulation in combination with a maximum disparity
heuristic to determine the initial landmark positions; camera
pose estimates are derived from GPS data. The initialization
techniques are described below.

A. Maximum Disparity Initialization

Estimating the camera-relative depth of a landmark in the
environment using stereo normally involves some form of
triangulation. However, distance values derived from triangu-
lation are significantly affected by small errors in the estimated
orientation of either the left or the right camera; these small
orientation errors can produce very large errors in an estimated
landmark position. The problem is most severe for landmark
that lie far from the stereo rig.

We attempt to reduce the effects of triangulation errors using
a maximum disparity heuristic. Disparity is a measure of the
difference in the projected positions of the landmark on the left



and right camera image planes. For a fronto-parallel camera
configuration, the horizontal disparity of landmark point i is

dij = uR

ij − uL

ij (9)

where uR
lij

and uL
lij

are the projected horizontal image
coordinates for the landmark in the right and left cameras,
respectively; the disparity value is a negative quantity. For a
given, fixed left horizontal image coordinate, landmarks with
larger absolute disparity will be located nearer to the cameras.

Most stereo cameras will not, in general, be aligned in a
perfectly fronto-parallel configuration, and our initial estimate
of the camera pose will have some amount of error (otherwise
there would be no need for calibration). However, we can still
use our knowledge of the approximate relative pose of the
cameras, and of the horizontal disparity, to produce a rough
estimate of the landmark position. This approximation is poor
for small disparities, but reasonably good for large disparities.

Our approach is to delay initializing the position of land-
mark i until we find the left camera pose for which the left-
right horizontal disparity is the largest possible, relative to all
poses where the landmark is visible. We further constrain the
image plane points to lie within a fixed horizontal distance
of the principal point, which is less than the full size of the
image plane. This prevents initialization using points which
lie at the edges of the left or right image plane (in our
current implementation, points must lie within 250 pixels of
the principal point, on either side). We then triangulate the
left camera-relative the position of the landmark. The result
is that, in the majority of cases, the position of the landmark
is initialized when the robot and the landmark are in close
proximity, and the initial estimate of the landmark position
is reasonably close to the true position. This technique can
still fail, however, in cases where one or more landmarks lie
far from all of the camera poses (and the maximum disparity
value is small); we discuss this issue further in Section VI.

B. Initial Pose Estimation and Landmark Triangulation

The calibration algorithm requires an initial estimate of
the left camera pose at the time each GPS measurement
is acquired. We initialize the left camera position using the
available GPS fix and an approximate GPS antenna translation
vector (from, e.g., hand measurements or CAD data etc.). This
gives the translation of the left camera relative to the origin
of the world frame, but in general GPS does not provide
reliable information about the heading of the robot. For a non-
holonomic platform (such as the Pioneer 2-AT), and assuming
that the left camera optical axis is approximately aligned with
the longitudinal axis of the robot, we can estimate heading
using a line segment joining the positions defined by two GPS
measurements spaced closely in time.2 Because GPS altitude
data is usually less accurate than the horizontal positioning
information, we assume that the optical axis of camera is
initially horizontal.

2Here we also assume that the robot moves slowly, so that its trajectory is
approximately linear between GPS updates.

Fig. 2. Pioneer AT-2 with µBlox LEA-5H GPS unit, configured for data
logging experiments on the USC campus. The GPS antenna is visible at the
center of the aluminum crossbeam.

For camera pose j, the initial 3D positions of the visible
landmarks (which have maximum disparity at pose j) are then
found by stereo triangulation, using the technique described
in [14]. Given a pair of corresponding left and right image
point measurements, z

Lj
li

and z
Rj

li
, we back-project rays

from the left and right camera optical centers through the
image plane points. If the image plane measurements were
error-free, these rays would intersect at a 3D single point,
however noise and matching errors inevitably cause the rays
to diverge. Instead, we find the midpoint of the shortest
perpendicular segment connecting the rays. This midpoint is
selected as the initial landmark position, after transforming
from the left camera frame to the world frame. More recently,
we have also explored the use of an inverse depth-based
parameterization for landmark positions, to better represent
the landmark position uncertainty [15].

V. CALIBRATION ALGORITHM

We use a batch iterated maximum likelihood formulation for
the complete calibration problem, in which we simultaneously
solve for the landmark positions, left camera poses, translation
of the GPS antenna, and the extrinsic calibration parameters.
First, we stack the image plane and GPS measurements to
form the complete observation vector

Z =
[

zL1 T
l1

zR1 T
l1

. . . zLn T
lk

zRn T
lk

zG1 T . . . zGn T
]T
.

(10)
The value k is the index of the last landmark visible from
pose n. The observation covariance matrices for the image
plane and GPS measurements are, respectively,

W =


W11 · · · 02×2

...
. . .

...
02×2 · · · Wkn

 , S =


S1 · · · 03×3

...
. . .

...
03×3 · · · Sn

 . (11)

The complete observation covariance matrix is then

Σ =

[
W 0

0 S

]
. (12)



Note that, because the image and GPS measurements are
independent and uncorrelated, the covariance matrix is block
diagonal and can be inverted quickly.

We define the parameter and observation error vectors as,
respectively,

δX̂ = X− X̂, δZ = Z− Ẑ. (13)

where X̂ is the current estimated parameter vector and Ẑ is the
predicted observation vector based on X̂.3 The update step of
the iterated maximum likelihood algorithm involves linearizing
about the current parameter estimate, and we therefore require
the Jacobians of the image plane and GPS measurements with
respect to the pose and calibration parameters. The Jacobians
of an image plane point with respect to the ith landmark
position and the jth left camera pose are computed as

Hzli
,pli

=


∂ z

Lj
li

∂pli

∂ z
Rj

li

∂pli

 , Hzli
,uj

=


∂ z

Lj
li

∂uj

∂ z
Rj

li

∂uj

 . (14)

The Jacobian of an image plane point with respect to the
right camera extrinsic parameters, the Jacobian of a GPS
measurement with respect to the jth left camera pose, and
the Jacobian of a GPS measurement with respect to the GPS
translation parameters are

Hzli
,vR

=
∂ z

Rj
li

∂vR

, Huj =
∂ zGj

∂uj
, HtG =

∂ zGj

∂ tL

G

. (15)

The complete Jacobian matrix H is formed by inserting
the partial derivative matrices above at the appropriate row
and column positions.4 Matrix H is sparse and block diag-
onal except for the first nine columns – as such, operations
involving H are amenable to optimization using sparse matrix
multiplication techniques.

The maximum likelihood estimate for the parameters is
obtained by iteratively performing a Levenberg-Marquardt
update, solving the system

(HTΣ−1H + λ · diag(HTΣ−1H)) δX = HTΣ−1δZ. (16)

Here, λ is a damping factor which controls the direction of
motion along the parameter error surface; larger values of
λ force the update more towards gradient descent [3]. The
updated estimate for the parameter vector at iteration i is

X̂i+1 = X̂i + δX̂i. (17)

This process is iterated until convergence. We determine
that the estimate has converged when the two-norm of the
difference between the six extrinsic parameters over consec-
utive iterations is less than a small positive constant, ε (in
our implementation, ε = 10−6). If, on iteration i + 1, the
squared observation error increases relative to iteration i, we

3Estimated quantities are denoted with theˆ(hat) symbol.
4For brevity, we omit the complete Jacobians. The Jacobians with respect to

the camera poses are particularly complex because the measurement involves
division by the camera-relative landmark depth.
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Fig. 3. Robot trajectory (dashed blue line) with overlaid synthetic point
landmarks (green dots). The complete trajectory is approximately 79 meters
in length. A total of 225 landmarks are visible from 229 camera poses. The
yellow triangles indicate the estimated orientation of the robot and left camera
at various positions along the trajectory.

update the damping factor as λnew = 10λold and repeat the
iteration using the previous parameter estimate. Otherwise, we
decrease λ by a factor of 10 and continue; this is a standard
heuristic used in Levenberg-Marquardt optimization. As a last
step, we determine the maximum likelihood parameter vector
by performing an update with λ = 0.

VI. SIMULATION STUDIES

To evaluate the performance of the calibration algorithm, we
initially performed a series of simulation experiments using a
combination of real and synthetic data. We drove a Pioneer
2-AT robot equipped with an on-board µBlox LEA-5H GPS
receiver [16] in an open area on the USC campus, while
logging GPS and wheel odometry data in real time. The update
rates for GPS and odometry were 1 Hz and approximately
10 Hz, respectively. Total length of the trajectory was 79.3
m as measured by wheel odometry. The odometry data was
used only to verify that there were no gross errors in the GPS
measurements.

Based on the area covered by the (real) trajectory of the
robot, we then generated a set of 240 landmark points at
random positions on an annulus with an inner radius of 5
meters and an outer radius of 13 meters, and with random
heights between -0.5 and 0.5 meters. We used this trajectory
and set of synthetic landmark points, shown in Figure 3, as
ground truth for our simulations.

For each simulation trial, we captured a pair of simulated
images from the stereo cameras at every position along the
trajectory for which a GPS fix was available. After projecting
all visible landmarks into both the left and right image planes,
we added independent, zero-mean Gaussian noise with a
standard deviation of 1.0 pixels to the image coordinates,
to simulate errors in feature localization. Each (simulated)



camera had a resolution of 640 × 480 pixels. We used the
same intrinsic parameter matrix for both cameras, with a focal
length of 500 pixels and with the principal point located at the
center of the image plane.

We chose to run the simulation trials using the error
characteristics of a selection of three different, commercially-
available GPS receivers: the NovAtel OEMV-1 and OEMV-2
[17], [18] and the µBlox LEA-5H [16]. Receiver accuracy
is usually quoted in terms of the Circular Error Probable
(CEP) value, i.e., the radius of a (local tangent plane) circle
in which 50% of the observed measurements will lie [19].
Depending on the type of aiding employed, the receivers have
accuracies, listed in Table I, that vary from 0.02 m CEP to 2.0
m CEP. We assume a Gaussian error distribution on the GPS
measurements, and convert the CEP values to the 1σ values
shown in the third column of the table. Note that the accuracy
values range across two order of magnitude.

The initial positions of the robot were generated by perturb-
ing the GPS measurements with zero-mean Gaussian noise,
according to the selected level of accuracy in Table I. Our
early experiments indicated that the calibration algorithm is
very sensitive to situations in which landmarks and/or camera
poses are only weakly observable, that is, when the available
measurements weakly constrain the relevant landmark or pose
parameters. To ensure that the problem is fully observable, we
keep only landmarks which have been observed (by both the
left and right cameras) from at least six poses, and require
that at least six landmarks are visible in both cameras at every
pose.

VII. EXPERIMENTS

Based on our simulation studies, we then analyzed data from
a calibration test run with a ground vehicle; the vehicle is
shown in Figure 4. A stereo beam was mounted on the roof,
with two black and white Flea FireWire cameras from Point
Grey Research (640 × 480 pixel resolution), mated to 4 mm
Navitar lenses (58◦ horizontal FOV, 45◦ vertical FOV). The
stereo baseline was 30 cm. GPS measurements were recorded
from a µBlox LEA-5H receiver, with the antenna placed just
above center of the vehicle’s front windshield.

We gathered experimental data during a test run near the
Santa Monica airport in Los Angeles, California. The car
was driven along a semi-circular trajectory, over a distance
of approximately 140 m. We logged a total of 532 stereo
pairs and 296 GPS measurements. Prior to the start of data
logging, we gathered calibration data for the cameras using
a standard planar camera calibration target. These values
were then compared with those produced by the GPS-based
algorithm (see Section VIII).

VIII. RESULTS AND DISCUSSION

Simulation results for receiver configurations 1 and 2, with
0.02 meter CEP and 0.20 meter CEP accuracy, respectively,
are listed in Table II. We were not able to obtain reliable
calibration results using GPS measurements with a 2.0 meter
CEP (Table I, line 3); this amount of noise resulted in initial

Fig. 4. Ground vehicle equipped for data collection experiments. The stereo
cameras and GPS receiver are mounted on the roof of the vehicle, as shown
in the inset image.

camera pose and landmark position estimates that were too far
from the true values for the algorithm to converge consistently.
As such, we restrict the discussion below to configurations 1
and 2. We also focus primarily on our simulation results, as
the results from our vehicle experiments are preliminary.

The complete trajectory shown in Figure 3 consists of 229
left camera poses, from which a total of 225 landmarks were
visible (from six or more poses each) out of the 240 candidate
landmarks. Calibration values in columns three and five of
Table II are averages over 10 trials, with different randomly-
generated Gaussian noise for each trial.

At the start of each trial, we set the true extrinsic parameters
to the values shown in the second column of Table II. These
values correspond to a fronto-parallel stereo geometry with
a 30 centimeter baseline. We then initialized the estimated
(erroneous) parameter values as follows: a 35 centimeter
baseline in x, 2 centimeters in y and -2 centimeters in z,

TABLE I
GPS RECEIVER NOISE CHARACTERISTICS USED FOR

SIMULATION STUDIES.

Configuration CEP (m) 1σ (m) Example

1 0.020 0.017 NovAtel OEMV–2 RT-2

2 0.200 0.170 NovAtel OEMV–1 RT-20

3 2.000 1.700 µBlox LEA–5H SBAS



TABLE II
RIGHT CAMERA EXTRINSIC PARAMETER CALIBRATION RESULTS FOR GPS

RECEIVER CONFIGURATIONS 1 AND 2.

Configuration 1 Configuration 2

Parameter Truth Average σ Average σ

x (mm) 300.0 299.3 0.6 297.2 4.7

y (mm) 0.0 1.4 0.2 -0.4 0.5

z (mm) 0.0 3.6 0.3 21.1 3.4

Roll α (mdeg) 0.0 0.4 0.1 0.1 0.2

Pitch β (mdeg) 0.0 -1.9 0.1 -1.3 0.4

Yaw γ (mdeg) 0.0 1.5 0.1 0.2 0.1

with 2 degrees of positive roll and yaw error, and 4 degrees of
negative pitch error, i.e. with the cameras verged by 4 degrees.

The results show that, for both configurations, the average
residual camera orientation error after calibration is on the
order of one millidegree in roll, pitch and yaw. This is to be
expected, as camera rotation errors have a large effect on the
estimated landmark positions, and the batch estimator must
therefore drive the orientation errors close to zero to obtain a
low overall residual error. Indeed, we observed exactly this
behavior over sequential iterations of batch algorithm: the
rotation parameters typically converged first, followed by the
translation parameters.

The average residual errors for the translation parameters
are somewhat larger. For configuration 1, the average error is
less than 4 millimeters along all axes. This result, however,
depends on a level of GPS accuracy that can only be achieved
by real-time carrier-phase differential receivers – at present,
these units are very expensive and their deployment is limited.

For configuration 2, the average residual error is less than
3 millimeters in x and y – along the x direction, the error
is less than 6% of the original error value at the start of
the simulation. The average residual error along the z axis is
larger than along the other axes, however, and slightly larger
on average than the initial error introduced at the start of
the simulation. Achieving better calibration results for the z
translation parameter may simply be a matter of collecting
more data. We are exploring this issue.

In analyzing our results, we noted that accurate stereo
calibration can sometimes be obtained even when there are
relatively large errors in the 3D positions of several landmarks.
This is because the calibration algorithm minimizes image re-
projection error — for landmarks that are visible from a small
number of clustered poses only, and that lie at a significant
distance from the cameras in all cases, the reprojection error
is relatively insensitive to landmark depth.

Our simulation results are based on incremental GPS mea-
surements that are acquired as the robot or vehicle moves,
navigating or performing some other activity. It is possible
to obtain more accurate positioning information simply by
remaining stationary and filtering a large amount of GPS data.
This increased accuracy comes at the expense of the additional
time, however, which may be unacceptable in some situations.

TABLE III
RIGHT CAMERA EXTRINSIC PARAMETER CALIBRATION RESULTS FOR

VEHICLE EXPERIMENT.

Parameter Target-Based Value GPS-Based Value

x (mm) 298.2 293.1

y (mm) 2.6 4.6

z (mm) 2.9 13.6

Roll α (deg) -0.12 -0.14

Pitch β (deg) 0.14 0.15

Yaw γ (deg) -0.74 -0.72

Results for our experiment with the test vehicle are also
in agreement with the values determined using the standard
target-based calibration procedure, as shown in Table III. We
note that, in practice, when a large number of GPS satellites
are in view, the µBlox LEA-5H receiver is able to obtain
position fixes with an accuracy significantly better than 2.0
m CEP. We are presently conducting additional experiments
to determine the performance of the algorithm under a wider
variety of conditions.

IX. CONCLUSIONS AND FUTURE WORK

This paper presented an approach for calibrating a robot-
or vehicle-mounted stereo rig, using GPS measurements to
determine the absolute scale of the scene and of the stereo
baseline. This work is a step towards developing robots that
can operate for long periods of time without requiring manual
sensor re-calibration.

Our results are promising: we obtained reasonable cali-
bration accuracy using GPS measurements with a CEP of
up to 0.2 meters. A CEP of 0.2 meters approaches the
accuracy available with standard differential GPS, which is
readily available in many locations. The batch algorithm
establishes a benchmark for other approaches — we believe

Fig. 5. Example left stereo camera image acquired during one vehicle
calibration experiment.



that incremental solutions, which incorporate larger numbers
of observations over time, should be able to improve upon
these results. Further, as the global satellite navigation network
grows to incorporate the Russian GLONASS and European
Galileo constellations, we can expect even better positioning
accuracy from commodity receivers. Also, the algorithm we
have described is not limited to GPS — it can be adapted
for use with other sensors that provide positioning or ranging
information.

There are several directions for future work. We are cur-
rently exploring the use of a combination of wheel odometry
and GPS measurements to perform full calibration of both
the intrinsic and extrinsic parameters of the stereo rig. Based
on the batch solution, we are also developing an alternative,
sequential estimator formulation. Lastly, we would like to de-
fine optimal or near-optimal robot trajectories that enable rapid
calibration in the field, based on the uncertainty associated
with each calibration parameter.
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