
University of Alberta

Library Release Form

Name of Author: Jonathan Scott Kelly

Title of Thesis: Algorithmic Distributed Assembly

Degree: Master of Science

Year this Degree Granted: 2008

Permission is hereby granted to the University of Alberta Library to reproduce single copies
of this thesis and to lend or sell such copies for private, scholarly or scientific research
purposes only.

The author reserves all other publication and other rights in association with the copyright
in the thesis, and except as herein before provided, neither the thesis nor any substantial
portion thereof may be printed or otherwise reproduced in any material form whatever
without the author’s prior written permission.

Jonathan Scott Kelly
10824 - 116 Street
Edmonton, Alberta
Canada, T5H 3M5

Date:

In 1964, when entering medical school, I found myself with a dream whose origins I do
not know. I was new to biology then, as unfamiliar as many of you may be with its
intertwined marvels of historical contingency, selection, design, drift, accident, and sheer
wonder. I think as a young scientist I could not yet begin to fathom the power of natu-
ral selection, whose subtlety has grown more impressive to me over the intervening three
decades. Yet the dream that welled up from whatever unknowable sources is one I still hold.
If biologists have ignored self-organization, it is not because self-ordering is not pervasive
and profound. It is because we biologists have yet to understand how to think about sys-
tems governed simultaneously by two sources of order. Yet who seeing the snowflake, who
seeing simple lipid molecules cast adrift in water forming themselves into cell-like hollow
lipid vesicles, who seeing the potential for the crystallization of life in swarms of react-
ing molecules, who seeing the stunning order for free in networks linking tens upon tens
of thousands of variables, can fail to entertain a central thought: if ever we are to attain
a final theory in biology, we will surely, surely have to understand the commingling of
self-organization and selection. We will have to see that we are the natural expressions of a
deeper order. Ultimately, we will discover in our creation myth that we are expected after all.

Stuart Kauffman, At Home in the Universe, 1995

University of Alberta

Algorithmic Distributed Assembly

by

Jonathan Scott Kelly

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment
of the requirements for the degree of Master of Science.

Department of Computing Science

Edmonton, Alberta
Spring 2008

University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of Graduate
Studies and Research for acceptance, a thesis entitled Algorithmic Distributed Assem-
bly submitted by Jonathan Scott Kelly in partial fulfillment of the requirements for the
degree of Master of Science.

Dr. Hong Zhang
Supervisor

Dr. Lorna Stewart

Dr. C. Ronald Kube

Dr. Scott Dick
External Examiner

Date:

For Frances, Barbara, Helen and John.

Abstract

This thesis describes a model for planar distributed assembly, in which unit-square assembly

components move randomly and independently on a two-dimensional grid, binding together

to form a desired target structure. The components are simple reactive agents, with limited

capabilities including short-range sensing and rule-based control only, and operate in an

entirely decentralized manner.

Using the model, we investigate two primary issues, coordination and sensing, from an

algorithmic perspective. Our goal is to determine how a group of components can be reliably

programmed to produce a global result (structure) from purely local interactions. Towards

this end, we define the local spatiotemporal ordering constraints that must be satisfied for

assembly to progress in a coordinated manner, and give a procedure for encoding these

constraints in a rule set. When executed by the components, this rule set is guaranteed to

produce the target structure, despite the random actions of group members. We then intro-

duce an optimization algorithm which is able to significantly reduce the number of distinct

environmental states that components must recognize in order to assemble into a structure.

Experiments show that our optimization algorithm outperforms existing approaches.

Acknowledgements

I would like to thank Dr. Hong Zhang for introducing me to the problem which led to the

research described herein, and for supervising my work. His guidance and assistance were

invaluable as I charted a course through graduate studies at the University of Alberta. I

began my doctoral program in California before finishing my Master’s degree, and I am

particularly indebted to Dr. Zhang for his patience over the years that it took to complete

this manuscript.

I would like to thank the members of my committee for their careful reading of the thesis,

and to specially acknowledge Dr. C. Ronald Kube for providing much helpful advice and

for reviewing and commenting on my early work in this area. I would also like to thank Dr.

David Kempe at the University of Southern California for teaching an outstanding course

on algorithm design and analysis.

I was fortunate, during my time at the U of A, to become involved with Team Canuck,

the Computer Science department’s small-size league entry in the worldwide RoboCup robot

soccer competition. I participated in the 2002 contest in Fukuoka, Japan, and I am grateful

to my teammates Axel von Bertoldi, Doug Kondor, Matt McNaughton, Chris Parker, Sean

Verret, and Andrzej Zadorozny for making this a wonderful and memorable experience –

may your sake cups always be full my friends.

Most importantly, I would like to thank my mother, Barbara Kelly, and my grandparents,

John and Helen Aitken, for their support throughout my graduate career. Your love and

encouragement mean the world to me.

This work was funded in part by grants from the National Sciences and Engineering

Research Council of Canada and the Alberta Informatics Circle of Research Excellence.

Contents

1 Introduction 1
1.1 Contributions . 2
1.2 Organization . 3

2 Related Research 4
2.1 Self-Assembly . 4

2.1.1 Theoretical Contributions . 4
2.1.2 Models for Self-Assembling Robotic Systems 6
2.1.3 Physical Implementations . 8

2.2 Collective Assembly . 9
2.2.1 Stigmergy . 10
2.2.2 Physical Implementations . 11

2.3 Summary . 12

3 A Model for Distributed Assembly 14
3.1 Elements of the Model . 14
3.2 The Assembly Process . 16
3.3 Perspectives on Distributed Assembly . 19

4 Spatiotemporal Coordination 22
4.1 Assembly Orderings . 22
4.2 Assembly Graphs . 26
4.3 Generating Valid Assembly Orderings . 30

5 Rules and Labels 35
5.1 Consistent Rule Sets . 35
5.2 From Assembly Ordering to Worst-Case Rule Set 38
5.3 The Minimum Label Set Problem . 40

6 Experiments 44
6.1 Benchmarks . 44
6.2 Isomorphic and Symmetric Structures . 46
6.3 Complex Structures . 50

6.3.1 Structures with Interior Holes . 50
6.3.2 Larger Structures . 54

6.4 Summary . 54

7 Conclusions and Future Work 58

Bibliography 60

List of Algorithms

4.1 Breadth-First Assembly Graph for Target Structure 31

4.2 Valid Assembly Ordering for Target Structure 33

5.1 Consistent Rule Set Decision . 37

5.2 Rule Set from Labelled Structure . 39

5.3 Worst-Case Rule Set . 40

5.4 Randomized Contraction . 41

List of Tables

3.1 Example three-entry rule set. 18

6.1 Comparison of randomized contraction with competing algorithms. 47

6.2 Optimized rule set for 12-component benchmark structure. 49

6.3 Optimization results for structures D and E. 50

6.4 Optimization results for structures F and G. 54

List of Figures

3.1 Adjacent grid cells. 15

3.2 Connected and unconnected structures. 16

3.3 Example of an inaccessible grid cell. 19

3.4 Incremental snapshots of the assembly of a 2×2 square. 21

4.1 Exterior boundary cells. 25

4.2 Structure and edge-oriented assembly graph. 28

4.3 Simple structure, adjacency graph and breadth-first assembly graph. 32

4.4 Two structures that cannot be assembled using a single seed. 34

5.1 Algorithm flowchart. 43

6.1 Benchmark structures A, B and C. 45

6.2 Assembly graph, worst-case and optimal labelling for structure A. 48

6.3 Assembly graph, worst-case and optimal labelling for structure B. 48

6.4 Isomorphic structure D. 51

6.5 Symmetric structure E. 52

6.6 Plot of label count versus optimization iteration for structure C. 53

6.7 Plot of label count versus optimization iteration for structure D. 53

6.8 Structure F, which contains an interior hole. 56

6.9 Structure G. 57

Chapter 1

Introduction

Distributed assembly is the process by which a group of agents interact to assemble a co-

herent structure or pattern from individual components. An agent, in this context, is an

autonomous entity that is a) capable of sensing its environment, and b) able to act on the

sensory information it receives. These definitions are purposely broad, encompassing both

self-assembling and collective systems.1

We are motivated to study this distributed approach because it offers several advantages

over traditional, sequential assembly methods. Specifically, distributed systems are able to

exploit parallelism to improve yield or throughput, and can also be made inherently redun-

dant and failure tolerant. As such, distributed assembly is expected to become the dominant

fabrication technique for nanoscale structures, which cannot be built in a top-down, linear

manner [1]. Researchers have also suggested that self-assembly may be harnessed to build

meso-scale and macro-scale objects [2]. Indeed, Nature very successfully utilizes distributed

assembly across a range of spatial scales, from the manufacture of intricate biostructures

inside living cells to the construction of elaborate nests by many social insect species. Al-

though ubiquitous in the natural world, we have at present only a basic understanding of

how many of these systems operate.

If we wish to employ distributed assembly for our own purposes, we must immediately

deal with two fundamental and complementary issues: maintaining coordination of the as-

sembly process, and ensuring that a desired structure is produced accurately and reliably.

Some form of coordination is required so that the agents, operating in parallel, do not pro-

duce a disorganized or random result. The coordination problem is made more difficult be-

cause systems containing hundreds or thousands of agents are frequently locally-interacting

only – the cost of communication, in terms of power, time, or complexity, between distant

individuals is often too high to be practical. A challenge, then, is to solve the local-to-global

problem: given a system of many components, interacting locally, how does one ‘program’

the system to produce a specific global result? Further, the accuracy and reliability of the

1We will have more to say about the distinction between these types of systems in Chapter 2.

1

assembly process depends on an agent’s ability to correctly recognize and discriminate be-

tween members of a set of environmental features or states – for agents with limited sensing

capabilities, discrimination becomes more difficult as the number of features increases. Is

there a way to reduce the number of distinct features that agents are required to recognize?

In this thesis, we examine distributed assembly from an algorithmic perspective. Our

goals are twofold. We wish to determine how a group of homogeneous agents with limited

capabilities, including local sensing and rule-based reactive control only, can be programmed

to assemble into complex two-dimensional structures without centralized coordination. We

also seek to reduce the sensing demands placed on the agents, by minimizing the number

of environmental features that individuals must recognize in order to complete an assembly

task.

To address the above, we propose a model for distributed assembly in which unit-square

assembly components (our agents) use local rules to self-assemble into planar structures. An

assembly rule is defined by a local configuration of assembly components and an identifier

(feature or state) associated with each component; we use the generic term label for such

an identifier. We show how to generate a set of rules that, when executed by the agents,

deterministically produces a pre-specified target structure. We then introduce a randomized

optimization algorithm which attempts to minimize the number of unique labels appearing

in the rules. The algorithm operates by iteratively refining a worst-case solution, verifying

at each step that the modified rule set preserves all of the constraints necessary for successful

assembly.

Ultimately, we hope to develop principles and techniques that will allow us to build

complex structures from a large number of physically simple components, in an entirely

distributed and yet precise and reliable way. Our work here is a step towards this goal.

1.1 Contributions

This thesis makes the following contributions:

• It presents a discrete model for rule-based planar distributed assembly, requiring very

simple reactive agents (assembly components) only. We make no assumptions about

the capabilities of the assembly components beyond their ability to sense their imme-

diate local environment and to store and execute a set of rules. The components move

randomly, do not communicate directly with each other, and maintain no history of

past actions or observations.

• It formally defines the global spatiotemporal ordering constraints that must be satis-

fied for assembly to progress in a coordinated manner. We develop an algorithm for

2

expressing these constraints as a directed acyclic graph, and show that the algorithm

can correctly describe constraints for complex structures, including those with interior

holes.

• It gives an algorithm for encoding the graph of spatiotemporal constraints in a set of

local assembly rules, such that the production of a desired structure is guaranteed,

despite the random actions of individual assembly components. That is, we show how

to produce a deterministic and preprogrammed result in a system where interactions

occur randomly. By doing so, we solve an instance of the local-to-global problem.

• It introduces the Minimum Label Set (MLS) problem, a combinatorial optimization

problem which involves finding the minimum number of unique labels necessary (in a

rule set) for components to exactly self-assemble into a specific structure. We describe

an iterative, randomized algorithm which provides quantitatively ‘good’ solutions for

the MLS problem in a reasonable amount of time.

The thesis deals with planar structures only, however the assembly model and the al-

gorithms described herein can be readily extended to three dimensions. We briefly discuss

these extensions in Chapter 7.

1.2 Organization

The thesis is organized as follows. We begin in Chapter 2 by discussing related work from

a variety of fields, including biology, entomology, computer science and robotics. Chapter 3

describes our planar assembly model. In Chapter 4, we introduce a graph-theoretic formal-

ism for expressing sets of spatiotemporal ordering constraints that, when satisfied, ensure

the coordinated assembly of a structure. Chapter 5 gives a procedure for encoding these

constraints in a set of local assembly rules, and develops our randomized label reduction

(optimization) algorithm. We present a series of experiments in Chapter 6 which character-

ize the performance of the optimization algorithm, for a variety of structures. Finally, we

offer some conclusions and directions for future research in Chapter 7.

Throughout the remaining chapters we introduce formal definitions as necessary. Basic

definitions are often given directly in the section text, while more complicated and important

terms are defined separately.

3

Chapter 2

Related Research

In this chapter, we explore relevant work in the broad areas of self-assembly and collective

assembly. For the purpose of this thesis, we will define a self-assembling system as one in

which the components involved become part of the final structure. A collective system, in

contrast, will rely on autonomous agents to position and attach inert building materials.

Research in self-assembly and collective assembly spans the diverse fields of molecu-

lar biology, entomology, computer science and robotics, among others. Our review below

highlights theoretical contributions and initial steps towards developing controlled (pro-

grammable), artificial implementations of self-assembling and collective systems. We focus

primarily on the modelling of these systems here, as a first step to understanding their

operation.

2.1 Self-Assembly

Self-assembly has traditionally been studied as a chemical process, where interactions be-

tween components (individual molecules) are governed by inter- and intramolecular forces.

It is well known that groups of certain molecules will, in reaching their lowest-energy con-

figuration, spontaneously form into symmetric, ordered aggregates. Our interest, however,

is in complex and potentially asymmetric self-assembled structures, built from more so-

phisticated components. We begin by surveying various passive models for asymmetric

self-assembly, and then consider several active (robotic) approaches.

2.1.1 Theoretical Contributions

There have been significant recent efforts toward developing an algorithmic theory of self-

assembly, in which the process is viewed as a form of computation. This approach permits

analysis using tools from algorithmic complexity theory. The input to a self-assembly ‘pro-

gram’ is a set of individual atomic (irreducible) components or parts, and the output is a

final, aggregate structure. Programs may be analyzed in terms of both their size complex-

4

ity, i.e. the cardinality of the input set and/or number of assembly rules, and their time

complexity, i.e. average or asymptotic time required to assemble the complete structure.

The formal study of algorithmic self-assembly began with the Domino Tiling Problem

described by Wang in the early 1960s [3]. A domino tile or Wang tile is a square planar

tile with a colour assigned to each edge. The fundamental problem Wang posed was to

determine if a particular set of tiles could fill the infinite plane without leaving any gaps.

Tiles may be placed according to the following two rules: attachments must be made along

edges of like colour, and tiles may not be rotated or flipped. The Domino Tiling Problem

has been shown to be equivalent to the Turing machine halting problem, and is therefore

undecidable.

Wang’s early work influenced Adleman’s model [4] for the one-dimensional self-assembly

of linear tile chains (a process called tile polymerization). In this model, the edges of a tile

are assigned glue values (from a countably infinite set of glues), analogous to the coloured

edges of a Wang tile. Tiles will bind along abutting edges if the glues are compatible;

rotation of the tiles is not allowed. Adleman provides a metric for the time complexity of

linear polymerization based on ‘step-counting’, where a step involves the binding of a tile

with any adjacent tiles sharing compatible glues. The results in [4] include a proof of the

asymptotic bound on the number of steps required for a certain proportion of the tiles to

become incorporated into a single polymer.

Rothemund and Winfree [5] describes a two-dimensional Tile Assembly Model, in which

unit-square tiles move randomly on the plane and join together to form larger compound

structures. As in [4], each tile edge is assigned a glue value; a tile type is a unique assignment

of glues to edges. Unlike [4], tiles will bind along abutting edges only if the total strength

(sum) of their pairwise edge interactions, defined by a glue strength function, is larger than

a fixed temperature parameter τ . The τ value models the thermal energy of the system,

with a higher temperature making binding less likely. A structure’s program size complexity

is defined as the number of tile types required to uniquely assemble the structure. Adleman

et al. [6] generalizes the model in [5] and gives an assembly algorithm for n×n squares that

is optimal in terms of asymptotic assembly time and program size (tile types). The problem

of determining whether a certain number of tile types is the minimum required to assemble

an arbitrary planar structure is shown to be NP-complete in [7].

Saitou [8] introduces an alternative model for one-dimensional self-assembly, derived

from automata theory. Here, assembly is guided by conformational switching, the (phys-

ical) process whereby two components, when brought into close proximity, bind to one

another and change their overall conformation (or shape) as a result. Conformation changes

then promote or inhibit binding with other components or assemblages.1 A self-assembling

1Many biological reactions are mediated by conformation changes, caused by e.g. ligand docking etc.

5

automaton is a simplified rule-based machine (in the Turing machine sense) that operates on

one-dimensional strings of components or parts. The parts are initially divided into a series

of hypothetical ‘slots’ in a component bin; an assembly operation involves picking two parts

from random slots, applying an assembly rule (if a suitable rule exists), and returning the

resulting assemblage to another random slot. One or more of the parts in the assemblage

may undergo a conformation change as a result of the operation. For the one-dimensional

case, [8] shows that three conformations for every part are sufficient to exactly assemble any

linear string of parts.

Klavins et al. [9] presents a model similar to [8] for self-assembly and distributed robotic

assembly based on graph grammars. Here, graph vertices represent parts, and an edge

between two vertices indicates that the corresponding parts are attached. Assembly rules

are specified by a grammar consisting of a set of graph pairs, where each pair describes a

local replacement rule: if a conformation of parts matching the first graph in a pair exists,

the conformation can be replaced with a new conformation defined by the second graph.

This procedure defines an assembly action. A particular grammar can be programmed

into the system, by proper selection of the parts, to synthesize a desired structure. One

difficulty, however, is that, although graphs naturally express topological relationships, they

do not readily encode geometric information. Ghrist and Lipsky [10] successfully extends

graph grammars to tile assembly systems, and gives examples of grammars that generate

only planar outputs, but does not address the problem of designing grammars for arbitrary

planar structures.

2.1.2 Models for Self-Assembling Robotic Systems

The models described above are passive, in the sense that assembly events occur as a natural

result of the design of the components themselves. That is, the components cannot choose

whether or not to participate in an assembly activity – all possible interactions are a priori

specified by the components’ intrinsic characteristics. We now discuss a series of models for

active systems, in which the components (agents) have some level of basic intelligence and

are able to sense, deliberate, and act – making them, effectively, simple robots. Our model,

presented in Chapter 3, is an example of this type.

Guo et al. [12] suggests a model for active self-assembly involving cubic blocks, where

each block face is assigned a polarity from the set {like, unalike, neutral}. Like polarities

repel, while unlike polarities attract; neutral polarities neither attract nor repel. Every block

contains an internal state machine that is able to change the polarity of a face in response

to a ‘sticking’ or ‘unsticking’ event. Simulation results in [12] demonstrate that a genetic

algorithm can evolve sets of state machine rules that allow stable shapes to form. A shape

is stable if it stops growing at some point because no further sticking events can occur. The

6

largest stable structure given in [12] consists of only 13 blocks, however.

Closely related to our own work is the Intelligent Self Assembly (ISA) model proposed

by Jones and Matarić [13]. In ISA, autonomous unit-square Assembly Agents (AAs) move

randomly on a two-dimensional grid and self-assemble into planar structures under local,

rule-based control. Each AA maintains an internal state, and is able to detect the states of

agents in adjacent cells. An AA will bind to its neighbours when it discovers a state pattern

that matches one of a series of internally-stored assembly rules. The AA then transitions

to a new state specified by the activated rule. Rules are generated offline by a Transition

Rule Set (TRS) compiler, which takes the goal structure as an input and produces a set

of assembly rules as an output. A rule set which builds the goal structure only is termed

consistent. The TRS compiler operates by iteratively assigning larger state values to AAs

in the complete structure until a consistent rule set is built. As described, the compiler is

able to generate rules for a subset of planar structures without complex interior regions (e.g.

certain types of ‘holes’ with non-convex boundaries). Also, the compiler does not attempt

to minimize the number of states appearing in the rule set, and does not exploit symmetry

or self-similarity within the goal structure to reduce the number of states used.

Li and Zhang [14] addresses the problem of state reduction in [13] by partitioning the

goal structure into rectangular regions and generating rules independently for each region.

Individual rectangles are encoded using the minimum number of states necessary. The

rectangles are then ‘stitched’ together by introducing additional states to handle assembly

along the boundaries. This partitioning approach is effective for structures composed of

large, contiguous regions, however the algorithm does not take advantage of symmetry and

does not provide improvement for degenerate rectangles (those with a length or width of

one unit).

Arbuckle and Requicha [15] proposes a communicative model for self-assembly, in which

agents are able to send messages to connected neighbours. Communication enables a global

ordering to be imposed on the entire assembly process, and also for the assembly of sacrificial

scaffolds and of partially-specified structures. In the case of partially-specified structures,

assembly is adaptive – a structure may be defined in terms of constraints (e.g. “there

must be a connected bridge from point A to point B”), and message-passing allows the

components to self-assemble around unknown obstacles. The drawback of communication

is that it requires significant resources (for example, power) from each assembly agent.

The work in [15] is extended to shape restoration in [16]. Given a desired, solid pla-

nar shape and an existing, partially-complete sub-shape, [15] describes an algorithm for

programming assembly agents to restore the complete shape from the unknown sub-shape.

The algorithm begins by assembling an outer perimeter for the complete shape. Agents on

the perimeter then shift inwards until no further space is available in the interior region. A

7

similar extension to self-repairing structures is examined in [17], where agents send messages

to connected neighbours at regular intervals. If no message is received from a neighbouring

agent within a specified time period, the receiving agent assumes that some type of failure

has occurred, and disconnects from the neighbour. This allows another, operating agent

to move into position, repairing the structure. It also implies that continuous message ex-

change is required to maintain structural cohesion, which may be an unrealistic requirement

for many physical systems.

Other approaches more closely parallel biological processes, such as cell morphogenesis.

Kondacs [18] describes a method for programming a group of synthetic ‘cells’ to replicate

and grow into an arbitrary two-dimensional shape. There is no centralized control in the

system – each agent relies solely on an identical internal program that is pre-compiled from

a covering-disc decomposition of the input shape. The assembly process is mediated by

long-range gradient signaling, which allows cells to triangulate their current positions in

the overall structure, and by short-range messaging between adjacent cells. A spanning tree

formed from the covering disc set is used to generate the individual programs that determine

when cells should send specific long- and short-range messages. The system has an attractive

self-containment property: because cells determine their positions via triangulation, they

do not require any external, global orientation information to self-organize.

2.1.3 Physical Implementations

Theoretical models can provide significant insight into the design of self-assembling systems.

However, as abstractions, these models often do not fully describe the complexities of phys-

ical assembly processes. For example, high-level models usually do not consider assembly

errors that may result from contamination, misalignment of individual components, envi-

ronmental noise or other factors. We therefore review several attempts to develop artificial

self-assembling systems in this section.

Rothemund [19] demonstrates that a simple tile assembly system can be physically re-

alized. In this implementation, binding between small, square plastic tiles is mediated by

lateral capillary forces, which are attractive or repulsive depending on the hydrophilic or

hydrophobic wetting characteristics of the individual tile edges. When placed in a liquid

consisting of two immiscible layers (one hydrophilic, the other hydrophobic), the tiles nat-

urally deform the interface between the layers, resulting in capillary forces that cause tiles

with opposite wetting characteristics to move towards each other and bond together. A

critical finding in the work is that the model or simulation used to predict the outcome

of these experiments cannot be over-simplified relative to the physics of the system. For

example, a model which assumes that tile edge characteristics may be represented by digital

values {0, 1} fails to capture several important physical effects, such as bonding variations

8

that can cause tiles to tilt and inhibit aggregation.

Reif et al. [20] reports on self-assembly using deoxyribonucleic acid (DNA) tiles with

‘sticky ends’. Each DNA tile is formed from multiple single-strand DNA anti-parallel

crossovers. At the end of every strand is an unbound base pair sequence (the sticky end);

this sequence will naturally bind to a complementary sequence at the corner of another tile.

By designing the selective affinity of the ends, a series of individual tiles can be made to

reliably form into a larger tiling lattice. The tiles may be homogeneous, producing a regular

periodic structure, or heterogeneous for application-specific designs. The primary challenge

for DNA tile systems is error control – error rates from 0.5% to 5% are common.

Burden et al. [21, 22] describes a real-world testbed for the grammatical self-assembly

model defined in [9]. Triangular programmable parts, which are small, self-contained robots,

float on an air table and interact through random collisions. A part is equipped with

an electromagnetic latch and an infrared transceiver along each of its edges, allowing it

to reversibly bind and communicate with neighbouring parts. The parts are ‘stirred’ (to

simulate thermal agitation) by several fans located around the border of the table. Initially,

the edges of a part are assigned a triple of labels; when two parts come into contact, they

compare their label states and decide collectively whether to remain bound together or to

separate. The decision is based on a common graph grammar stored internally by each

part. Interactions between the parts can be modelled using reaction-diffusion dynamics

from chemical kinetics theory, with an appropriate kinetic rate constant.

2.2 Collective Assembly

In collective assembly2, a number of agents work in parallel to assemble a structure from

inert building materials. The size of the group may vary from just a few to hundreds or

thousands of individuals. We are concerned with minimalist systems in which the agents are

relatively simple and operate without centralized control. In these cases, the agents usually

do not possess explicit, internal representations of the world or of their actions within it –

instead, as described by Brooks, they “use the world as its own model”3 [23].

Much of the research on collective robotics has been inspired by entomological studies of

social insect species (bees, wasps etc.). Although individuals in these societies possess limited

capabilities and small behavioural repertoires, reinforcing interactions will often produce

coherent group behaviour. Pioneering work by Kube and Zhang [24,25] demonstrated that

a group of insect-like, behaviour-based robots can collectively accomplish certain tasks, such

as box pushing, which would be impossible for a single robot. Coordination and cooperation

emerge from simple, local rules that regulate the interactions between group members; the

2Collective assembly is also called collective construction in some literature.
3A different, and more famous, quotation from Rodney Brooks is that “the world is its own best model.”

9

robots do not need to communicate directly with each other. Kube emphasizes in [24] that

designers of collective tasks must explicitly consider an interaction loop involving both the

system (i.e. the robots) and the environment.

Assembly tasks, in particular, require some method for coordinating the actions of the

agents involved. Without coordination, misassembly of one portion of a structure may

impede, or worse, prevent, successful assembly of the structure as a whole. One possible

coordination strategy is biologically-inspired, hormone-based control [26, 27], in which dif-

ferent types of digital ‘hormone’ messages diffuse throughout a colony according to specific

propagation and decay rules. Hormone-based approaches typically require the transmission

of electromagnetic or chemical signals, however, and are therefore energy-intensive. Below,

we focus on stigmergy, an alternative, powerful coordination mechanism used by many social

insects.

2.2.1 Stigmergy

Our work on distributed assembly [28] was originally motivated by a desire to apply models

for social insect nest construction to robotic systems. Insect workers do not follow a global

blueprint and do not normally communicate with each other – instead, the workers convey

information through modification of the environment itself. New environment configura-

tions, in turn, stimulate other actions by the same worker or another worker in the colony.

French entomologist Pierre-Paul Grassé coined the term stigmergy in 1959 to define this

type of behaviour [29], which he studied initially in termite species. The word is derived

from the Greek roots ‘stigma’ (urge or goad) and ‘ergon’ (action or work), and is meant to

convey the idea of “incitement to work by the products of work” [30].

Stigmergy can be generally classified as either quantitative and qualitative. In quantita-

tive stigmergy, the intensity of the interactions between agents and the environment takes

on a continuous range of values. Pheromone gradients are one example of a quantitative

stimulus, and have been suggested as a useful coordination mechanism to guide robotic

construction [31]. Qualitative stigmergy, in contrast, uses a set of discrete stimulus types –

stimuli that are qualitatively different trigger different responses from an agent.

An example of qualitative stigmergy relevant to this thesis is the model of wasp nest con-

struction proposed by Bonabeau et al. [32]. In this model, reactive agents move randomly

and asynchronously on a three-dimensional cubic or hexagonal lattice, depositing elemen-

tary bricks when they sense certain configurations of bricks in adjacent cells. Each agent

carries an identical, internal lookup table specifying which of two types of bricks to deposit

when it encounters an appropriate stimulating configuration. Entries in the table are called

micro-rules, and together they form a building algorithm. To avoid random deposits, every

algorithm begins with a single, pre-placed seed brick.

10

The model in [32] has three important characteristics: 1) construction can occur in par-

allel at several locations simultaneously, 2) there is no centralized control or direct (agent-

to-agent) communication, and 3) agents have access only to local information about the

portion of a structure in their immediate vicinity. The rule space is also extremely large:

for the 26-cell local neighbourhood used in the model, and with only two types of elemen-

tary bricks, there are 226 ≈ 108 unique micro-rules. Each of these rules can potentially be

combined with thousands of others, generating an enormous number of possible combina-

tions. However, there are relatively few subsets of compatible rules which generate coherent

architectures [33]; a significant challenge is to efficiently find such coordinated subsets of

micro-rules.

Bonabeau et al. [34,35] explores the rule space using a genetic algorithm (GA). The GA

fitness function is based on subjective human evaluation of the ‘structuredness’ of a series of

example architectures, and incorporates the following observations: coherent architectures

are compact, consist of repeating, modular patterns, and tend to make use of many of

micro-rules. Although the structures produced by the GA are visibly organized, [35] does

not consider the problem of generating micro-rules for structures that are a priori specified.

Werfel et al. [36] proposes endowing the environment itself with basic information pro-

cessing capabilities, as a way to improve the robustness and efficiency of collective assembly.

In this approach, called extended stigmergy in [36], square structural blocks are able to com-

municate state information to their neighbours and to nearby robots. The blocks can also

react to this information by attaching to or detaching from one another. Using the informa-

tion provided by the blocks, mobile robots are able to assembly any solid, two-dimensional

structure, specified by either a complete design or by a set of more general constraints (e.g.

that every block of type A must have a block of type B within a radius of three units).

Communication within the structure also provides some capacity for error correction via

disassembly.

2.2.2 Physical Implementations

The literature contains several examples of collective assembly involving physical robots.

Wawerla et al. [37] studies the role of communication in a multi-robot construction task,

where mobile robots assemble linear barriers composed of coloured cylinders. Robots con-

struct a barrier by placing cylinders of alternating colour adjacent to one another, starting

with an initial ‘seed’ cylinder that is pre-positioned. The authors carry out several exper-

iments to verify that a single robot is able to complete the construction task successfully.

Simulation studies with multiple robots indicate that, as the number of robots increases,

there is a corresponding decrease in individual robot performance, due to interference and

competition for access to the construction site. A robot will often have to wait to access to

11

the end of the barrier, only to discover that it is carrying a cylinder of the wrong colour.

Overall performance improves significantly if the last robot to successfully add a cylinder

is able to communicate one bit of state information (the colour of the attached cylinder) to

other, nearby robots.

Werfel et al. [38] describes several algorithms for collective robotic construction of planar

structures, where each algorithm is distinguished by the capabilities it requires from the

structural blocks – blocks are either inert and identical, inert and distinct, or ‘writable’

(blocks which can be labelled dynamically). In all cases, the algorithms are limited to

the construction of solid shapes without internal holes. Experiments using a mobile robot

equipped with a gripper, colour camera and Radio Frequency Identification (RFID) tag

reader/writer verify that the robot is able to successfully build to small planar structures

from self-aligning, writable blocks.

Parker and Zhang [39] demonstrates a robotic construction system modelled on the be-

haviour of a particular species of ant (Leptothorax tuberointerruptus). This species employs

a building method known as blind bulldozing, in which the ants push material outwards from

a central location to form a circular nest surrounded by a uniform wall. In the correspond-

ing robotic implementation, each member of a group executes the same simple algorithm:

a robot moves directly forwards in a straight line, pushing gravel with its plow, until the

resistive force on the plow exceeds a predetermined threshold. When this occurs, the robot

backs up, randomly reorients itself, and resumes moving forwards in a new direction. Rep-

etition of the pushing action, over a period of time, produces a cleared nest area that is

approximately round. The robots are entirely reactive and have no knowledge of the struc-

ture they are building. Although robot-robot and robot-wall interactions occur randomly,

the time-evolution of the nest structure is statistically predictable.

2.3 Summary

Our review above focused primarily on the modelling of self-assembling and collective sys-

tems. We also briefly described several initial attempts to develop artificial implementations

of these types of systems.

We saw that theoretical models for self-assembly are at present largely simplified ab-

stractions, designed to permit tractable analysis using, for example, algorithmic complexity

theory. The models can generally be grouped based on whether they are passive or active;

active systems are typically more capable, but also more complex, than their passive coun-

terparts. Examples in the passive category include tile assembly, conformational switching,

and graph grammar-based approaches. Examples in the active category include intelligent

state-based methods and techniques inspired by cell morphogenesis. The addition of direct

short-range communication in some active models enables capabilities such as environmental

12

adaptation, disassembly and error correction.

Researchers have begun to form a bridge from self-assembly theory to practice, using a

variety of mediums and components. Existing physical implementations rely on capillary

forces, selective affinity of DNA molecules, or more sophisticated macro-scale components

such as robotic programmable parts.

Our discussion of collective assembly emphasized that designers of collective systems

must consider an interaction loop involving both the agents and the environment in which

they operate. In some cases, this interaction loop produces a gestalt effect, allowing a group

of agents to complete a task which would be impossible for a single individual.

We described methods for collective coordination that rely on digital hormones and

on stigmergy. Stigmergy, or environment-mediated coordination, is an attractive approach

because it does not require agents to perform any actions beyond those already necessary

for the construction task.

Much of the work on collective assembly has been inspired by the stigmergic, distributed

nest-building activities of social insect species. For these types of systems, the range of dis-

tinct environmental configurations and possible agent-environment interactions is typically

extremely large. A challenge, then, is to determine how to constrain the assembly process

enough to ensure that a coherent result is produced. Because of the additional complexity

involved, collective robotic implementations have thus far been limited to the assembly of

planar structures by small numbers of robots.

13

Chapter 3

A Model for Distributed
Assembly

We now introduce a discretized model which captures many of the essential properties of

real-world distributed assembly systems. In our model, homogeneous unit-square assembly

components move randomly on a two-dimensional grid of cells, binding together to form

a desired target structure (or simply target). The assembly process is entirely local – as-

sembly decisions depend only on the information available within a component’s immediate

environment.

We begin in the next section by defining the elements of the model, and proceed to

formalize how a structure is assembled over time. The chapter closes with a discussion

of several ways in which our abstraction can be modified to describe a wider variety of

self-assembling, and also certain types of collective, systems.

3.1 Elements of the Model

Our model consists of two elements: a planar assembly grid and a set of assembly com-

ponents. The assembly grid is a finite, two-dimensional Cartesian lattice on which the

components move and upon which the final structure is built. An assembly components

(or simply component), is an autonomous agent that is able to recognize and respond to a

limited set of features within its local environment. At any time, a grid cell may be empty

or may contain a single assembly component which completely fills the cell.

The position of a cell is represented by a coordinate pair (i, j) of integers, relative to an

arbitrary origin (0, 0). We use the cardinal directions north, east, south and west to define

spatial relationships between the cells: for coordinate pair (i, j), the first value i specifies

the position of the cell along an axis increasing from west to east, while the second value j

specifies the position of the cell along an axis increasing from south to north. When there

is no risk of ambiguity, we will often refer to a cell by its position, as ‘cell (i, j)’, instead

of explicitly writing ‘the cell at position (i, j)’. Likewise, we will generally not distinguish

14

Figure 3.1: The assembly component (black) may move to any one of the four adjacent cells
(medium grey) at the next time step, as indicated by the arrows. After two time steps, the
component is able to reach any one of the light grey cells.

between a set of cells and the set of coordinate pairs that identify those cells on the grid;

this notational convenience will allow us to simplify a number of the definitions below.1

Each cell has four adjacent neighbours to the north, east, south and west, as shown in

Figure 3.1. Given two adjacent cells at positions (i, j) and (m,n), we describe the position

(m,n) with respect to (i, j) by writing (m,n)d(i,j), where d ∈ {n, e, s, w} is an abbreviation

for the direction (north, east, south or west), respectively, of (m,n) relative to (i, j) on the

grid.

Definition 3.1 Grid cells at positions (m,n) and (i, j) are adjacent if |m−i|+|n−j| = 1.

Although all of the assembly components have the same size and shape, each may be

distinguished by an intrinsic feature called a label. In a physical system, this label might

be any characteristic that is readily discernible at the scale of the components, such as a

colour (macro-scale), inscription (micro-scale), or particular surface molecule (nano-scale).

For our purposes, labels will be values from the set N+ of positive integers. Initially, every

component is assigned the null label, which is ‘0’ by our convention. Each component is

able to undergo a single label update, from the null label to a label l ≥ 1; this change occurs

as the result of an assembly action.

An assembly component has minimal sensing capabilities: it is able to determine which

direction is north, and to recognize the labels assigned to other components in adjacent,

occupied cells. Heading information is used only to maintain a fixed orientation while

traversing the grid – an individual does not know its current position, and has no capacity

to acquire or compute this information. Additionally, the components have no memory of

past actions or observations and cannot communicate directly with one another.

1This does (subtly) confuse ontology with representation, however it is acceptable in this case because there
is a bijective mapping between cells and coordinate pairs.

15

(a) (b)

Figure 3.2: A simple connected structure (a), and a similar unconnected structure (b).

3.2 The Assembly Process

Assembly begins with a group of n ≥ 1 free components at a set F of random grid positions,

and a single seed component, which is fixed at the origin and given the initial label ‘1’.

Growth of a structure occurs outwards from the seed. We assume that the grid is of sufficient

size to accommodate the target structure that we wish to build, with an additional border

of cells (at least one unit wide) around the entire grid perimeter.

At each discrete time step, every free component performs a random walk on the grid,

moving to an adjacent empty cell if possible. As a component moves, it compares the

occupancy pattern in the four adjacent cells with entries in an internal lookup table of

assembly rules, stored in read-only memory. Each rule specifies a binding configuration that

triggers an assembly action, and a resultant label. The binding configuration enumerates

a) which adjacent cells must be occupied, and b) what labels must appear on components

in the occupied cells. At least one cell in a binding configuration must be occupied, and up

to three cells may be occupied. When a binding configuration is identified, the component

applies the corresponding rule by attaching (binding) itself to the adjacent components at

its current grid position. Binding is irreversible – assembly actions are never undone. The

component is then bound to the structure, and the number of free components is reduced

by one. Immediately after binding, the component performs a label update, transitioning

from the null label (‘0’) to the resultant label defined by the activated rule. The rules are

identical for all components, making each component redundant and interchangeable.

Formally, we define a structure as a set S of grid cells, with the understanding that the

cells are to become occupied as part of the assembly process, and a label set L as L ⊂ N+,

with |L| finite. We model the assembly of connected structures only; Figure 3.2 presents

examples of a connected and an unconnected structure.

16

Definition 3.2 A connected structure is a set S of n > 1 cells (represented by their

positions on the grid), such that there is a path (or sequence of pairwise-adjacent cells)

between any two cells in S.

Definition 3.3 Two structures S1 and S2 are isomorphic if there is a translation vector

v = (v1, v2) such that adding v to every element of S1 results in S2.

Definition 3.4 The bounding box for a structure S is an ordered pair of coordinate

pairs ((p, q), (r, t)), of the largest possible values p, q and the smallest possible values r, t

such that for every coordinate pair (i, j) ∈ S, p ≤ i and q ≤ j and i ≤ r and j ≤ t.

The assembly process yields a labelled structure (S,L, λ), where S is a connected struc-

ture, L is a label set, and λ is a surjection λ : S → L. We note that, while a structure is

defined as a set of cells, a labelled structure is defined as a set of occupied cells. This is a

subtle but important distinction – labels are assigned to components, and so the cells in a

labelled structure must be occupied.

We will normally represent a labelled structure as a set of ((coordinates), label) pairs,

or, for brevity, by a symbol S̄ with an over-bar. An |L|-labelling of a structure S̄ is an

assignment of exactly |L| unique labels to the elements in S (for example, an assignment

using two labels is a two-labelling etc.). For a grid defined by the set of cells M , we use

the notation M(i, j) for the label on the component in the cell at position (i, j) if the cell

is occupied, or ‘–’ if the cell is empty. Likewise, since a labelled structure occupies a subset

S ⊂ M of the cells on a grid M , we also use the notation S̄(i, j) for the label on the

component in cell (i, j) which is part of S̄.

Our goal is to produce a specific target structure T , or a set of cells that, when occupied,

form a desired shape. The set T always includes the origin cell (0, 0), which is the position of

the seed. A labelled structure is complete when it contains exactly the same set of occupied

cells as the target T .

Definition 3.5 For a target structure T and a labelled structure S̄ = (S,L, λ), we say S̄

is complete when S = T .

Definition 3.6 A binding configuration is an ordered four-tuple (ln, le, ls, lw) of values

from the set N+ ∪{−}, where the values represent labels on components in adjacent cells to

the north, east, south and west, respectively, of a component’s grid position. The symbol

‘–’ is used to identify cells in the configuration that are either empty or occupied by a free

component.

17

Rule Number Expanded Format Tuple Format

1

 −
− • −

1

 =⇒ 2 (−,−, 1,−, 2)

2

 −
1 • −
−

 =⇒ 3 (−,−,−, 1, 3)

3

 −
2 • −

3

 =⇒ 4 (−,−, 2, 3, 4)

Table 3.1: A simple, three-entry rule set. Each rule is shown in expanded format (second
column) and as a five-tuple (third column). In the expanded format, the right arrow is
interpreted as ‘leads to binding, with the resultant label’. The topmost entry in the expanded
binding configuration refers to the cell to the north. The label set here is L = {1, 2, 3, 4}.

Definition 3.7 An assembly rule is an ordered five-tuple (ln, le, ls, lw, γ), where

ln, le, ls, lw ∈ L ∪ {−} define the binding configuration and γ ∈ L is the resultant label.

Definition 3.8 Two rules conflict if they share the same binding configuration but have

different resultant labels.

A rule r = (ln, le, ls, lw, γ) may be applied by a free component in cell (i, j) on grid M if

ln = M(i, j + 1) and le = M(i+ 1, j) and ls = M(i, j − 1) and lw = M(i− 1, j). When r is

applied, we update the set F of positions of free components as F ← F \ {(i, j)} and the

structure S̄ as S̄ ← S̄ ∪ {((i, j), γ)}. At the start of the assembly process, S̄ = {((0, 0), 1)}.

When we say that a set of rules produces a specific structure, we mean that a group of

assembly components executing the rules will form the structure on the grid.

It is possible for a set of bound components to form a barrier around an empty cell,

preventing free components from reaching the cell (see Figure 3.3 for an example). In this

case, the empty cell is blocked by the bound components, and therefore inaccessible – if the

cell is part of the target structure then the target cannot be completed. This problem, in

particular, motivates our discussion of spatiotemporal coordination in Chapter 4.

Definition 3.9 A cell (i, j) is accessible if, with all free components removed from the

grid and starting at an empty cell at the grid edge, there is a connected set of pairwise-

adjacent empty cells that includes (i, j). Conversely, a cell is empty but inaccessible if no

such set of pairwise adjacent cells including (i, j) exists.

18

Figure 3.3: The cell c (light grey) is blocked by eight bound components (labelled 1 – 8).
The free component in the northeast corner of the grid will be unable to access c.

Definition 3.10 Each grid cell is always in one of three mutually exclusive states: ac-

cessible, inaccessible, or occupied by a bound component.

An instance of the model is fully specified by the set F of the positions of free components

on the grid, a target structure T , an initial labelled structure S̄ = {((0, 0), 1)}, and a rule

set R. Table 3.1 gives both graphical and shorthand (tuple) notations for a small rule set.

We will primarily use the tuple notation throughout the remainder of the thesis. Figure

3.4 shows four views, each at a different time index, of the structure assembled using these

rules.

We do not directly mention assembly time in the exposition above. The rate at which

assembly proceeds depends on the size of the grid, the number of free components, and the

shape of the target structure, among other factors. We will assume that assembly occurs

over some finite (but possibly very large) amount of time.2

3.3 Perspectives on Distributed Assembly

According to the taxonomy in Chapter 2, we have defined a model for active robotic self-

assembly – however our formulation is general enough to be applied more broadly. For

example, we specified that the assembly components update their own labels immediately

after an assembly action; we could instead assign a fixed label to every component before-

hand, and thereby permit each component to implement only one assembly rule. We would

then have a heterogeneous set of components, and the resulting model would be very similar

to the Tile Assembly Model defined in [5]. This variation is more suitable for describing

passive assembly at the micro- or nano-scale.

2It is also possible that the assembly process may never terminate, because the components move randomly,
although this becomes statistically less likely over longer intervals of time.

19

With several additional assumptions3, our model is also valid from a collective assembly

perspective, where agents transport and attach inert building blocks. If we are able to ignore

the spatial extent of the agents themselves, then the theorems regarding spatiotemporal

coordination (and the associated assembly guarantees), derived later in the thesis, also hold

for the collective system. This variation may be useful for describing assembly tasks in

minimalist, macroscopic robotic systems.

In summary, small changes to the model often lead to wide variations in its domain of

applicability. The aspect common to all of these domains is that only local information is

available to an agent at any stage of the assembly process. From an algorithmic point of

view, our model is flexible with respect to the way in which labels are assigned and the way

in which components are positioned.

3We omit the details of these assumptions, except to note that they involve the size and maneuverability of
the agents, e.g. an agent must be able to ‘fit’ into the same spaces and through the same openings as the
inert building blocks.

20

(a) (b)

(c) (d)

Figure 3.4: Incremental snapshots of the assembly of a 2× 2 square target structure using
the rule set in Table 3.1. The compass rose in the upper left-hand corner cell points north.
Small arrows indicate the direction of motion of each assembly component at the next time
step. The light grey (empty) cells are part of the binding configurations that trigger rule
activations.

21

Chapter 4

Spatiotemporal Coordination

In our model, assembly components move randomly on the grid, and therefore the exact

sequence in which binding events occur cannot usually be determined in advance. However,

for assembly to be successful, the geometry and topology of a target structure will necessarily

impose certain spatiotemporal ordering constraints on this sequence. As an example, if we

consider a solid 3 × 3 square target with the seed positioned in the southwest corner (as

shown in Figure 3.3), the centre component must be attached before the outer border of

the structure is closed. Otherwise, free components will not be able to access the interior,

making completion of the structure impossible. How can we guarantee that situations such

as this, in which a cell becomes inaccessible, cannot occur? A solution to the problem is

to embed sufficient coordination information, in the form of specific labels and rules, in the

rule set itself.

The first step is to define a set of pairwise spatiotemporal ordering constraints between

adjacent cells in the target structure. These constraints determine the order, with respect

to time, in which the components should bind to the growing structure. Together, the

constraints form an assembly ordering, which guides the assembly process. We begin in

the section below by formally specifying the conditions that an assembly ordering must

satisfy to ensure that no sequence of assembly steps will ever allow a target cell to become

inaccessible. In the remainder of the chapter, we present a graph-theoretic approach for

finding orderings for a large class of structures, including structures that contain interior

holes. Chapter 5 shows how to produce a set of local assembly rules which are guaranteed

to follow this ordering, and thus to produce a specific target structure.

4.1 Assembly Orderings

The assembly process we have described cannot occur in a completely arbitrary way –

components must already be positioned in certain grid cells before other components can

bind to the growing structure. Further, since binding is irreversible, it is necessary to ensure

22

that groups of components do not prematurely form ‘barriers’ that prevent free components

from moving to fill vacant target cells. The notion of an assembly ordering captures these

dependencies and constraints. We seek to define this ordering, such that any assembly

sequence, or sequence of component bindings indexed by time step, which respects the

ordering will produce the desired target structure. Two separate experimental trials which

produce the same structure may have different assembly sequences, depending upon the

random actions of the assembly components during each trial.

Definition 4.1 An assembly ordering for a target structure T is a set of temporal

ordering constraints over the cells in T . Let ≺ be the binary predecessor relation, such

that for any two cells (i, j), (m,n) ∈ T , (i, j) ≺ (m,n) if a component in cell (i, j) must

bind to the structure before a component in cell (m,n), or i = m and j = n. We call (i, j)

a predecessor cell (or simply predecessor) of (m,n), and (m,n) a successor cell (or simply

successor) of (i, j). Together, the set T and relation ≺ define an assembly ordering (T ,≺).

Because the structure grows outward from the seed, the seed cell is a predecessor of every

other cell in T . An assembly ordering is not necessarily fully constrained – for all but the

simplest structures, assembly operations will often occur in multiple locations simultane-

ously.

Theorem 4.1 An assembly ordering (T ,≺) is a partial ordering over the cells in T .

Proof. We must show that an assembly ordering is reflexive, antisymmetric and transitive.

We show each property in turn.

• The ordering is reflexive: (i, j) ≺ (m,n) if i = m and j = n, by definition.

• The ordering is antisymmetric: if (i, j) ≺ (m,n) and (m,n) ≺ (i, j), then i = m and

j = n. Here, we appeal to an ‘arrow of time’ argument – binding events are required to

be well-ordered with respect to time. Assume that the ordering is not antisymmetric

– then binding at (i, j) must precede binding at (m,n), and binding at (m,n) must

precede binding at (i, j). Clearly, because time flows in one direction, only one of

these events can occur ‘first’, and our assumption is incorrect.

• The ordering is transitive: if (i, j) ≺ (m,n) and (m,n) ≺ (p, q), then (i, j) ≺ (p, q).

Again, using the arrow of time argument, binding must occur in a temporal sequence.

That is, if binding at (i, j) must precede binding at (m,n), and binding at (m,n) must

precede binding at (p, q), then binding at (i, j) must precede binding at (p, q).

Therefore, an assembly ordering is a partial ordering (or partially-ordered set).

23

We say that an assembly ordering is violated if an assembly rule allows a component

to bind to the structure before one of the predecessor cells is occupied. Assembly rules

are evaluated under (or with respect to) a particular ordering – a rule which violates one

ordering may or may not violate a different ordering, for the same target structure.

As discussed in Chapter 3, a grid cell is always in one of three states: accessible, inacces-

sible, or occupied. If a particular cell in T becomes inaccessible, then it is not possible for

a free assembly component to reach the cell, and hence T cannot be completed. We seek

to include a sufficient number of constraints in the assembly ordering to prevent this from

occurring, i.e. to ensure that assembly can always proceed to completion.

Definition 4.2 An assembly ordering (T ,≺) for target structure T is valid if, for any

assembly sequence that respects (T ,≺) and at any stage of the assembly process, every cell

in T is either accessible or occupied by a bound component.

Stated in a different but equivalent way, an assembly ordering is valid if there does

not exist an assembly sequence that both respects the ordering and allows a target cell to

become inaccessible. To define a valid ordering, we will divide the cells in the target into

two mutually exclusive subsets: interior cells and exterior boundary cells.

Definition 4.3 Consider a grid containing a complete target structure T , with all other

cells empty. Choose a cell (m,n) outside of the bounding box that encloses the target. A

cell (i, j) ∈ T is an exterior boundary cell of T if, with (i, j) empty and all other cells in

T occupied, (i, j) is accessible from (m,n). The set of exterior boundary cells in T is called

the exterior boundary set.

Definition 4.4 Let T be a target structure, and B ⊆ T be the exterior boundary set for

T . An interior cell is a cell (m,n) ∈ T \ B. The set of interior cells in T is called the

interior set. Let I ⊂ T be the interior set in T . Then I ∪ B = T and I ∩ B = ∅.

A straightforward algorithm (which we describe informally) can be used to find the

exterior boundary set. As above, consider a grid containing a complete target structure T ,

with all other cells empty. Choose a cell (m,n) outside of the bounding box enclosing the

target T . Then, perform a breadth- or depth-first search over all accessible cells, starting

at (m,n). Let this set of empty cells be C. Any cell in T adjacent to a cell in C is a member

of the exterior boundary set. Figure 4.1 shows the set of exterior boundary cells for an

example structure.

With these definitions in hand, we now state an important theorem about valid assembly

orderings.

24

Figure 4.1: Set of exterior boundary cells for an example structure; boundary cells are shown
in medium grey.

Theorem 4.2 An assembly ordering (T ,≺) is valid iff, for each cell in T except the seed,

there is at least one adjacent predecessor cell, and for each interior cell there is at least one

adjacent successor cell.

Proof. Our connectivity constraint requires that every cell except the seed have at least one

adjacent predecessor, so the first clause of Theorem 4.2 is immediately satisfied. Further,

cells in the exterior boundary set for T cannot, by definition, become inaccessible (assuming

components only bind to the structure at positions in T), and can therefore be removed

from consideration.1 So we must now show that an ordering is valid iff each interior cell has

an adjacent successor cell. We prove by contradiction.

Consider an interior cell (i, j), and assume that the assembly ordering is valid but that

(i, j) has no adjacent successors. The ≺ relation is transitive, and so it follows that (i, j)

cannot not have any successors. If (i, j) has no successors, then we must be able to assemble

the remaining components in T , regardless of whether cell (i, j) is occupied or not (there

are no constraints in (T ,≺) that prevent this). Assume that (i, j) is empty and, according

to (T ,≺), we place components in the remaining cells in T . Cell (i, j) is an interior cell,

and the final structure is connected, so there must exist a subset of cells Q ⊂ T that block

(i, j) – otherwise (i, j) would be an exterior boundary cell. But if (T ,≺) is valid, then such

a subset cannot exist, and we have reached a contradiction.

Likewise, assume that every interior cell in T has an adjacent successor cell, but that the

assembly ordering is not valid. Consider an inaccessible interior cell (i, j), and let Q ⊂ T

be a set of occupied cells that block (i, j). Let W be the set containing (i, j) and any

successors of (i, j) that are also blocked by Q. There must exist a cell (p, q) ∈ W that

does not have an adjacent successor, since W is finite and the predecessor relation is anti-

symmetric. According to (T ,≺), (p, q) must therefore be an exterior boundary cell. But if

1In Chapter 5, we show how to ensure that components only bind at positions in T .

25

(p, q) is an exterior boundary cell, it is always accessible, and cannot be blocked by Q. We

have again reached a contradiction, which completes the proof.

For solid structures which do not contain any interior holes, generating valid assembly

orderings is relatively straightforward. We can create a valid ordering simply by moving

outward from the seed, because each cell incrementally farther from the seed is incrementally

closer to an exterior boundary cell. The cells in structures which incorporate holes do not

necessarily satisfy the above relationship, and this in turn can complicate the ordering

problem. We discuss this issue briefly in the next section, after giving a formal definition of

an interior hole.

Definition 4.5 A set is maximal if it is not a subset of a larger set.

Definition 4.6 A hole in target T is a maximal set H of connected empty cells, such that

for all (i, j) ∈ H, (i, j) /∈ T and for each direction d ∈ {n, e, s, w}, either (i, j) is adjacent

to another empty cell (m,n) ∈ H in direction d, or (i, j) is adjacent to a cell (p, q) ∈ T in

direction d, and there exists a set W ⊆ T of cells that, when occupied, block all cells in H.

4.2 Assembly Graphs

We now show how an assembly ordering can be expressed as a directed graph, consisting

of a set of vertices, corresponding to the cells in the target structure, and a set of directed

edges between the vertices, corresponding to pairwise ordering constraints. We call such a

graph an assembly graph; this formalism will allow us to use an efficient graph algorithm

to produce valid assembly orderings for a large class of structures. We begin with several

definitions.

Definition 4.7 A graph G = (V,E) consists of a vertex set V and an edge set E, where

each edge is associated with two vertices known as the endpoints of the edge. An edge is

said to be incident on both of its endpoints. If the vertex pairs that identify edges are

unordered (where (va, vb), va, vb ∈ V refers to the same edge as (vb, va)), the graph is said

to be undirected. If the vertex pairs that identify edges are ordered, the graph is said to

be directed, and the directed edge (va, vb) has the tail vertex va and the head vertex vb.

The edge (va, vb) is outgoing from vertex va, and incoming to vertex vb.

Definition 4.8 The degree of a vertex v, denoted deg(v), is the number of edges that

are incident on v.

26

Definition 4.9 A path through a graph G is a traversal of consecutive vertices along a

sequence of edges in G. The vertices that begin and end the path are the initial vertex

and terminal vertex, respectively. The length of the path is the number of edges that are

traversed along the path.

Definition 4.10 An undirected graph is connected if there is a path between every pair

of vertices.

Definition 4.11 A path is simple if it does not contain any repeated vertices.

Definition 4.12 A directed path is an oriented, simple path such that all edges go the

same direction.

Definition 4.13 A directed cycle is a directed path where the initial vertex is the same

as the terminal vertex.

Definition 4.14 A directed acyclic graph (or DAG), is a directed graph that contains

no directed cycles.

Our ordering algorithm requires an initial, undirected adjacency graph for a target structure

T . We form this adjacency graph G by:

• adding a vertex v(i,j) to the set V for each cell in (i, j) ∈ T , and

• adding an undirected edge (v(i,j), v(m,n)) to the set E for every pair of adjacent cells

(i, j), (m,n) ∈ T , between the corresponding vertices v(i,j) and v(m,n).

As indicated above, we will identify a vertex using the subscripted coordinate pair which

defines the corresponding grid cell, e.g. v(1,2) for the vertex that maps to grid cell (1, 2).

When we describe a directed path between two vertices, we will use two coordinate pairs

and an arrow, where the first coordinate pair identifies the initial vertex in the path, and

the last coordinate pair identifies the terminal vertex, e.g. p(0,0)→(i,j) for a path from the

seed vertex to a vertex v(i,j).

The relationship between cells in T and vertices in G can be expressed as a bijection

π : T → V . Because there is an enforced adjacency relationship between cells in the target

structure, our graphs are always connected.

Using directed edges, we can transform the undirected graph G, which defines the static

adjacency relationships between components in the final structure, into a directed graph

G′ that contains information about the dynamic relationships that exist as the structure

evolves from the seed.2 The directed graphs we work with will always be acyclic. A cycle

2We will use the prime marker, ′, to indicate that a graph is directed.

27

(a) (b)

Figure 4.2: A small structure (a) and its edge-oriented assembly graph (b). The edges of
the graph in (b) have been marked with their directions.

(of minimum length four) implies that a successor cell must be occupied before one of its

predecessor cells; this contradicts an allowable temporal ordering. Stated equivalently, only

directed acyclic graphs have vertex partial orders.

Definition 4.15 A source vertex in a directed graph G′ = (V,E′) is a vertex v ∈ V

that has only outgoing edges.

Definition 4.16 A sink vertex in a directed graph G′ = (V,E′) is a vertex v ∈ V that

has only incoming edges.

We form a directed assembly graph G′ for the structure T from the same set of vertices

V , by adding a directed edge from vertex v(i,j) to vertex v(p,q) if the corresponding cell

(i, j) is adjacent to cell (p, q) and (i, j) is a predecessor of (p, q). A sink vertex in the

graph represents a cell with no successors. There is a single source vertex in the graph

corresponding to the seed cell. The set of exterior boundary vertices in V is simply the set

of vertices that correspond to the exterior boundary cells in T ; the same correspondence

exists for the interior vertices and interior cells.

Since our assembly graphs are planar (a fact which we do not prove here, but which

is obvious from the planarity of the target structure), we can assign each edge in G′ an

orientation based on the direction in which the edge points (north, east, south or west).

We will refer to an assembly graph in which each edge has an explicit orientation as an

edge-oriented assembly graph. When we draw an assembly graph, we will designate north to

point towards the top of the page, and the orientation of each edge will therefore be implicit.

Definition 4.17 An edge-oriented assembly graph G∗ = (V,E′, φ) is an ordered triple,

where V is a set of vertices, E′ is a set of directed edges, and φ is a mapping φ : E′ → d,

d ∈ {n, e, s, w} from edges to the directions north, east, south and west, respectively.

Orientation is significant because two portions of a structure which share the same edge-

oriented assembly subgraphs can be assembled using the same rules (and labels). Edge

orientations will be important when we compare assembly graphs in Chapter 6.

28

Using the above definitions, we can re-express Theorem 4.2 in terms of the properties of an

assembly graph.

Theorem 4.3 Let G′ be an assembly graph for target structure T . Let v(0,0) be the seed

vertex in G′, and let B be the set of exterior boundary vertices. Then G′ represents a valid

assembly ordering for T iff for every non-seed vertex v(i,j) ∈ V there is a directed path

p(0,0)→(i,j) from v(0,0) to v(i,j), and, if v(i,j) is an interior vertex, there is also a directed

path p(i,j)→(m,n) from v(i,j) to a vertex v(m,n) ∈ B and p(0,0)→(i,j) and p(i,j)→(m,n) are

vertex-disjoint except for v(i,j).

Proof. The proof follows from Theorem 4.2 and the equivalence between directed edges in

an assembly graph and pairwise ordering constraints in an assembly ordering. By Theorem

4.2, every cell in T except the seed cell must have at least one adjacent predecessor. Let

(i, j) be a non-seed cell in T , and let (p, q) be an adjacent predecessor cell. We represent

the predecessor relation in the assembly graph by a directed edge from the vertex v(p,q)

to vertex v(i,j). Therefore, every non-seed vertex in G′ must have at least one incoming

directed edge from a predecessor vertex. By transitivity, there must therefore be a simple,

directed path p(0,0)→(i,j) from the seed vertex v(0,0) to every other vertex in G′.3

Likewise, every interior cell in T must have at least one adjacent successor. Let (i, j)

be an interior cell in T , and let (m,n) be an adjacent successor cell. We represent the

successor relation in the assembly graph by a directed edge from the vertex v(i,j) to vertex

v(m,n). Therefore, every interior vertex must have at least one outgoing directed edge to a

successor vertex. Let W ⊂ V be the set of all interior vertices in G′. Choose an interior

vertex v(i,j) ∈W . If we apply the transitivity property of the assembly ordering, starting at

v(i,j), we will eventually reach a successor v(m,n) of v(i,j) which is not in W , because there

are only a finite number of vertices in W and there are no cycles in the graph. The vertex

v(m,n) is an exterior boundary vertex. So there must be a simple, directed path p(i,j)→(m,n)

from each interior vertex v(i,j) to an exterior boundary vertex v(m,n).

The paths p(0,0)→(i,j) and p(i,j)→(m,n) from the seed vertex to an interior vertex v(i,j),

and from v(i,j) to an exterior boundary vertex v(m,n) must be vertex-disjoint except for v(i,j)

because the graph G′ cannot contain a cycle.

For the reverse case, it is immediately clear that if there is a directed path from the

seed vertex to each vertex v ∈ V in G′, then every cell in T has an adjacent predecessor

cell (corresponding to the incoming edge incident on v). And if there is a directed path

from each interior vertex to an exterior boundary vertex, then each interior vertex has an

outgoing edge in E′ corresponding to an adjacent successor cell in T . This completes the

proof.

3There may in fact be several directed paths, the proof requires only that there be at least one.

29

We will say that an assembly graph is valid if and only if the ordering that the graph

represents is valid.

For an interior vertex v ∈ V in assembly graph G′, if there is both a path from the seed

to v, and another path from v to an exterior boundary vertex, and the paths are vertex-

disjoint except for v, then we say that vertex v satisfies the disjoint-paths condition in G′.

In a valid assembly graph, every interior vertex must satisfy this condition.

It is always possible to find a directed path from the seed vertex to any other vertex in

the assembly graph – however, it may not be possible to find both a directed path from the

seed vertex to an interior vertex and also a path from that interior vertex to an exterior

boundary vertex. In particular, we can sometimes determine whether a valid assembly

ordering exists for a structure simply by examining the adjacency graph, as stated by the

following theorem.

Theorem 4.4 Let T be a target structure and G be the adjacency graph for T . If G

contains an interior, non-seed vertex v ∈ V such that deg(v) = 1, then no valid assembly

ordering exists for T .

Proof. By Theorem 4.3, a valid assembly ordering for T exists iff there is a directed path

from the seed vertex to every interior vertex and a directed path from every interior vertex

to an exterior boundary vertex, and the paths are vertex-disjoint. Clearly, if an interior

vertex has degree one, then it is not possible to assign both an incoming edge (along a

path from the seed) and an outgoing edge (along a path to an exterior boundary vertex).

Therefore, no valid assembly ordering exists for T .

4.3 Generating Valid Assembly Orderings

We now turn to the problem of generating valid assembly orderings for specific target struc-

tures. In general, there may be many valid orderings for a given structure; the algorithm

presented below generates one such ordering. Also, we choose to impose one constraint be-

tween every adjacent pair of cells in the target structure, although this is often not necessary

to satisfy the validity requirement.

Our algorithm generates a breadth-first assembly graph. The graph is produced by

traversing the target’s (undirected) adjacency graph in breadth-first order, starting from

the seed. The directed graph returned by Algorithm 4.1 is always acyclic, however it may

not be a valid assembly graph.

Algorithm 4.1 is a modified version of a standard breadth-first graph search, which tra-

verses all of the vertices in the adjacency graph G, rather than searching for a particular

vertex. As we encounter each vertex in G, we incrementally build a corresponding assembly

30

Algorithm 4.1 Breadth-First Assembly Graph for Target Structure

Input: Target structure T
Output: Breadth-first directed assembly graph G′

1: V ← set of vertices, one vertex for each cell in T
2: E ← set of undirected edges, one edge for every pair of adjacent cells in T
3: G ← (V,E) // undirected adjacency graph

4: E′ ← ∅
5: open ← {v(0,0)} // FIFO queue

6: closed ← ∅
7: while open is not empty do
8: v(i,j) ← dequeued vertex from front of open
9: closed ← closed ∪ {v(i,j)}

10: for each vertex v(p,q) adjacent to v(i,j) in G do
11: if v(p,q) /∈ closed then
12: if v(p,q) /∈ open then
13: add v(p,q) to end of open
14: end if
15: else
16: E′ ← E′ ∪ {(v(p,q), v(i,j))} // add directed edge

17: end if
18: end for
19: end while
20: return G′ = (V,E′)

graph, G′, using the same set of vertices V , but adding a set of directed, rather than undi-

rected, edges. When we arrive at a vertex v, we add directed edges to E′ from all adjacent,

previously-visited vertices. This procedure differs from standard breadth-first search in that

we perform an action (adding directed edges to E′) after visiting all predecessors vertices,

instead of immediately after visiting a single predecessor. This modification ensures that

there is a directed edge in the final assembly graph between every adjacent pair of vertices.

Theorem 4.5 Algorithm 4.1 generates an assembly graph for target T in Θ(|T |) time.

The graph is a valid assembly graph iff every sink vertex in G′ is an exterior boundary

vertex.

Proof. We show that the algorithm always produces a directed, acyclic graph, which is an

assembly graph. First, we show that each vertex in the adjacency graph G is visited exactly

once. The algorithm examines one vertex on every iteration of the while loop, starting with

the seed vertex, and adds all unvisited adjacent vertices, which are not already in the closed

set or the open queue, to the open queue. A vertex can therefore be examined once, at

most, when it is removed from the front of the open queue. Note, also, that the algorithm

only terminates when the queue is empty. Now, assume that, at some point, the algorithm

fails to visit a vertex v in G. Then the algorithm cannot have visited any of the vertices

adjacent to v, or v would have been added to the open queue. But the graph is connected,

31

(a) (b) (c)

Figure 4.3: (a) Simple structure containing an interior hole. The seed component is marked
with an s. (b) Adjacency graph for the structure. (c) Breadth-first assembly graph generated
by Algorithm 4.1.

so there must be at least one vertex adjacent to v which is visited by the algorithm, and so

v must have been added to the open queue. This is a contradiction, and hence each vertex

is visited exactly once.

We now show that the directed graph G′ is acyclic. Assume that the algorithm creates

a cycle in the graph. By definition, the initial and terminal vertices for the cycle are the

same. This means that the algorithm must have reached the same vertex twice, along

different paths. But we showed above that each vertex is visited once, and so the algorithm

cannot create a directed cycle. Therefore, the algorithm generates a graph which is directed

and acyclic, and thus is an assembly graph.

The validity of the graph follows directly from Theorem 4.3. There is a directed edge

between every adjacent pair of vertices in G′, and the graph is acyclic, so, if all sink vertices

in G′ are exterior boundary vertices, then the graph is valid. Likewise, if an interior sink

vertex exists, then the graph cannot be valid because there is at least one interior vertex

that does not satisfy the disjoint-paths condition.

The time complexity of the algorithm is determined by the number of steps required to

complete the breadth-first traversal of all vertices in the adjacency graph G. This breadth-

first traversal has complexity Θ(|V | + |E|) in general. For our specific case, the adjacency

graph has at least |V | − 1 edges. To determine an upper bound on the number of edges, we

use an elementary result from graph theory, the Handshaking Lemma, which states that the

number of edges in a graph is half of the sum of the degree of all vertices. In the adjacency

graph, each vertex has degree at most four, and so the number of edges in the graph has an

asymptotic upper bound of at most 4|V |/2 = 2|V |. This gives an overall time complexity of

at least Ω(|V |+ |V |), and at most O(|V |+ 2|V |), which is in Θ(|V |). Since |V | = |T |, this

is also Θ(|T |).

For solid structures (without any interior holes), the breadth-first algorithm will always

return a valid assembly graph, which can immediately be transformed into a set of pairwise

ordering constraints (see Algorithm 4.2). There is also a large class of structures that contain

32

Algorithm 4.2 Valid Assembly Ordering for Target Structure

Input: Target structure T
Output: Valid assembly ordering (T ,≺) or Failure if no valid ordering is found

1: G′ = (V,E′) ← assembly graph for T generated by Algorithm 4.1
2: if G′ contains an interior sink vertex then
3: return Failure

4: end if
5: ≺ ← ∅
6: for each directed edge (v(i,j), v(m,n)) ∈ E′ do
7: ≺ ← ≺ ∪ {(Cell(v(i,j)),Cell(v(m,n)))} // add pairwise constraint

8: end for
9: return (T ,≺)

interior holes, for which the breadth-first algorithm produces a valid graph. As an example,

consider the simple 20-cell structure in Figure 4.3.4 The structure encloses an interior hole

(one cell in size); Figure 4.3(b) is the adjacency graph for the structure, and Figure 4.3(c)

is the corresponding valid assembly graph generated by Algorithm 4.1.

Algorithm 4.1 is not complete. There are structures for which a valid assembly graph

exists and the algorithm returns Failure. However, it is often possible, for simple structures

that contain interior holes, to produce a valid graph by inspection, starting with the breadth-

first result. We give an example of such a case in Chapter 6.

Once we have successfully generated a valid assembly graph, we use Algorithm 4.2 to

transform the graph edges into a set of pairwise ordering constraints over the cells in the

target structure T . The notation Cell(v(i,i)) in the algorithm description denotes the cell

(i, j) in T that maps to vertex v(i,j).

Theorem 4.6 Algorithm 4.2 generates a valid assembly ordering for target structure T ,

or returns Failure, in Θ(|T |) time.

Proof. Algorithm 4.2 begins by generating an assembly graph G′ using Algorithm 4.1, which

requires Θ(|T |) time by Theorem 4.5. If this initial step does not produce a valid graph,

the algorithm returns Failure immediately. The final step in the algorithm is to produce

the set of pairwise ordering constraints from the graph. The for loop adds one constraint

to the set ≺ for every edge in G′ (line 7). Since the graph is valid, and all required ordering

constraints are encoded by the graph edges, it follows that the resulting ordering is valid.

As shown previously, Θ(|T |) time is required to to process all of the edges; this gives an

overall time complexity of Θ(|T |).

As described, Algorithm 4.1 works outwards from the seed cell. However, if necessary,

the algorithm could be modified to incorporate other restrictions or preferences, for example

4From this point onward, we will generally draw only the cells that form a structure; the existence of the
grid will be implied.

33

(a) (b)

Figure 4.4: Examples of structures that cannot be assembled using local rules and a single
seed only. For structure (a), there is a valid assembly ordering if the seed is moved from
position s to position a . For structure (b), there is no valid ordering, regardless of the
position of the seed.

that assembly should proceed in a north-to-south direction whenever possible. We emphasize

that, regardless of the exact assembly graph produced, in any valid graph all interior vertices

must satisfy the disjoint-paths condition.

We close with two example structures, shown in Figure 4.4, for which no valid assembly

orderings exist. Cells a and b in the figures correspond to sink vertices in the respective

breadth-first assembly graphs, and therefore represent the end of the flow of information

about the state of the assembly process. Neither cell a nor b has an adjacent successor cell,

and so assembly of the remainder of the structure is not impeded by their absence. More

generally, there is no assembly ordering that enforces the constraints necessary to ensure

that the exterior boundary remains open until components bind at a and b. That is, it is

not possible in either case to produce an assembly graph where all of the interior vertices

satisfy the disjoint-paths condition. For the structure in Figure 4.4(a), it is possible to avoid

this problem by moving the seed vertex to position a. For the structure in Figure 4.4(b),

the adjacency graph includes two non-seed vertices of degree one, and so moving the seed

does not solve the problem. This is one drawback of purely local sensing.

34

Chapter 5

Rules and Labels

In this chapter, we describe a procedure for generating a set of local rules that, when

executed by a group of assembly components, produce a specific target structure. First, we

show that we can always generate such a rule set, as long as a valid assembly ordering exists

for the target. This is an important point: it is possible to embed sufficient coordination

information in the rule set to ensure that a structure is assembled deterministically, although

the components move and interact randomly. Our initial solution will involve what we call a

worst-case rule set, which assigns a unique label to every component in the final structure.

For targets of significant size, the memory and sensing demands (to store the rule table

and to correctly identify all of the labels, respectively) of the worst-case rule set may be pro-

hibitive, especially for physically very simple assembly components. To address this issue,

we formally introduce the Minimum Label Set (MLS) problem, a combinatorial optimiza-

tion problem which involves finding the minimum number of labels required to assemble a

structure. We do not know of a polynomial time solution to the MLS problem, however

we develop an iterative, randomized optimization algorithm which provides quantitatively

‘good’ solutions in a reasonable amount of time. Chapter 6 presents a series of experiments

that characterize how well the optimization algorithm performs, for a variety of structures.

5.1 Consistent Rule Sets

Our overall goal is to generate a rule set that a) enables a group of components to assemble

into one specific structure only, and b) requires a limited (ideally, minimal) number of

labels. We begin by asking the following question: given a target structure T , a valid

assembly ordering (T ,≺), and some rule set R, how can we determine if the rules in R,

when applied, actually produce T only, and no other structures? One possibility is to

simulate the assembly process and observe the outcome – if we do this a sufficient number

of times, we can then draw statistical conclusions about the rule set and the structure(s) it

produces. This approach will not allow us to say with certainty, however, that a rule set

35

always produces T .

We now show that it is possible to verify in polynomial time whether or not a candidate

rule set R uniquely assembles a target structure T while respecting a particular assembly

ordering. By uniquely, we mean that only one distinct label may appear at each position

in the final structure. This restriction is necessary to avoid having to check a potentially

exponential number of possible assembly sequences.

Definition 5.1 A rule set R is consistent for a target structure T under assembly

ordering (T ,≺) if R produces T exactly, with only one possible label at each position in

T , and does not allow (T ,≺) to be violated, for any possible sequence of actions by the

assembly components.1

Importantly, if a rule set is not consistent for a target T , this does not necessarily

imply that the rule set does not assemble the structure. We are concerned with generating

constrained rule sets that guarantee assembly of the target – the space of rule sets that have

this guarantee is considerably smaller that the space of rule sets that are statistically able

to produce the desired structure with some non-zero probability. Without loss of generality,

we also make the assumption that all the rules in R are used during the assembly process.

It is possible for R to contain conflicting rules and yet to still be consistent, if none of the

conflicting rules are ever applied. In this case, the extra rules are superfluous and can simply

be removed.

The problem of determining whether a rule set is consistent may initially appear to

require exponential time, given that the assembly components move randomly and can

interact in a combinatorial number of ways. We show below that Algorithm 5.1 can be

used to determine if a rule set R is consistent for a particular target T in a time that is

polynomial in the size of T and R.

Definition 5.2 The frontier of a structure S is the set of all grid cells adjacent to cells

in S.

Before describing Algorithm 5.1, we give an additional definition related to the assembly

process. A rule r may potentially be applied at a cell (i, j) if there is a valid assembly

sequence that allows the binding configuration for r to appear at (i, j). This is a local test

that accounts for all possible ways in which the structure could have grown such that cell

(i, j) lies on the frontier – that is, we evaluate whether a rule could be applied at (i, j) if

any existing, adjacent predecessors were absent. For example, two rules, (0, 0, 0, 4, 8) and

(0, 0, 3, 4, 8), may both potentially be applied at the same cell (i, j) but at different stages of

1The term consistent was originally introduced by Jones and Matarić in [13].

36

Algorithm 5.1 Consistent Rule Set Decision

Input: Target T , assembly ordering (T ,≺) and rule set R
Output: True if R is consistent for T , False otherwise

1: S̄ ← {((0, 0), 1)}
2: K ← {empty cells adjacent to (0, 0)} // initialize frontier

3: while K 6= ∅ do
4: K∗ ← ∅
5: for each cell (i, j) ∈ K do
6: if @ r ∈ R such that r is potentially applicable at (i, j) then
7: continue
8: else if (i, j) /∈ T then
9: return False

10: else if ∃ r ∈ R such that applying r would violate ≺ then
11: return False

12: end if
13: r ← single rule from R applicable at (i, j)
14: S̄ ← S̄ ∪ {((i, j),Resultant(r))} // apply rule

15: K∗ ← K∗ ∪ {empty cells adjacent to (i, j)} // grow new frontier

16: end for
17: K ← K∗
18: end while
19: if |S̄| < |T | then
20: return False

21: end if
22: return True

the assembly process, depending on whether an adjacent component with label ‘3’ is already

bound to the south of (i, j).

Algorithm 5.1 operates by maintaining a set K of empty cells that form part of the

frontier of the growing structure S̄. This set is updated on every iteration – it includes all of

the empty, adjacent cells for which the local binding configuration has changed (as the result

of a binding action). There is no need to check cells for which the local binding configuration

is unchanged from the previous iteration (since all rules will already have been tested at

those positions). At each step and for every position in K, the algorithm determines if more

than one rule can potentially be applied, or if there is a rule which would add a component

not in T . If either condition is true, the rule set is inconsistent. Otherwise, the algorithm

iteratively adds components to the labelled structure S̄ until no further rules can be applied

– if, at that time, S̄ has the same number of occupied cells as T , then R is consistent for

T . The notation Resultant(r) denotes the resultant label specified by rule r.

Theorem 5.1 Algorithm 5.1 decides whether a rule set R is consistent for a target T

under assembly ordering (T ,≺) in time O(|R||T |).

Proof. We show that the algorithm returns True iff the assembly process always terminates

with the desired target structure T and the assembly ordering is not violated at any stage.

37

Assume that R is not consistent for T , and let V̄ be another labelled structure produced

by R. Choose a sequence in which blocks are added to V̄, and let (i, j) be the first position

in the sequence where either the assembly ordering is violated or (i, j) /∈ T . We review each

case in turn.

To violate the assembly ordering, a rule must be potentially applicable at cell (i, j), for

some binding configuration in which one or more predecessors are missing. The algorithm

will discover a witness for inconsistency in this case, since, when a rule is tried at a frontier

cell, all possible combinations of adjacent predecessors are considered (line 10).

Likewise, if at any stage a component is able to bind at a cell (i, j) such that (i, j) /∈ T ,

the algorithm will discover a witness for the inconsistency (line 8), because every rule is

tried at each untested frontier cell on each iteration.

Conversely, the algorithm only adds a block to the growing structure S̄ at position (i, j)

when exactly one rule r is applicable (line 13), and only when the binding configuration for

r includes all adjacent predecessors. The main for loop terminates when no additional rules

can be applied at any cells on the frontier of S̄. If, at this point, S̄ contains fewer occupied

cells than T , then the rule set fails to assemble the entire target and the algorithm returns

False (line 19). Otherwise, R is consistent for T , and the algorithm returns True.

To determine the time complexity, we note that on each iteration of the for loop we try

|R| rules at an empty cell (i, j). When a rule is applied at (i, j), no more than four adjacent

cells are added to the set K, which is empty at the start of each iteration. The loop runs

once for every component we add to S̄, and hence we check at most 4|T | frontier cells in

total. This gives an overall time complexity of O(|R||T |).

5.2 From Assembly Ordering to Worst-Case Rule Set

We now turn to the problem of generating a consistent rule set for a specific target structure

T . Given a valid assembly ordering (T ,≺), it is always possible to generate such a rule set,

in the following way. We begin by placing a component with a unique label at each position

in T , creating a labelled structure S̄. Then, as described by Algorithm 5.2, we step through

the assembly ordering cell by cell, adding rules sequentially to the rule set. For a cell

(i, j), we add a rule whose binding configuration is defined by the labels on components in

adjacent predecessor cells (with non-predecessor entries set to ‘-’), and using the resultant

label already assigned to the component in cell (i, j). This procedure (Algorithm 5.3) is the

reverse of Algorithm 5.1 – we extract, from a labelled structure, the rules that would be

required to produce it.

38

Algorithm 5.2 Rule Set from Labelled Structure

Input: Labelled structure S̄ and valid assembly ordering (T ,≺)
Output: Rule set R

1: R ← ∅
2: for each cell (i, j) ∈ T do
3: for cell (m,n)d(i,j) adjacent to (i, j), d ∈ {n, e, s, w} do

4: if (m,n) ∈ T and (m,n) ≺ (i, j) then
5: ld ← S̄(m,n)
6: else
7: ld ← ‘-’
8: end if
9: end for

10: R ← R∪ (ln, le, ls, lw, S̄(i, j)) // add rule

11: end for
12: return R

Theorem 5.2 Given a target structure T and a valid assembly ordering (T ,≺), Algorithm

5.3 generates a consistent rule set for T using exactly |T | labels. The algorithm can be

implemented to run in Θ(|T |) time.

Proof. We first note that, because each label is used only once, the binding configuration

for every rule must be unique (and thus there can be no conflicting rules). Now, assume

that the rule set R produced by Algorithm 5.3 is not consistent for T . Then one of the

following must be true: R permits the assembly ordering to be violated, adds a component

at a position not in T , or fails to add a required component to T . We handle each case in

turn.

Let r1 ∈ R be a rule which is potentially applicable at a position (i, j) ∈ T and which

would violate the assembly ordering (if applied). There must be another rule r2 ∈ R which

is also potentially applicable at (i, j) and does not violate the ordering; this rule is added

on line 10 of Algorithm 5.2 when position (i, j) is considered. Since both r1 and r2 are

potentially applicable at (i, j), their binding configurations must share at least one label

in the same binding direction (n, e, s or w). However, every label in S̄ is unique, so the

algorithm cannot add two rules with the same label in the same binding direction. This is

a contradiction, and so none of the rules in R are able to violate the ordering, regardless of

the exact sequence of actions by the assembly components.

Likewise, let r ∈ R be a rule which would add a component at a position (m,n) /∈ T ; r

must be potentially applicable at (m,n). Since r was added by Algorithm 5.2, there must

be another cell (p, q) ∈ T where r is also potentially applicable. However, every label in S̄

is unique, so two rules cannot share the same label in the same binding direction, unless

the assembly ordering is violated. We know from the result above that this is not possible –

therefore we again have a contradiction and the algorithm does not add a rule which would

permit the binding of a component at a position not in T .

39

Algorithm 5.3 Worst-Case Rule Set

Input: Target structure T and valid assembly ordering (T ,≺)
Output: Consistent rule set R

1: S̄ ← structure produced by placing a uniquely-labelled component at each cell in T
2: R ← rule set generated by Algorithm 5.2 from (S̄, (T ,≺))
3: return (S̄,R)

Finally, assume that Algorithm 5.3 fails to add a rule that allows a component to bind

at a position that is in T . Clearly, the algorithm adds one rule to R for each cell in T ,

with that rule’s binding configuration defined by adjacent predecessors. It follows that there

exists a rule that will add every component in T to the growing structure, exactly when the

adjacent predecessors are in place. By definition, the algorithm uses exactly |T | labels.

To derive the time complexity, we note that it is possible to find the adjacent predecessors

of a cell in constant time using, for example, an adjacency list representation of the target

T . The algorithm considers each cell in T exactly once, for an overall time that is in

Θ(|T |). The adjacency list can also be generated in a time that is linear in the size of T , if

necessary.

The drawback of Algorithm 5.3 is that |T | labels and |T | − 1 rules are always required

for a |T |-cell target structure. We call such a |T |-label rule set the worst-case rule set for

T , and use this worst-case solution as the initial input to our optimization algorithm.

5.3 The Minimum Label Set Problem

We have established that, given any structure for which a valid assembly ordering exists, we

are able to generate a consistent rule set which assembles the structure. Depending on the

size of the input structure, however, our worst-case algorithm may require a prohibitively

large number of labels. We therefore pose the following combinatorial optimization prob-

lems.

Definition 5.3 The (Full) Minimum Label Set Problem: Given a target structure

T , find a valid assembly ordering (T ,≺) and rule set R such that R is consistent for T

under (T ,≺) and uses the minimum number of unique labels possible.

Definition 5.4 The Restricted Minimum Label Set Problem: Given a target struc-

ture T and a valid assembly ordering (T ,≺), find a rule set R such that R is consistent for

T under (T ,≺) and uses the minimum number of unique labels possible.

The optimization cost function in both cases is simply the number of unique labels that

appear in the rule set. We do not know of a polynomial time algorithm to exactly solve

40

Algorithm 5.4 Randomized Contraction

Input: Target structure T and valid assembly ordering (T ,≺)
Output: Optimized, consistent rule set R

1: R ← worst-case, |T |-label rule set generated by Algorithm 5.3
2: S̄ ← complete, labelled structure generated by Algorithm 5.3
3: while termination condition not met do
4: S̄† ← S̄
5: (i, j) ← randomly selected non-seed cell in T
6: S̄†(i, j) ← randomly selected label from interval [2, S̄(i, j)− 1]
7: R∗ ← rule set generated by Algorithm 5.2 from (S̄†, (T ,≺))
8: if two rules in R∗ conflict then
9: prune rule with larger resultant label from R∗

10: end if
11: S̄∗ ← labelled structure produced by applying R∗
12: if R∗ is consistent for T according to Algorithm 5.1 then
13: prune any unused rules from R∗
14: R ← R∗
15: S̄ ← S̄∗
16: re-enumerate labels in R and S̄ sequentially from ‘1’ // remove gaps

17: end if
18: end while
19: return R

either the MLS problem or the Restricted MLS problem; however, we have shown that the

Restricted MLS problem is in NP (see Algorithm 5.1). The full MLS problem, in particular,

has a solution space that includes all valid assembly orderings for a target structure; this

space is usually much larger than for the restricted case (where the assembly ordering is a

priori specified). Further, the interaction between the assembly ordering and the rule set

is complex, with different assembly orderings requiring (sometimes substantially) different

numbers of labels.

Instead, we propose an algorithm called randomized contraction as an approximate solu-

tion for the Restricted MLS problem. This approach, described by Algorithm 5.4, attempts

to iteratively reduce the number of labels appearing in a rule set R. Each successful reduc-

tion (removal or one or more labels in a single step) is termed a contraction. Starting with a

valid assembly ordering, we generate a consistent, worst-case rule set R and the associated

labelled structure S̄ using Algorithm 5.3. Then, at each iteration, we randomly select a

component in S̄, change the label on the component (again, randomly), and generate an

updated rule set R∗. If R∗ is consistent for T , the change is accepted, otherwise the change

is rejected. At the end of each iteration, we re-enumerate the label set sequentially from ‘1’,

to avoid leaving gaps between the label values. This process continues until a user-defined

termination condition is met, for example when a certain number of iterations have been

completed.

In many cases, changing the label on a component will cause two conflicting rules to

appear in the updated rule set R∗. If this occurs, one of the rules must be removed. We

41

choose to prune the rule with the larger resultant label. Pruning will frequently introduce

a discontinuity in the rule set, preventing a portion of the structure from being completed

because a required rule is missing. However, for a target that contains two or more isomor-

phic substructures which share identical edge-oriented assembly graphs, the worst-case rule

set always includes disjoint subsets of rules which assemble the same shape using different

labels. Only one of these disjoint subsets is required. If a pruning-induced discontinuity

occurs within an isomorphism, we can sometimes eliminate the redundant subset(s) of rules

(and any unique labels they contain) immediately. This process occurs automatically when

the consistency check for the updated rule set is performed (line 12). The ability to natu-

rally exploit redundancy is one attractive property of the contraction algorithm – it is not

necessary to exhaustively search for isomorphisms beforehand.

The complexity of Algorithm 5.4 is dominated by time required to verify that the updated

rule set is consistent, and thus a single iteration can be implemented to run in O(|R||T |)

time using Algorithm 5.1, since |R| is always less than |T |. This is an upper bound – in the

later stages of optimization (when there are fewer successful label updates), the consistency

check will often fail very quickly.

We show the relationship between the algorithms presented in Chapters 4 and 5 as a

flowchart in Figure 5.1. The flowchart indicates the steps required to go from a target

structure to an optimized rule set for that structure.

42

Algorithm 4.1
Breadth-First Assembly Graph

Algorithm 4.2
Assembly Ordering

Target
Structure

Algorithm 5.3
Worst-Case Rule Set

Algorithm 5.4
Randomized Contraction

Termination
Condition
Reached?

Algorithm 5.2
Rule Set from Labelled Structure

Algorithm 5.1
Consistent Rule Set Decision

Consistent
Rule Set?

Valid Ordering?Failure
No

Yes
Optimized
Rule Set

Yes

No

Yes

Figure 5.1: Algorithm flowchart, showing steps from (input) target structure to (output)
optimized rule set. The dashed line from Algorithm 5.4 to Algorithm 5.2 and then to
Algorithm 5.1 indicates that generating a rule set from the labelled structure and checking
the rule set for consistency are both sub-steps in the randomized contraction algorithm.

43

Chapter 6

Experiments

The previous three chapters form the main body of the thesis. We now present a series of

experiments which characterize the performance of our randomized contraction algorithm.

Our aim is to show that the algorithm is able to significantly reduce the number of labels

required to assemble a variety of planar structures. To do so, we compare our optimization

results with competing algorithms for a series of benchmark examples that have appeared

previously in the literature. We also demonstrate that the contraction algorithm is able

naturally to exploit redundancies due to structural isomorphisms and symmetries. We close

the chapter with results for two larger and more complex structures.

6.1 Benchmarks

We have tested our optimization algorithm on the three benchmark structures that appear in

[13] and that are examined in [14]. For these structures, our assembly model and the models

presented in [13] and [14] are equivalent, and hence the performance of the corresponding

algorithms may be compared directly, as is done in Table 6.1. Column eight of the table

gives the number of iterations required to achieve our optimized result.

In all three cases, the randomized contraction algorithm generates rule sets which use

fewer labels than the competing algorithms. For structures A (Figure 6.1(a)) and B (Figure

6.1(b)), it is possible to verify that our algorithm generates rule sets which are optimal by our

criterion, using the minimum number of labels required to assemble these structures.1 For

structure A, we can prove that three labels are required by performing a simple exhaustive

search, generating and testing rule sets for all possible two-labellings of the structure (of

which there are only 211 = 2048, since the seed is always labelled ‘1’); all of the two-label

rule sets fail our consistency check. We list the optimized, three-label rule set for structure

A in Table 6.2.

1That is, the minimum number of labels required for structures A and B, given the specific assembly
orderings. We have exactly solved instances of the restricted minimum label set problem for these structures.

44

(a)

(b) (c)

Figure 6.1: Benchmark structures from [13]. (a) Structure A, composed of 12 assembly
components. (b) Structure B, composed of 64 assembly components. (c) Structure C,
composed of 245 assembly components. The seed component in each structure is marked
with an s.

Proving that the rule set for structure B uses the minimum number of labels is more

complicated, because exhaustive search is infeasible. Our approach will be to show that

components forming the left and bottom edges of the structure require unique labels which

cannot appear at other positions. To begin, we will segment structure B as indicated in

Figure 6.3(a), and describe the relationship between the components in each segment.

Consider the components in segments ‘1’ and ‘2’: each component has only a single

predecessor and a single successor, according to the assembly graph in Figure 6.3(b). Assume

that we attempt to use one of the labels from segment ‘1’ or ‘2’ for a component in segment

‘3’. Now assume that we choose a component in segment ‘3’ with two adjacent predecessors

(also in segment ‘3’), and assign a label from segment ‘1’ or ‘2’ to one of the predecessors. The

rule set must contain a rule, used in segment ‘1’ or ‘2’, that will now be potentially applicable

at a cell in segment ‘3’. Applying this rule in segment ‘3’ will violate the assembly ordering,

because the rule includes a single predecessor only. So we cannot reuse any of the labels from

segment ‘1’ or ‘2’ for a component in segment ‘3’ that has an adjacent successor. Likewise,

we cannot reuse any of the labels from segment ‘1’ or ‘2’ for a component in segment ‘3’

that lies on the exterior boundary of the structure – doing so could result in the addition of

a component that is not part of the target. These two possibilities cover all of the positions

in segment ‘3’, and so segment ‘3’ cannot share any labels with segments ‘1’ or ‘2’.

Components in segments ‘1’ and ‘2’ also cannot share any labels with each other. Seg-

45

ment ‘1’ grows upwards, while segment ‘2’ grows to the left – if we were to use a label

from segment ‘1’ at a position in segment ‘2’, then there would be a (potentially applicable)

rule that would allow a component to bind at a position in segment ‘3’, when only a single

predecessor was in place. The same would be true if we were to use a label from segment

‘2’ at a position in segment ‘1’. The assembly ordering would be violated in either case.

Finally, the label on every component in segment ‘1’ must be unique; any duplication

would result in a ‘rule loop’, causing the segment to grow indefinitely. The same argument

holds for the components in segment ‘2’. Therefore, we require six unique labels for segment

‘1’ and six unique labels for segment ‘2’, as well as the seed label. The remainder of the

structure must use at least one additional unique label. This is exactly the number of labels

in the optimized solution returned by the randomized contraction algorithm (6+6+1+1 = 14

labels), and is therefore the minimum number possible.

For the largest and most complex structure, C (Figure 6.1(c)), the contraction algorithm

reduces the number of labels required by 68% and 60%, compared to [13] and [14] respec-

tively.2 Although structure C contains several interior holes, we are still able to generate a

valid assembly ordering using the breadth-first algorithm. The plot in Figure 6.7 gives the

number of unique labels as a function of optimization iteration for the structure. More than

90% of the successful label set contractions occur within the first 5,000 iterations. In this

case, we ran the contraction algorithm until there was no further improvement (reduction

in the label count) for 5,000 consecutive iterations.

Table 6.1 also lists the number of assembly steps required for each structure. This metric,

introduced in [13], is the number of steps required to assemble the entire target, starting

with the seed only, if all binding sites on the frontier of the growing structure are filled

synchronously at every step. The number of assembly steps corresponds to the length of

the longest directed path in the assembly graph, which is independent of the number of

labels used. Entries in each table column are identical because [13] and [14] implicitly use

assembly graphs with the same path lengths as our algorithm for structures A, B and C.

6.2 Isomorphic and Symmetric Structures

The contraction algorithm is able to naturally exploit label redundancies due to structural

isomorphisms and symmetries. As the following examples illustrate, it is not necessary to

attempt to identify isomorphic or symmetric substructures before running the algorithm –

the redundancies are automatically discovered as part of the optimization process.

If a structure contains two or more isomorphic substructures, as defined in Chapter 3,

that share identical, edge-oriented assembly subgraphs, redundancies exists which can be

2We note, however, that the purpose of Jones and Matarićs’ original work was to show that consistent rule
sets could be generated, and not explicitly to consider optimizing those rule sets.

46

Transition Rectangular Randomized

Rule Set Partitioning Contraction

Structure Labels Steps Labels Steps Labels Iterations Steps

A (12 components) 5 4 9 4 3 97 4

B (64 components) 26 14 16 14 14 1,344 14

C (245 components) 165 18 131 18 52 36,910 18

Table 6.1: Comparison of the randomized contraction algorithm with the transition rule set
compiler (Jones and Matarić) and the rectangular partitioning algorithm (Li and Zhang)
for structures A, B and C given in [13].

used to reduce the label count. Consider structure D, shown in Figure 6.4, which contains

three isomorphic substructures (the upright ‘T’ shapes). Components a, b, c and d in

the structure will initially have different labels. Assume that, during an iteration of the

optimization algorithm, the label on component b is randomly changed so that it is the

same as the label on component a, while the labels on components c and d remain the same.

The updated rule set R∗, generated by Algorithm 5.2, will contain two conflicting rules for

the (a, c) and (b, d) pairs. If we assume also that the label on component d is larger than

the label on component c, Algorithm 5.4 will prune the second rule. This breaks the chain

of rules that led to the attachment of component d. However, when the algorithm applies

R∗, it immediately discovers that the subset of rules used to assemble the left substructure,

including components a and c, can also be used to assemble the central substructure, including

components b and d. The redundant rules for the central substructure are removed before

the start of the next iteration. Optimization results for the structure are shown in Table

6.3.

The plot in Figure 6.7 shows the number of unique labels as a function of optimization

iteration for structure D. Large decreases in the label count on iterations 41 (13 labels

eliminated) and 577 (8 labels eliminated) are due to the contraction algorithm’s discovery of

the isomorphisms and the consequent rule and label pruning. Figure 6.4(b) shows the initial,

worst-case labelling for structure D, while Figure 6.4(c) shows the optimized labelling. In

the optimized case, all three isomorphic substructures share the same labels. By eliminating

redundancies that exists in the form of isomorphisms, the contraction algorithm is often able

to reduce the number of labels significantly within a single iteration. This is one reason why

the algorithm works backwards from a complete, labelled structure and rule set, instead of

attempting to generate a new rule set from the bottom up.

Symmetric substructures (mirrored horizontally or vertically in the complete structure)

are also naturally optimized. Structure E, shown in Figure 6.5(a), contains both horizon-

tally and vertically symmetric substructures. Figure 6.5(b) shows the initial, worst-case

labelling for the structure, and Figure 6.5(c) shows the optimized labelling. Note that, in

47

(a) (b)

(c) (d)

Figure 6.2: (a) Structure A, composed of 12 assembly components. The seed component is
marked with an s. (b) Breadth-first assembly graph for structure A. (c) Worst-case labelling
(12 labels). (d) An optimal labelling (given the assembly graph and associated ordering),
generated by the randomized contraction algorithm (3 labels). The corresponding optimal
rule set is listed in Table 6.2.

(a) (b)

(c) (d)

Figure 6.3: (a) Segmented view of structure B. Labels used to assemble sections ‘1’ and ‘2’
(medium grey and dark grey, respectively) cannot be used to assemble any portion of section
‘3’ (light grey). (b) Breadth-first assembly graph for structure B. Vertices in sections ‘1’ and
‘2’ (highlighted by dashed ellipses) each have only a single adjacent predecessor; vertices in
section ‘3’ either have two adjacent predecessors or form part of the exterior boundary of the
structure. (c) Worst-case labelling (64 labels). (d) An optimal labelling (given the assembly
graph and associated ordering), generated by the randomized contraction algorithm (14
labels).

48

Rule Number Expanded Format Tuple Format

1

 1

− • −
−

 =⇒ 2 (1,−,−,−, 2)

2

 −
− • 1

−

 =⇒ 2 (−, 1,−,−, 2)

3

 −
− • −

1

 =⇒ 2 (−,−, 1,−, 2)

4

 −
1 • −
−

 =⇒ 3 (−,−,−, 1, 3)

5

 2

− • 2

−

 =⇒ 2 (2, 2,−,−, 2)

6

 −
− • 2

2

 =⇒ 2 (−, 2, 2,−, 2)

7

 2

2 • −
−

 =⇒ 3 (2,−,−, 2, 3)

8

 3

2 • −
−

 =⇒ 2 (3,−,−, 2, 2)

9

 −
2 • −

3

 =⇒ 2 (−,−, 3, 2, 2)

10

 −
3 • −
−

 =⇒ 2 (−,−,−, 3, 2)

Table 6.2: Optimized rule set for benchmark structure A from [13]. The label set is L =
{1, 2, 3}. This is the minimum number of labels required to assemble A – no consistent rule
set containing only two labels exists.

49

Structure Labels Steps Iterations

D (64 components) 17 16 1,704

E (65 components) 14 7 2,845

Table 6.3: Optimization results for isomorphic structure D and symmetric structure E.

the optimized case, many labels are shared at symmetric positions. Optimization results for

the structure are shown in Table 6.3.

Although the exact position at which certain labels appear depends on the (random)

order of selections made by the contraction algorithm, most labels can be utilized at positions

in two or more symmetric substructures. This is because the mirroring of the edge-oriented

assembly subgraph often allows labels used by a rule in one direction (for example, north) to

also be used in the opposite direction (for example, south). Discovering symmetry typically

requires a larger number of optimization iterations, however, since, unlike for the isomorphic

case, label values at the symmetric positions must be reduced incrementally.

6.3 Complex Structures

We now consider two examples of more complex structures, including one structure that

contains an interior hole. Our goal in this section is to demonstrate that the randomized

contraction algorithm is flexible and scalable. For the experiments presented below, we

ran the contraction algorithm until there was no further improvement for 5,000 consecutive

iterations.

6.3.1 Structures with Interior Holes

We choose to give a result for structure F, shown in Figure 6.8(a), which contains an

interior hole. This structure originally appeared in [15], as an example of a case that could

be problematic for purely local assembly algorithms. The authors of [15] suggest that the

ability to enforce a global ordering on the assembly process is important for these types of

structures, in which the exterior shell may close before the interior is complete.

It is true that a simple breadth-first assembly ordering fails to enforce all of the spa-

tiotemporal constraints that are necessary to guarantee successful assembly of structure F.

However, the assembly graph in Figure 6.8(b) does represents a valid ordering, and thus we

are able to guarantee successful assembly using local rules only. We produced this graph

by inspection, starting with the (invalid) graph generated by Algorithm 4.2. In the graph,

there is a single, directed path which includes the vertices bordering the interior hole.3 The

3We slightly abuse the notion of a graph here, by referring to the embedding of the graph in the plane (since
vertices do not really ‘border’ the interior hole). We do so only for convenience in this case, to easily identify
the changes made to the original graph produced by Algorithm 4.2.

50

(a)

(b)

(c)

Figure 6.4: (a) Structure D, containing three isomorphic substructures, coloured medium
grey. The seed component is marked with an s. (b) Worst-case labelling (64 labels). (c)
Optimized labelling generated by the randomized contraction algorithm (17 labels). Note
that all three isomorphic substructures share the same labelling.

51

(a)

(b)

(c)

Figure 6.5: (a) Structure E, containing horizontally (light grey) and vertically (medium
grey) symmetric substructures. The seed component is marked with an s. (b) Worst-case
labelling (65 labels). (c) Optimized labelling generated by the Randomized Contraction
algorithm (14 labels). Note that labels are often shared at symmetric positions.

52

 0

 50

 100

 150

 200

 250

 0 5000 10000 15000 20000 25000 30000 35000 40000

U
ni

qu
e

La
be

ls

Iteration

Unique Labels versus Optimization Iteration for Structure C

Figure 6.6: Unique labels versus optimization iteration for structure C, shown in Figure
6.1(c). More than 90% of the successful optimization steps are performed within the first
5,000 iterations.

 0

 10

 20

 30

 40

 50

 60

 70

 0 200 400 600 800 1000 1200 1400 1600 1800

U
ni

qu
e

La
be

ls

Iteration

Unique Labels versus Optimization Iteration for Structure D

Figure 6.7: Unique labels versus optimization iteration for structure D, shown in Figure 6.4.
Large decreases in the label count on iterations 41 and 577 are due to the discovery of the
isomorphisms and the consequent rule and label pruning.

53

Structure Labels Steps Iterations

F (162 components) 51 56 8,701

G (1,045 components) 120 121 83,838

Table 6.4: Optimization results for complex structures F and G.

existence of this path ensures that the exterior of the structure cannot close before the all

of the interior components are in place. Our only modification to the graph produced by

the breadth-first algorithm was to reorient 19 edges around the hole border, to produce the

longer interior path. Also, we intentionally positioned the seed component as part of the

exterior boundary, in order to make the problem more difficult. Optimization results are

given in Table 6.4; the rule set contains 51 unique labels.

Our point here is to emphasize that there is a large class of structures which appear,

at first glance, to require a globally-enforced assembly ordering, but which can in fact be

assembled using local rules.

6.3.2 Larger Structures

We give one final result, for a structure composed of more than one thousand individual

components. Figure 6.9 shows a 1,045-component structure which can be assembled with an

optimized rule set containing only 120 unique labels (Table 6.4). This is an 88.5% improve-

ment over the worst-case label count, and an average of just 0.11 labels per component.

Generating highly optimized rule sets for larger structures does require a comparative in-

crease in the number of iterations of the contraction algorithm – a total of 83,838 iterations

were required in this case.

6.4 Summary

In this chapter, we examined the performance of our randomized contraction algorithm, for

a variety of planar structures. We showed that for the benchmark structures A, B and C, the

contraction algorithm generates rule sets which use fewer labels than competing algorithms.

We also proved that the rule sets for structures A and B are optimal by our criterion, using

the minimum number of labels possible.

For structures C through F, we are not able to determine the true minimum number

of labels directly, and so it is more difficult to quantify the performance of the algorithm.

However, we saw that in all these cases, significant reductions (of at least 68%) from the

worst-case label counts were attained.

Our results for structures E and F demonstrated that the contraction algorithm is able

to naturally exploit redundancies due to isomorphisms and symmetries, without the need

to identify such substructures in advance. The result for structure G established that the

54

algorithm is scalable, reducing the number of labels by more than 88% over the worst-case

for this large structure.

55

(a)

(b)

Figure 6.8: (a) Structure F, composed of 162 assembly components. The seed component is
marked with an s. (b) Assembly graph generated using the breadth-first ordering algorithm,
followed by adjustment by inspection; the breath-first algorithm alone does not produce a
valid ordering for this structure. Note that there is a single directed path which includes all
vertices in the interior region that border the interior hole.

56

Figure 6.9: Structure G, Leonardo da Vinci’s Mona Lisa, composed of 1,045 assembly
components. The structure can be assembled using a rule set containing only 120 unique
labels. The seed component is shown in light grey, near the centre of the figure.

57

Chapter 7

Conclusions and Future Work

This thesis explored distributed assembly from an algorithmic perspective. We presented

a discretized, grid-based model for the assembly of planar structures by simple, reactive

robots (assembly components). We then defined the spatiotemporal ordering constraints

that must be satisfied to ensure coordinated assembly of a structure, and gave a procedure

for encoding these constraints in a set of local assembly rules. We showed that it is possible

to guarantee successful assembly using such a rule set, and in doing so solved an instance

of the local-to-global problem introduced in Chapter 1.

Our final contribution was a randomized optimization algorithm for reducing the num-

ber of labels that appear in an assembly rule set, or equivalently for reducing the sensing

demands placed on the assembly components. To characterize the performance of the opti-

mization algorithm, we presented results from a series of experiments with a variety of simple

and complex planar structures. These results demonstrated that our approach outperforms

other algorithms found in the literature.

Our work is a further step towards developing a theoretical understanding of distributed

assembly. Ultimately, we hope that our contributions will advance efforts to harness these

processes and enable the synthesis of specific structures in an exact and reliable way.

There are a number of directions for future research. We restricted our discussion to

planar structures, however our assembly model can readily be extended to three dimensions,

simply by expanding the components’ local sensing neighbourhood to include cells along a

third axis. We have already begun to develop modified three-dimensional ordering and label

optimization algorithms.

Our ordering algorithm generates valid outputs only when the breadth-first traversal of

a structure’s adjacency graph does not produce any interior, sink vertices. This means that

the algorithm will not work for certain structures that contain interior holes with non-convex

boundaries. We showed in Chapter 6 that it is sometimes possible to generate valid order-

ings by direct inspection. However, we believe that there is a complete, polynomial-time

58

algorithm which will generate valid orderings for arbitrary structures. The algorithm should

operate on the adjacency graph alone, once the exterior boundary vertices have been identi-

fied. That is, there is sufficient information contained in the (topological) adjacency graph

to define the necessary ordering constraints, without considering the geometric embedding

of the graph. We have developed a graph search algorithm (omitted from the thesis) to

solve this general problem, however we have not yet verified its completeness.

An additional, important research problem is to show that the Minimum Label Set

problem is NP-complete. We gave a polynomial time algorithm for verifying whether a rule

set, which uses a certain number of labels, is consistent for a particular structure under a

specific assembly ordering, and thus showed that the restricted MLS problem is in NP. Our

conjecture is that a reduction from Adleman’s Minimum Tile Types problem can be used

to show NP-completeness in the general case, but this result needs to be proved.

In a broader context, we believe that there are many results to be obtained by examining

distributed assembly from an information-theoretic perspective. We saw in Chapters 4 and 5

that information about the state of the assembly process must propagate through a structure

sequentially over time. In most situations, propagation is unlikely to be error-free – this is

analogous to data transmission over a noisy communications channel, and can perhaps be

modelled as such. Further, the Minimum Label Set problem is essentially a compression

problem, where we seek to remove any redundancies in the label set; the MLS problem may

therefore benefit from an information-theoretic analysis.

Finally, related to the above is the problem of determining the extent to which abstract

models, such as the one presented here, can be used to describe real systems. Physical

implementations must work in continuous (rather than discrete) environments, and must

deal with noise, contamination and assembly errors. At present, only a handful of attempts

have been made to build physical systems which are adequately described by these simple

models. It is also not clear what level of fidelity is required from the models as we scale

down to smaller dimensions (e.g. millimeters to nanometers) and up to thousands or tens

of thousands of components.

The study of distributed assembly is still in its infancy – many interesting research

problems remain to be solved. We believe there is much to be gained, both theoretically

and pragmatically, by understanding how to engineer these systems. In fact, we expect that,

with this understanding, distributed assembly will become a principal way in which many

artifacts are built in the not-too-distant future.

59

Bibliography

[1] A. A. G. Requicha, “Nanorobots, NEMS, and nanoassembly,” Proceedings of the IEEE,
vol. 91, no. 11, pp. 1922–1933, November 2003.

[2] G. M. Whitesides and M. Boncheva, “Beyond molecules: Self-assembly of mesoscopic
and macroscopic components,” Proceedings of the National Academy of Sciences of the
United States of America, vol. 99, no. 8, pp. 4769–4774, April 2002.

[3] H. Wang, “Proving Theorems by Pattern Recognition II,” Bell Systems Techinical
Journal, no. 40, pp. 1–42, 1961.

[4] L. Adleman, “Towards a Mathematical Theory of Self-Assembly,” Department of Com-
puter Science, University of Southern California, Los Angeles, USA, Tech. Rep. 00-722,
January 2000.

[5] P. Rothemund and E. Winfree, “The Program-size Complexity of Self-assembled
Squares,” in Proceedings of the Thirty-Second Annual ACM Symposium on Theory
of Computing (STOC’00), Portland, Oregon, USA, May 2000, pp. 459–468.

[6] L. Adleman, Q. Cheng, A. Goel, and M.-D. Huang, “Running Time and Program Size
for Self-assembled Squares,” in Proceedings of the Thirty-Third Annual ACM Sympo-
sium on Theory of Computing (STOC’01), Hersonissos, Greece, July 2001, pp. 740–748.

[7] L. Adleman, Q. Cheng, A. Goel, M.-D. Huang, D. Kempe, P. M. de Espanés, and
P. W. K. Rothemund, “Combinatorial Optimization Problems in Self-Assembly,” in
Proceedings of the Thirty-Fourth Annual ACM Symposium on Theory of Computing
(STOC’02), Montréal, Canada, May 2002, pp. 23–32.

[8] K. Saitou, “Self-Assembling Automata: A Model of Conformational Self-Assembly,” in
Proceeding of Pacific Symposium on Biocomputing, Maui, Hawaii, USA, January 1998,
pp. 609–620.

[9] E. Klavins, “Directed Self-Assembly Using Graph Grammars,” in Foundations of
Nanoscience: Self Assembled Architectures and Devices, Snowbird, Utah, USA, April
2004.

[10] R. Ghrist and D. Lipsky, “Grammatical Self Assembly for Planar Tiles,” in Proceed-
ings of the IEEE International Conference on MEMS, NANO, and Smart Systems
(ICMENS’04), Banff, Canada, August 2004, pp. 205–211.

[11] E. Klavins, R. Ghrist, and D. Lipsky, “Graph Grammars for Self Assembling Robotic
Systems,” in Proceedings of the IEEE International Conference on Robotics and Au-
tomation (ICRA’04), New Orleans, Louisianna, USA, April 2004, pp. 5293–5300.

[12] Y. Guo, G. Poulton, P. Valencia, and G. James, “Designing Self-Assembly for
2-Dimensional Building Blocks,” in Engineering Self-Organising Systems: Nature-
Inspired Approaches to Software Engineering, LNAI 2977, G. D. M. S. et al., Ed.
Springer Verlag, February 2004, pp. 75–89.

[13] C. V. Jones and M. J. Matarić, “From Local to Global Behavior in Intelligent Self-
Assembly,” in Proceedings of the IEEE International Conference on Robotics and Au-
tomation (ICRA’03), Taipei, Taiwan, September 2003, pp. 721–726.

[14] G. Li and H. Zhang, “A Rectangular Partition Algorithm for Planar Self-Assembly,”
in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS’05), Edmonton, Canada, August 2005, pp. 2324–2329.

60

[15] D. Arbuckle and A. A. G. Requicha, “Active Self-Assembly,” in Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA’04), vol. 1, New
Orleans, USA, April 2004, pp. 896–901.

[16] ——, “Shape Restoration by Active Self-Assembly,” in Proceedings of the International
Symposium on Robotics and Automation (ISRA’04), Queretaro, Mexico, August 2004.

[17] ——, “Self-repairing Self-assembled Structures,” in Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation (ICRA’06), Orlando, Florida, USA,
May 2006, pp. 4288–4290.

[18] A. Kondacs, “Biologically-Inspired Self-Assembly of Two-Dimensional Shapes Using
Global-to-Local Compilation,” in Proceedings of the Seventeenth International Joint
Conference on Artificial Intelligence (IJCAI ’03), Acapulco, Mexico, August 2003, pp.
633–638.

[19] P. W. K. Rothemund, “Using lateral capillary forces to compute by self-assembly,” Pro-
ceedings of the National Academy of Sciences of the United States of America, vol. 97,
no. 3, pp. 984–989, February 2000.

[20] J. H. Reif, T. LaBean, S. Sahu, H. Yan, and P. Yin, “Design, Simulation, and Ex-
perimental Demonstration of Self-Assembled DNA Nanostructures and DNA Motors,”
in Computational Modeling and Simulation of Materials Conference (CIMTEC’04),
Acireale, Sicily, Italy, 2004.

[21] J. Bishop, S. Burden, E. Klavins, R. Kreisberg, W. Malone, N. Napp, and T. Nguyen,
“Programmable Parts: A Demonstration of the Grammatical Approach to Self-
Organization,” in Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS’05), Edmonton, Canada, August 2005, pp. 3684–3691.

[22] S. Burden, N. Napp, and E. Klavins, “The Statistical Dynamics of Programmed Robotic
Self-Assembly,” in Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA’06), Orlando, Florida, USA, May 2006, pp. 1469–1476.

[23] R. A. Brooks, “Intelligence without representation,” Artificial Intelligence, no. 47, pp.
139–159, 1991.

[24] C. R. Kube and H. Zhang, “Collective Robotic Intelligence,” in Proceedings of the
Second International Conference on the Simulation of Adaptive Behaviour (SAB’92),
J.-A. Meyer, H. L. Roitblat, and S. W. Wilson, Eds. Cambridge, Massachusetts, USA:
MIT Press, 1993, pp. 460–468.

[25] ——, “Collective Robotics: From Social Insects to Robots,” Adaptive Behaviour, vol. 2,
no. 2, pp. 189–219, 1993.

[26] M. A. Lewis and G. A. Bekey, “The Behavioral Self-organization of Nanorobots Using
Local Rules,” in Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS’92), vol. 2, July 1992, pp. 1333–1338.

[27] W.-M. Shen, C.-M. Chuong, and P. Will, “Simulating Self-Organization for Multi-
Robot Systems,” in Proceedings of the IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS’02), vol. 3, Lausanne, Switzerland, October 2002, pp.
2776–2781.

[28] J. Kelly and H. Zhang, “Combinatorial Optimization of Sensing for Rule-Based Planar
Distributed Assembly,” in Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS’06), Beijing, China, 2006, pp. 3728–3734.

[29] G. Theraulaz and E. Bonabeau, “A Brief History of Stigmergy,” Artificial Life, vol. 5,
no. 2, pp. 97–116, 1999.

[30] R. Beckers, O. E. Holland, and J. L. Deneubourg, “From Local Actions to Global Tasks:
Stigmergy and Collective Robotics,” in Proceedings of the Fourth International Work-
shop on the Synthesis and Simulation of Living Systems, R. A. Brooks and P. Maes,
Eds., Artificial Life IV. Cambridge, Massachusetts, USA: MIT Press, 1994, pp. 181–
189.

61

[31] Z. Mason, “Programming with Stigmergy: Using Swarms for Construction,” in Pro-
ceedings of the Eighth International Conference on Artificial Life (ICAL’02), Sydney,
Australia, December 2002, pp. 371–374.

[32] E. Bonabeau, G. Theraulaz, E. Arpin, and E. Sardet, “The Building Behavior of Lattice
Swarms,” in Proceedings of the Fourth International Workshop on the Synthesis and
Simulation of Living Systems, R. A. Brooks and P. Maes, Eds., Artificial Life IV.
Cambridge, Massachusetts, USA: MIT Press, 1994, pp. 307–312.

[33] G. Theraulaz and E. Bonabeau, “Coordination in Distributed Building,” Science, vol.
269, no. 5224, pp. 686–688, August 1994.

[34] E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm Intelligence: From Natural to
Artificial Systems. Oxford University Press, 1999.

[35] E. Bonabeau, S. Guéin, D. Snyers, P. Kuntz, and G. Theraulaz, “Three-dimensional
architecture grown by simple ‘stigmergic’ agents,” Biosystems, vol. 56, no. 1, pp. 13–32,
2000.

[36] J. Werfel, Y. Bar-Yam, and R. Nagpal, “Building Patterned Structures with Robot
Swarms,” in Proceedings of the Nineteenth International Joint Conference on Artificial
Intelligence (IJCAI ’05), Edinburgh, Scotland, August 2005, pp. 1495–1502.

[37] J. Wawerla, G. S. Sukhatme, and M. J. Matarić, “Collective Construction with Multi-
ple Robots,” in Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS’02), vol. 3, Lausanne, Switzerland, October 2002.

[38] J. Werfel, Y. Bar-Yam, D. Rus, and R. Nagpal, “Distributed Construction by Mobile
Robots with Enhanced Building Blocks,” in Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA’06), Orlando, Florida, USA, May 2006,
pp. 2787–2794.

[39] C. Parker, H. Zhang, and C. R. Kube, “Blind Bulldozing: Multiple Robot Nest Con-
struction,” in Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS’3), vol. 2, Las Vegas, Nevada, USA, October 2003, pp.
2010–2015.

[40] D. B. West, Introduction to Graph Theory, 2nd ed. Prentice Hall, 2000.

[41] S. S. Epp, Discrete Mathematics with Applications, 3rd ed. Brooks Cole, December
2003.

62

	Introduction
	Contributions
	Organization

	Related Research
	Self-Assembly
	Theoretical Contributions
	Models for Self-Assembling Robotic Systems
	Physical Implementations

	Collective Assembly
	Stigmergy
	Physical Implementations

	Summary

	A Model for Distributed Assembly
	Elements of the Model
	The Assembly Process
	Perspectives on Distributed Assembly

	Spatiotemporal Coordination
	Assembly Orderings
	Assembly Graphs
	Generating Valid Assembly Orderings

	Rules and Labels
	Consistent Rule Sets
	From Assembly Ordering to Worst-Case Rule Set
	The Minimum Label Set Problem

	Experiments
	Benchmarks
	Isomorphic and Symmetric Structures
	Complex Structures
	Structures with Interior Holes
	Larger Structures

	Summary

	Conclusions and Future Work
	Bibliography

