
Combinatorial Optimization of Sensing for
Rule-Based Planar Distributed Assembly

Jonathan Kelly
Department of Computer Science

University of Southern California

Los Angeles, California, USA 90089-0781

jonathsk@robotics.usc.edu

Hong Zhang
Department of Computer Science

University of Alberta

Edmonton, Alberta, Canada T6G 2E1

zhang@cs.ualberta.ca

Abstract— We describe a model for planar distributed assem-
bly, in which agents move randomly and independently on a two-
dimensional grid, joining square blocks together to form a desired
target structure. The agents have limited capabilities, including
local sensing and rule-based reactive control only, and operate
without centralized coordination. We define the spatiotemporal
constraints necessary for the ordered assembly of a structure and
give a procedure for encoding these constraints in a rule set, such
that production of the desired structure is guaranteed. Our main
contribution is a stochastic optimization algorithm which is able
to significantly reduce the number of environmental features that
an agent must recognize to build a structure. Experiments show
that our optimization algorithm outperforms existing techniques.

I. INTRODUCTION

In this paper we investigate distributed assembly, the process

by which a group of agents interact to assemble a coherent

structure or pattern from individual components. We define

an agent as an autonomous entity capable of recognizing and

responding to some set of features within its environment.

Nature has demonstrated the utility of distributed assembly at

a range of spatial scales, from the molecular machinery inside

living cells to the to highly organized nest-building activities

of many social insect species.

The distribution of an assembly task is potentially advan-

tageous for several reasons, among them the improvements

in performance and failure tolerance that can result from

parallelism and redundancy (respectively). However, systems

containing hundreds or thousands of agents are frequently

locally-interacting only – the cost of communication, in terms

of power, time, or complexity, between distant agents is often

too high to be practical.

In an effort to understand how such locally-interacting

systems can be programmed to produce useful artifacts, several

groups have introduced rule-based abstractions of physical

assembly processes. Typically, the agents in these abstractions

possess restricted, short-range sensing and operate without

centralized control. Assembly involves joining tiles, blocks

or discs together to form larger aggregate structures, with

coordination enforced by the rules that govern the actions of

the agents. The rules are if–then statements, either explicitly

given or implicit in the model, which describe the local

environmental states that prompt an assembly action.

Previous research has focused on the problem of designing

assembly rules such that the agent-environment interactions

lead to the desired global result. We examine a different but

related issue. The efficiency and accuracy of the assembly

process depends on an agent’s ability to correctly recognize

and discriminate between members of a set of environmental

features – for agents with limited sensing capabilities, dis-

crimination becomes more difficult as the number of features

increases. How can we minimize the number of distinct

features that an agent must recognize in order to assemble

a given structure?

To answer this question, we propose a distributed assembly

model in which minimalist agents use local rules to assemble

structures composed of square blocks. Our goal is to reduce

the required number of features, which we call labels, that

an agent must recognize, while still ensuring that the desired

structure is produced. This goal is made more difficult because

our agents move randomly, do not communicate directly

with each other, and maintain no history of past actions or

observations. We show how to generate sets of rules that, when

executed by the agents, deterministically produce the desired

result, despite the random actions of group members. We then

introduce a stochastic optimization algorithm which attempts

to minimize the number of labels required to assemble a

structure. The algorithm operates by iteratively refining a

worst-case solution, verifying at each step that the modified

rules preserve all the constraints necessary for successful

assembly.

II. RELATED WORK

Our research was initially motivated by a desire to apply

models for social insect nest construction to distributed robotic

systems. In one such model, based on wasp nest construction

and introduced by Bonabeau et al. [1], agents traverse a three-

dimensional lattice, attaching cubic blocks together according

to local assembly rules. The space of possible rules is ex-

plored by genetic algorithm in [2], with the primary goal of

generating ‘structured’ architectures similar to those found in

nature. The authors do not address the problem of building

pre-specified shapes, however.

There have been significant recent efforts towards develop-

ing an algorithmic theory of self-assembly. In [4], Adleman

1-4244-0259-X/06/$20.00 ©2006 IEEE
3728

Proceedings of the 2006 IEEE/RSJ
International Conference on Intelligent Robots and Systems

October 9 - 15, 2006, Beijing, China

S

(a) (b)

(c) (d)

1

2

3

4

5

67

8

910 11 12

12

22

22

2

2 2

2

3

3

Fig. 1. Structure A from [3]. (a) Original structure; the seed is marked
with an S. (b) Assembly graph generated by breadth-first traversal of A. (c)
Worst-case labeling for A, |L| = 12. (d) Optimized labeling for A, |L| = 3.

suggests a model for one-dimensional self-assembly of square

planar tiles and gives several associated complexity measures.

Based on this work, Rothemund and Winfree introduce a two-

dimensional Tile Assembly Model for self-assembled N × N

squares in [5]. Each tile has a certain type, based on the glue
values assigned to its four edges, and bonds to other tiles

with compatible glues. The problem of finding the minimum

number of tile types required to assemble an arbitrary planar

structure is shown to be NP-complete in [6].
An alternative model for self-assembly and distributed

robotic assembly based on graph grammars is presented by

Klavins et al. [7]. Graph vertices represent parts, and an edge

between two vertices indicates that the parts are attached. A

graph grammar then defines a set of assembly rules which

can be programmed into the system, by proper selection of

the parts, to synthesize a desired structure. Ghrist and Lipsky

extend graph grammars to tile assembly systems in [8].
The model most closely related to our own is defined by

Jones and Matarić [3]. They describe a system in which unit-

square assembly agents intelligently self-assemble into planar

structures under rule-based control. Each agent is a finite state

automaton that moves randomly on a two-dimensional grid.

An agent is able to detect the states of neighboring agents

in adjacent cells, and binds to those neighbors in response to

certain state patterns. The agent then transitions to a new state,

as defined by an internal rule set. This rule set is generated by

an offline compiler which takes the goal structure as an input

and produces the necessary assembly rules as an output.
No attempt is made in [3] to reduce number of unique states

appearing in the assembly rules. Li and Zhang [9] address this

issue by partitioning the goal structure into rectangular regions

and generating rules independently for each region. Individual

rectangles are encoded using the minimum number of states

required. Partitioning is effective in many cases, although the

algorithm does not take advantage of symmetry and does not

provide improvement for ‘degenerate’ rectangles (those with

a length or width of one unit).
Other assembly models use components which are more

capable, but necessarily more complex, than those above.

Arbuckle and Requicha [10] propose a model for active self-

assembly, in which the agents are able to perform simple

computations and send state messages to connected neighbors.

Their approach allows for the assembly of partially-specified

structures and of temporary scaffolds. Similarly, Werfel et al.
[11] describe a heterogeneous system of blocks and mobile

robots, where the blocks share structural information and

communicate that information to nearby robots.

The literature also contains examples of distributed con-

struction involving physical robots. Of particular relevance

to our work is a study by Wawerla et al. [12] of the role

of communication in a multi-robot construction task, where

mobile robots assemble linear barriers composed of colored

cylinders.

III. A MODEL FOR DISTRIBUTED ASSEMBLY

In our distributed assembly model, homogeneous assem-
bly agents move randomly and asynchronously on a two-

dimensional grid of cells, transporting and attaching inert unit-

square blocks together to form a desired target structure (or

simply target). Every cell is either empty or completely filled

by a single block. Our abstraction does not explicitly consider

the spatial extent of the agents themselves; we assume that an

agent is able to fit within one cell.

The position of a cell is represented by a coordinate pair

(i, j) of integers, relative to an arbitrary origin (0, 0). Each cell

has four adjacent neighbors to the north, east, south and west.

We select our coordinate axes such that the x axis increases

to the east and the y axis increases to the north. Two cells

at positions (m,n) and (i, j) are then adjacent if |m − i| +
|n − j| = 1. The agents share a global sense of orientation

and agree on the directions of adjacent cells.

Although all blocks have the same size and shape, each

may be distinguished by an agent-assigned label. In a physical

system, this label might be any feature that is identifiable at the

scale of the agents, such as a color (macro-scale), inscription

(micro-scale), or particular surface molecule (nano-scale). For

the purposes of our model, a label is a value from the set N+

of positive integers. The label on a block cannot be changed

once it has been assigned. We use the label ‘0’ to denote an

empty cell.

Assembly begins with a single seed block, which is fixed at

the origin and assigned the label ‘1’. Growth of the structure

occurs outwards from the seed. As an agent moves between

empty cells, it compares the pattern of blocks in its local

sensing neighborhood, consisting of the four adjacent cells,

(a) (b)

Fig. 2. (a) Structure B and (b) Structure C from [3]. The seeds are marked
in yellow (light gray).

3729

with entries in an internal lookup table of assembly rules. Each

rule specifies a binding configuration that triggers an assembly

action, and a resultant label. The binding configuration enu-

merates a) which adjacent cells must be occupied, and b) what

labels must appear on blocks in the occupied cells. At least

one cell in a binding configuration must be occupied, and up

to three cells may be occupied. Once a binding configuration

has been identified, an agent applies the corresponding rule

by attaching a block to the structure at the agent’s current

position. This block is assigned the resultant label defined

by the activated rule. Attachment is irreversible – assembly

actions are never undone. We assume that an agent is able

to attach the appropriate labeled block whenever a matching

binding configuration is found.

Together, the assembly rules form an assembly rule set, and

encode the information required to build the target structure.

The rule set is identical for all the agents, allowing one agent

to complete the assembly task alone if necessary.

Formally, we define a structure T as a set of coordinate

pairs of occupied cells, and a label set L as L ⊂ N+, with |L|
finite. We model the assembly of connected structures only, in

which every block is adjacent to a least one other block. If two

cells (m,n) and (i, j) are adjacent, we describe the position

of (m,n) with respect to (i, j) by writing (m,n)d
(i,j), where

d ∈ {n, e, s, w} is an abbreviation for the cardinal direction,

north, east, south or west, of (m,n) relative to (i, j) on the

grid. Two structures T1 and T2 are said to be isomorphic iff

there is a translation vector v such that adding v to every

element of T1 results in T2.

The assembly process yields a labeled structure (T , λ),
where T is a structure and λ is a surjection λ : T → L.

We will normally represent a labeled structure as a set of

((coordinates), label) pairs, or by a symbol S̄ with an over-bar.

For a grid M , we use the notation M(i, j) for the label on

the block in the cell at position (i, j) if the cell is occupied,

or 0 if the cell is empty. Likewise, since a labeled structure

occupies a subset S̄ ⊂ M of the cells on a grid M , we also

use the notation S̄(i, j) for the label on the block in cell (i, j)
which is part of S̄. A labeled structure is complete when it

contains exactly the same set of occupied cells as the target.

An assembly rule is a five-tuple (ρn, ρe, ρs, ρw, γ), where

ρn, ρe, ρs, ρw ∈ L ∪ {0} define the binding configuration and

γ ∈ L is the resultant label. A rule may be applied at cell

(i, j) on grid M iff M(i, j) = 0 ∧ ρn = M(i, j + 1) ∧ ρe =
M(i + 1, j) ∧ ρs = M(i, j − 1) ∧ ρw = M(i− 1, j).

Our assembly model is similar to the model in [3], except

for the following differences. We disallow ‘don’t care’ entries

within a binding configuration: the configuration for each

assembly rule must be fully specified, and must exactly match

the configuration in an agent’s sensing neighborhood for a

rule to be activated. Also, we do not use a block’s position

(or sector) relative to the seed to define which entries in a

binding configuration must be non-zero. These changes allow

us to assemble a larger class of structures than in [3].

Algorithm 1 Consistent Rule Set Decision

Input: Target T , rule set R and assembly ordering (T ,≺)
Output: True if R is consistent for T , False otherwise

1: if R contains conflicting rules then
2: return False
3: end if
4: S̄ ← {((0, 0), 1)}
5: B ← {empty cells adjacent to (0, 0)}
6: while B 	= ∅ do
7: B∗ ← ∅
8: for each cell (i, j) ∈ B do
9: if � r ∈ R | r is potentially applicable at (i, j) then

10: continue
11: else if (i, j) /∈ T then
12: return False
13: else if ∃ r ∈ R | applying r would violate ≺ then
14: return False
15: end if
16: r ← single rule from R applicable at (i, j)
17: S̄ ← S̄ ∪ {((i, j), RESULTANT(r))}
18: B∗ ← B∗∪ {empty cells adjacent to (i, j)}
19: end for
20: B ← B∗
21: end while
22: if |S̄| < |T | then
23: return False
24: end if
25: return True

IV. SPATIOTEMPORAL COORDINATION

Because assembly agents move randomly, the exact se-

quence in which blocks are attached to a growing structure

cannot usually be determined in advance. However, the geom-

etry of the structure imposes certain spatiotemporal ordering

constraints on this sequence. For example, if we consider a

solid 3 × 3 square target with the seed positioned in the

southwest corner, the center block must be attached before

the outer border of the structure is closed. Otherwise, agents

will not be able to access the interior, making completion of

the structure impossible.

We encode the spatiotemporal constraints in a rule set by

first choosing an attachment order for each pair of adjacent

blocks in the target, creating a partial ordering over all

the blocks. This partial ordering defines valid sequences of

assembly steps that always produce the desired structure. We

call the partial ordering (T , ≺) an assembly ordering, where

T is the target and ≺ is a transitive antisymmetric predecessor
relation over T . The predecessor relation defines which blocks

must be in place before a new block may be attached at a

specific position. Every block except for the seed has at least

one predecessor.

An assembly ordering can be represented as a directed

acyclic graph, called an assembly graph. There is a vertex in

the graph for each block in the target, and a directed edge from

vertex i to vertex j if the corresponding block bi is adjacent

3730

Algorithm 2 Rule Set from Labeled Structure

Input: Labeled structure S̄ and assembly ordering (T ,≺)
Output: Rule set R

1: R ← ∅
2: for each cell (i, j) ∈ T do
3: for cell (m,n)d

(i,j) adjacent to (i, j), d ∈ {n, e, s, w}
do

4: if (m,n) ∈ T and (m,n) ≺ (i, j) then
5: ρd ← S̄(m,n)
6: else
7: ρd ← 0

8: end if
9: end for

10: R ← R∪ (ρn, ρe, ρs, ρw, S̄(i, j))
11: end for
12: return R

to block bj and bi is a predecessor of bj . A sink vertex in

the graph is called a terminal vertex, because it represents a

block to which no additional blocks will be attached. There is

a single source vertex in the graph corresponding to the seed.

An example assembly graph for the target structure in Figure

1a is shown in Figure 1b.

Given a rule set R and a target structure T , an immediate

question is whether R assembles T only, and no other

structures. If the rules inR can be applied on a grid containing

the seed, and the assembly process terminates with structure

T , for any possible sequence of actions by the agents, then R
is said to be consistent 1 for T . Consistency implies that R
must not contain:

• any conflicting rules, which, for the same binding con-

figuration, have different resultant labels.

• a rule which would violate the assembly ordering. We say

the assembly ordering is violated if the rule allows a block

to be attached before one or more of the predecessor

blocks are in place.

• a rule which would add a block not in the target.

The first requirement above ensures that no ambiguous rules

appear in the rule set, the second that the assembly process

remains coordinated, and the third that only correct blocks are

added to the growing structure. It is important to emphasize

that there are many rule sets which can produced the desired

target, if agents happen by chance to “do the right thing” and

assemble blocks in the correct sequence. We are concerned

with generating constrained rule sets that guarantee assembly

of the target – the space of rule sets that have this guarantee

is considerably smaller that the space of rule sets that are

statistically able to produce the desired structure with some

non-zero probability.

Algorithm 1 can be used to determine if a rule set R is

consistent for a particular target T . Before discussing the

algorithm, we make an additional note regarding assembly

rules. A rule r may potentially be applied at a position (i, j)

1The term consistent was originally introduced by Jones and Matarić [3].

Algorithm 3 Stochastic Rule Set Contraction

Input: Target structure T
Output: Optimized, consistent rule set R

1: (T ,≺) ← assembly ordering generated by BFS(T)
2: R ← worst-case, |T |-label rule set for T
3: S̄ ← labeled structure produced by R
4: while termination condition not met do
5: Randomly select non-seed cell (i, j) ∈ T
6: with probability 1− α do
7: S̄(i, j) ← random label from interval [1, S̄(i, j))
8: else
9: S̄(i, j) ← random label from interval (S̄(i, j), |T |]

10: end with
11: R∗ ← rule set generated from (S̄, (T ,≺)) by

Algorithm 2

12: if two rules in R∗ conflict then
13: Prune rule with larger resultant label from R∗

14: end if
15: S̄∗ ← labeled structure produced by R∗

16: if R∗ is consistent for T then
17: Prune any unused rules from R∗

18: R ← R∗

19: S̄ ← S̄∗
20: end if
21: end while
22: return R

if there is a valid sequence of block attachments that allows

the binding configuration for r to appear at (i, j). This is a

local test that accounts for all possible ways in which the

structure could have grown such that position (i, j) lies on the

boundary – that is, we evaluate whether a rule could be applied

at (i, j) if any existing, adjacent predecessors were absent. For

example, two rules, (0, 0, 0, 4, 8) and (0, 0, 3, 4, 8), may both

potentially be applied at the same cell but at different stages

of the assembly process, depending on whether the adjacent

block with label ‘3’ has been attached. An informal outline of

algorithm correctness follows.

Algorithm 1 verifies initially that the binding configuration

for each rule in R is unique, so we now must show that the

algorithm returns True iff the assembly process terminates with

the desired target structure T .

Assume that R is not consistent (inconsistent) for T , and

let V̄ be another labeled structure produced by R. Choose a

sequence in which blocks are added to V̄ , and let the cell (i, j)
be the first position in the sequence where (i, j) /∈ T . If at any

point a block can be added at (i, j) such that (i, j) /∈ T , the

algorithm will discover a witness for the inconsistency (line

11), because every rule is tried at each boundary cell on each

iteration.

Likewise, let (i, j) be the first position where the assembly

ordering is violated. To violate the ordering, a rule must be

potentially applicable at (i, j), for some binding configuration

where one or more predecessors are missing. The algorithm

will also posses a witness for inconsistency in this case,

3731

TABLE I

COMPARISON OF RANDOMIZED CONTRACTION WITH TRANSITION RULE SET COMPILER (JONES AND MATARIĆ)

AND RECTANGULAR PARTITIONING (LI AND ZHANG) FOR STRUCTURES A, B AND C GIVEN IN [3].

Transition Rule Set Rectangular Partitioning Stochastic Contraction

Structure Labels Steps Labels Steps Labels Steps Iterations

A (12 blocks) 5 4 9 4 3 4 97

B (64 blocks) 26 14 16 14 14 14 1344

C (245 blocks) 165 18 131 18 62 18 31424

since, when a rule is tried at a boundary cell, all possible

combinations of adjacent predecessors are considered (line

13).

Conversely, the algorithm only adds a block to the growing

structure S̄ at position (i, j) when exactly one rule r is

applicable (line 16), and only when the binding configuration

for r includes all adjacent predecessors. These are precisely

the requirements for coordinated assembly defined previously.

The main for loop terminates when no additional rules can

be applied at any cells on the boundary of S̄. If, at this point,

S̄ contains fewer blocks than T , then the rule set fails to

assemble the entire target and the algorithm returns False (line

22). Otherwise,R is consistent for T and the algorithm returns

True.

To determine the time complexity, we first note that we

can check for conflicting rules in O(|R|2) time by pairwise

comparison. On each iteration of the for loop we try |R| rules

at an empty cell (i, j). When a rule is applied at (i, j), no more

than three adjacent cells are added to B on the next iteration,

while (i, j) is removed. The loop runs once for every block

added to S̄, for time at most O(|R||T |). This gives an overall

time complexity of O(|R|2 + |R||T |).
In this paper, we consider only the class of structures for

which an assembly ordering can be generated by a breadth-

first traversal of the blocks in the target, starting at the seed.

This is a large class, however it excludes structures containing

certain types of holes with non-convex interior boundaries. For

some structures, there is no valid assembly ordering using the

assembly model we have defined; we discuss these cases in

Section VII.

V. GENERATING CONSISTENT, OPTIMIZED RULE SETS

Given a valid assembly ordering, we can always generate

a consistent rule set for a target T in the following way.

We begin by assigning a unique label to every block in T ,

creating a labeled structure S̄. Then, as described by Algorithm

2, we step through the assembly ordering block by block,

adding rules sequentially to the rule set. Each rule has a

binding configuration defined by the adjacent predecessors

(with other adjacent cells empty) and uses the resultant label

already assigned to the block. This procedure is the reverse of

Algorithm 1 – we extract, from a labeled structure, the series

of rule applications that must have been used to produce it.

In general, the rule set returned by Algorithm 2 may contain

conflicts and may not be consistent for T , as the algorithm

has no knowledge of how the labels were initially assigned.

However, if the label on each block in S̄ is unique, and

we follow the assembly ordering, consistency is a priori
guaranteed . There is only one rule that can possibly be applied

at any position and at any stage of the assembly process,

because each resultant label appears only once in the complete

structure.

The downside of this approach is that |T | labels are required

for a |T |-block target structure. We call such a |T |-label rule

set the worst-case rule set for T , and use this worst-case

solution as a starting point for our optimization algorithm.

A. Optimization by Stochastic Contraction

We can now formulate the following combinatorial opti-

mization problem: for a target T , find a rule set R which

is consistent for T and uses the minimum number of labels

possible. We do not know of a polynomial time algorithm

to solve this problem, however the related Minimum Tile Set

problem is NP-complete [6].

Our optimization technique, described by Algorithm 3,

attempts to iteratively reduce the number of labels appearing

in the rule set for T . Each successful reduction is termed

a contraction. Starting with a valid assembly ordering, we

generate a consistent, worst-case rule set R and the associated

labeled structure S̄. Then, at each iteration, we randomly select

a block in S̄, change the label on this block, and generate a new

rule set R∗. If R∗ is consistent for T the change is accepted,

otherwise the change is rejected. This process continues until

a user-defined termination condition is met, for example when

a certain number of iterations have been completed.

A single parameter, α, determines how the label on a block

is updated: with probability 1 - α we select a new label which

TABLE II

OPTIMIZED RULE SET FOR STRUCTURE IN FIGURE 1a.

LABEL SET IS L = {1, 2, 3}.

Rule # Binding Resultant

Configuration Label

(n, e, s, w)

1 (1, 0, 0, 0) 2

2 (0, 1, 0, 0) 2

3 (0, 0, 1, 0) 2

4 (0, 0, 0, 1) 3

5 (2, 2, 0, 0) 2

6 (0, 2, 2, 0) 2

7 (2, 0, 0, 2) 3

8 (3, 0, 0, 2) 2

9 (0, 0, 3, 2) 2

10 (0, 0, 0, 3) 2

3732

S

A B

C D

Fig. 3. Structure D, containing three isomorphic substructures, colored green
(gray). The seed is marked with an S.

is smaller than the existing value; otherwise, we select a new

label which is larger, up to the bound |T |. Typical values for

α in our experiments lie in the range 0.005 to 0.01. Over a

series of successful iterations, the bias towards smaller label

values results in a decrease in the number of unique labels

in R, with some labels appearing on multiple blocks in S̄.

The acceptance, with low probability, of larger label values

provides an opportunity to reverse changes which caused the

algorithm to reach a local, rather than the global, minimum

label set size. As such, our approach resembles simulated

annealing, except that the value of α remains constant over

all iterations.

The complexity of Algorithm 3 is dominated by time

required to verify that the updated rule set is consistent, and

thus a single iteration can be implemented to run in O(|R||T |)
time using Algorithm 1, since |R| is always less than |T |.

B. Conflicts and Isomorphisms

In some cases, changing the label on a block results in two

conflicting rules appearing in the updated rule set R∗. If this

occurs, one of the rules must be removed. We choose to prune

the rule with the larger resultant label.

Pruning will frequently introduce a discontinuity in the

rule set, preventing a portion of the structure from being

completed because a required rule is missing. However, for a

target containing two or more isomorphic substructures sharing

identical (oriented) assembly graphs, the worst-case rule set

includes disjoint subsets of rules that assemble the same shape

using different labels. Only one of these disjoint subsets is

required. If the discontinuity due to pruning occurs at a posi-

tion within an isomorphism, we can sometimes eliminate the

redundant subsets of rules (and any unique labels they contain)

immediately. This is possible when the label change allows

one subset of rules to assemble two or more (isomorphic)

substructures, as illustrated by the following example.

Consider structure D, shown in Figure 3, which contains

three isomorphic substructures (the upright ‘T’ shapes). Blocks

A, B, C and D in the structure will initially have different

labels. Assume that, during an iteration of the optimization

algorithm, the label on block B is randomly changed so that

it is the same as the label on block A, while the labels on

blocks C and D remain the same. The updated rule set R∗,

generated by Algorithm 2, will contain two conflicting rules

TABLE III

OPTIMIZATION RESULTS FOR STRUCTURES D AND E.

Structure Labels Steps Iterations

D (64 blocks) 17 16 1704

E (1045 blocks) 149 121 38618

for the (A, C) and (B, D) block pairs. If we assume also that

the label on block D is greater than the label on block C,

Algorithm 3 will prune the second rule. This breaks the chain

of applications that led to the attachment of block D. However,

when the algorithm applies R∗, it immediately discovers that

the subset of rules used to assemble the left substructure,

including blocks A and C, can also be used to assemble the
central substructure, including blocks B and D. The redundant

rules for the central substructure are removed before the start

of the next iteration.

VI. EXPERIMENTS

We have tested our optimization algorithm on a wide variety

of structures, including the three examples given by Jones and

Matarić in [3] and examined in [9]. For these structures, our

assembly model and the models presented in [3] and [9] are

equivalent, and hence the performance of the corresponding

algorithms may be compared directly, as is done in Table I.

Column 8 of the table gives the number of iterations required

to achieve our optimized result, using α = 0.005.

In all three cases, the stochastic contraction algorithm

generates rule sets which use fewer labels than the competing

algorithms. For structures A (Figure 1a) and B (Figure 2a),

it is possible to verify that our algorithm generates rule sets

which are optimal by our criterion, using the minimum number

of labels necessary to assemble these structures. We list the

optimized rule set for structure A in Table II. For the largest

and most complex structure, C (Figure 2b), our algorithm

reduces the number of labels required by 62% and 52%,

compared with [3] and [9] respectively.

Table I also lists the number of assembly steps for each

structure. This is the number of steps required, starting with the

seed only, to assemble the entire target, if all binding sites on

the boundary of the growing structure are filled synchronously

at every step. The metric, introduced in [3], corresponds to

the length of the longest path in the assembly graph, which

 0

 10

 20

 30

 40

 50

 60

 70

 0 200 400 600 800 1000 1200 1400 1600

U
ni

qu
e

La
be

ls

Iteration

Fig. 4. Unique labels versus optimization iteration for Structure D, shown
in Figure 3.

3733

is independent of the number of labels used. Entries in each

table column are identical because [3] and [9] implicitly use

the same graph as our algorithm for structures A, B and C.

We mention two additional results here, shown in Table

III. Figure 3, discussed in Section V-B, is an example of a

structure containing several isomorphic substructures. The plot

in Figure 4 gives the number of unique labels as a function

of optimization iteration for this structure. Large decreases in

the label count on iterations 41 (12 labels eliminated) and 231

(10 labels eliminated) are due to the algorithm’s discovery of

the isomorphisms and the consequent rule and label pruning.

Figure 5 is a 1045-block structure that can be assembled using

an optimized rule set containing only 149 labels. This is an

86% improvement over the worst-case.

VII. DISCUSSION

The results in Tables I and III demonstrate that our optimiza-

tion algorithm is able to reduce the number of labels required

to assemble a variety of structures. When compared with [3]

and [9], the relative performance of the algorithm improves

as the complexity of the structure, defined by its size and

geometric description, increases. Further, the algorithm works

for a larger class of planar structures than [9].

The use of local sensing in our assembly model does have a

drawback: it is not possible to generate consistent rule sets for

structures such as the one shown in Figure 6 using a single

seed. Blocks A and B in the figure correspond to terminal

vertices in the assembly graph, and therefore represent the

end of the flow of information about the state of the assembly

process. Neither A nor B is a predecessor of any other block,

and so assembly of the remainder of the structure is not

impeded by their absence. There is no assembly ordering that

enforces the constraints necessary to ensure that the structure

border remains open until both A and B are attached.

VIII. CONCLUSIONS AND FUTURE WORK

We have presented a simple model for distributed assembly

and a stochastic optimization algorithm which reduces the

number of labels that agents must recognize in order to

Fig. 5. Structure E, Leonardo da Vinci’s Mona Lisa, containing 1045 blocks.
The seed is marked in yellow (light gray).

S

A

B

Fig. 6. A connected structure for which there is no consistent rule set using
our single-seed model.

complete an assembly task. The algorithm is scalable and

significantly outperforms existing alternatives. We expect the

model and optimization approach to be useful for distributed

assembly tasks in collective robotic systems where sensing

capabilities are limited.
There are several directions for future work. Extending the

assembly model to three dimensions is straightforward, and we

are currently testing our algorithm’s performance in this larger

rule space. We also plan to investigate the use of heuristics

to guide where in a structure optimization efforts should be

concentrated. Finally, we would like to formally characterize

classes of structures for which the assembly ordering con-

straints can be partially relaxed, while still ensuring that a

deterministic result is produced.

REFERENCES

[1] E. Bonabeau, G. Théraulaz, E. Arpin, and E. Sardet, “The building
behavior of lattice swarms,” in Proc. Fourth Int’l Conf. Artificial Life.
Cambridge, USA: MIT Press, 1994, pp. 307–312.

[2] E. Bonabeau, M. Dorigo, and G. Théraulaz, Swarm Intelligence: From
Natural to Artificial Systems. Oxford University Press, 1999.

[3] C. V. Jones and M. J. Matarić, “From local to global behavior in intelli-
gent self-assembly,” in Proc. IEEE Int’l Conf. Robotics and Automation
(ICRA ’03), Taipei, Taiwan, Sep 2003, pp. 721–726.

[4] L. Adleman, “Towards a mathematical theory of self-assembly,” De-
partment of Computer Science, University of Southern California, Los
Angeles, USA, Tech. Rep. 00-722, 2000.

[5] P. Rothemund and E. Winfree, “The program-size complexity of self-
assembled squares,” in Proc. Thirty-second Ann. ACM Symp. Theory of
Computing (STOC ’00), Portland, USA, 2000, pp. 459–468.

[6] L. Adleman, Q. Cheng, A. Goel, M.-D. Huang, D. Kempe, P. M.
de Espanés, and P. W. K. Rothemund, “Combinatorial optimization
problems in self-assembly,” in Proc. Thirty-fourth Ann. ACM Symp.
Theory of Computing (STOC ’02), Montréal, Canada, 2002, pp. 23–32.

[7] E. Klavins, R. Ghrist, and D. Lipsky, “Graph grammars for self
assembling robotic systems,” in Proc. IEEE Int’l Conf. Robotics and
Automation (ICRA ’04), New Orleans, USA, Apr 2004, pp. 5293–5300.

[8] R. Ghrist and D. Lipsky, “Grammatical self assembly for planar tiles,”
in Proc. IEEE Int’l Conf. MEMS, NANO, and Smart Systems (ICMENS
’04), Banff, Canada, Aug 2004, pp. 205–211.

[9] G. Li and H. Zhang, “A rectangular partition algorithm for planar self-
assembly,” in Proc. IEEE Int’l Conf. Intelligent Robots and Systems
(IROS ’05), Edmonton, Canada, Aug 2005, pp. 2324–2329.

[10] D. Arbuckle and A. A. G. Requicha, “Active self-assembly,” in Proc.
IEEE Int’l Conf. Robotics and Automation (ICRA ’04), New Orleans,
USA, Apr 2004, pp. 896–901.

[11] J. Werfel, Y. Bar-Yam, and R. Nagpal, “Building patterned structures
with robot warms,” in Proc. Nineteenth Int’l Joint Conf. on Artificial
Intelligence (IJCAI ’05), Edinburgh, Scotland, Aug 2005, pp. 1495–
1502.

[12] J. Wawerla, G. S. Sukhatme, and M. J. Matarić, “Collective construction
with multiple robots,” in Proc. IEEE/RSJ Int’l Conf. Intelligent Robots
and Systems (IROS ’02), Lausanne, Switzerland, Oct 2002, pp. 2696–
2701.

[13] L. Adleman, Q. Cheng, A. Goel, and M.-D. Huang, “Running time
and program size for self-assembled squares,” in Proc. Thirty-third Ann.
ACM Symp. Theory of Computing (STOC ’01), Hersonissos, Greece,
2001, pp. 740–748.

3734

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

